mass transfer1

44
4. Introduction to Heat & Mass Transfer This section will cover the following concepts: A rudimentary introduction to mass transfer. Mass transfer from a molecular point of view. Fundamental similarity of heat and mass transfer. Application of mass transfer concepts: - Ev aporati on of a li quid lay er - Evaporat io n of a liquid dr ople t 4. Heat & Mass Transfer  1 AER 1304–ÖLG

Upload: alps-ana

Post on 07-Apr-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Mass Transfer1

8/4/2019 Mass Transfer1

http://slidepdf.com/reader/full/mass-transfer1 1/44

4. Introduction to Heat & Mass TransferThis section will cover the following concepts:

•A rudimentary introduction to mass transfer.

• Mass transfer from a molecular point of view.

• Fundamental similarity of heat and mass transfer.

• Application of mass transfer concepts:

- Evaporation of a liquid layer 

- Evaporation of a liquid droplet

4. Heat & Mass Transfer  1 AER 1304–ÖLG

Page 2: Mass Transfer1

8/4/2019 Mass Transfer1

http://slidepdf.com/reader/full/mass-transfer1 2/44

Mass Transfer: Mass-Transfer Rate Laws:

• Fick’s Law of Diffusion: Describes, in its basic

form, the rate at which two gas species diffusethrough each other.

• For one-dimensional binary diffusion:

m

A

  mass flow of Aper unit area

= Y A( m

A + m

B)

   mass flow of Aassociated with bulk

flow per unit area

− ρDABdY Adx   mass flow of A

associated withmolecular diffusion

(4.1)

4. Heat & Mass Transfer  2 AER 1304–ÖLG

Page 3: Mass Transfer1

8/4/2019 Mass Transfer1

http://slidepdf.com/reader/full/mass-transfer1 3/44

A is transported by two means: (a) bulk motion of the fluid, and (b) molecular diffusion.

• Mass flux is defined as the mass flowrate of 

species A per unit area perpendicular to the flow:

m

A = mA/A (4.2)

m

A has the units kg/(s m2).

• The binary diffusivity, or the molecular diffusion

coefficient , DAB is a property of the mixture and

has units of m2/s.

4. Heat & Mass Transfer  3 AER 1304–ÖLG

Page 4: Mass Transfer1

8/4/2019 Mass Transfer1

http://slidepdf.com/reader/full/mass-transfer1 4/44

In the absence of diffusion:

m

A = Y A( m

A + m

B) = Y Am

≡ Bulk flux of species A

(4.3a)

where m is the mixture mass flux.

• The diffusional flux adds an additional componentto the flux of A:

−ρDAB dY Adx

≡ Diff usional flux of A, m

A,diff 

(4.3b)

4. Heat & Mass Transfer  4 AER 1304–ÖLG

Page 5: Mass Transfer1

8/4/2019 Mass Transfer1

http://slidepdf.com/reader/full/mass-transfer1 5/44

Note that the negative sign causes the flux to be postive in the x-direction when the concentration

gradient is negative.

• Analogy between the diffusion of heat (conduc-tion) and molecular diffusion.

- Fourier’s law of heat conduction:

Q

x = −k dT dx

(4.4)

• Both expressions indicate a flux ( m

A,diff  or Q

x) being proportional to the gradient of a scalar quan-

tity [(dY A/dx) or (dT /dx)].

4. Heat & Mass Transfer  5 AER 1304–ÖLG

Page 6: Mass Transfer1

8/4/2019 Mass Transfer1

http://slidepdf.com/reader/full/mass-transfer1 6/44

• A more general form of Eqn 4.1:

−→m

A = Y A(−→m

A +−→m

B) − ρDAB∇Y A (4.5)

symbols with over arrows represent vector quanti-

ties. Molar form of Eqn 4.5

−→N A = χA(−→N A + −→N B) − cDAB∇χA (4.6)

where˙

A, (kmol/(s m

2

), is the molar flux of species A; χA is mole fraction, and c is the mo-

lar concentration, kmol/m3.

4. Heat & Mass Transfer  6 AER 1304–ÖLG

Page 7: Mass Transfer1

8/4/2019 Mass Transfer1

http://slidepdf.com/reader/full/mass-transfer1 7/44

• Meanings of bulk flow and diffusional flux can be

 better explained if we consider that:

m  mixture

mass flux

= m

A  species Amass flux

+ m

B  species Bmass flux

(4.7)

• If we substitute for individual species fluxes fromEqn 4.1 into 4.7:

m = Y Am − ρDAB dY Adx

+ Y Bm − ρDBA dY Bdx

(4.8a)

4. Heat & Mass Transfer  7 AER 1304–ÖLG

Page 8: Mass Transfer1

8/4/2019 Mass Transfer1

http://slidepdf.com/reader/full/mass-transfer1 8/44

• Or:

m = (Y A + Y B) m − ρDABdY Adx

− ρDBAdY Bdx

(4.8b)• For a binary mixture, Y A + Y B = 1; then:

− ρDAB dY Adx

   diffusional fluxof species A

− ρDBA dY Bdx

   diffusional fluxof species B

= 0 (4.9)

• In general

m

i = 0

4. Heat & Mass Transfer  8 AER 1304–ÖLG

Page 9: Mass Transfer1

8/4/2019 Mass Transfer1

http://slidepdf.com/reader/full/mass-transfer1 9/44

• Some cautionary remarks:

- We are assuming a binary gas and the dif-

fusion is a result of concentration gradients

only (ordinary diffusion).- Gradients of temperature and pressure can

 produce species diffusion.

- Soret effect : species diffusion as a result of 

temperature gradient.

- In most combustion systems, these effects are

small and can be neglected.

4. Heat & Mass Transfer  9 AER 1304–ÖLG

Page 10: Mass Transfer1

8/4/2019 Mass Transfer1

http://slidepdf.com/reader/full/mass-transfer1 10/44

 Molecular Basis of Diffusion:

• We apply some concepts from the kinetic theory of 

gases.

- Consider a stationary (no bulk flow) planelayer of a binary gas mixture consisting of 

rigid, non-attracting molecules.

- Molecular masses of A and B are identical.

- A concentration (mass-fraction) gradient ex-

ists inx

-direction, and is sufficiently small

that over smaller distances the gradient can

 be assumed to be linear.

4. Heat & Mass Transfer  10 AER 1304–ÖLG

Page 11: Mass Transfer1

8/4/2019 Mass Transfer1

http://slidepdf.com/reader/full/mass-transfer1 11/44

4. Heat & Mass Transfer  11 AER 1304–ÖLG

Page 12: Mass Transfer1

8/4/2019 Mass Transfer1

http://slidepdf.com/reader/full/mass-transfer1 12/44

• Average molecular properties from kinetic theory

of gases:

v ≡Mean speed

of species A

molecules =8kBT 

πmA 1/2

(4.10a)

Z A≡

Wall collisionfrequency of A

molecules per unit area=

1

4nA

V  v (4.10b)

λ ≡ Mean free path =1√ 

2π(ntot/V )σ2(4.10c)

a ≡ Average perpendicular distancefrom plane of last collision to

plane where next collision occurs= 2

3λ (4.10d)

4. Heat & Mass Transfer  12 AER 1304–ÖLG

Page 13: Mass Transfer1

8/4/2019 Mass Transfer1

http://slidepdf.com/reader/full/mass-transfer1 13/44

where

- kB: Boltzmann’s constant.

- mA: mass of a single A molecule.

- (nA/V ): number of A molecules per unit volume.

- (ntot/V ): total number of molecules per unit vol-

ume.

- σ: diameter of both A and B molecules.

• Net flux of A molecules at the x-plane:

m

A = m

A,(+)x−dir − m

A,(−)x−dir (4.11)

4. Heat & Mass Transfer  13 AER 1304–ÖLG

Page 14: Mass Transfer1

8/4/2019 Mass Transfer1

http://slidepdf.com/reader/full/mass-transfer1 14/44

• In terms of collision frequency, Eqn 4.11 becomes

m

A

  Net mass

flux of species A

= (Z A)x−a

   Number of A

crossing plane xoriginating fromplane at (x−a)

mA − (Z A)x+a

   Number of A

crossing plane xoriginating fromplane at (x+a)

mA

(4.12)

• Since ρ ≡ mtot/V tot, then we can relate Z A tomass fraction, Y A (from Eqn 4.10b)

Z AmA = 14

nAmAmtot

ρv = 14

Y Aρv (4.13)

4. Heat & Mass Transfer  14 AER 1304–ÖLG

Page 15: Mass Transfer1

8/4/2019 Mass Transfer1

http://slidepdf.com/reader/full/mass-transfer1 15/44

• Substituting Eqn 4.13 into 4.12

m

A =1

4ρv(Y A,x−a − Y A,x+a) (4.14)

• With linear concentration assumption

dY dx

= Y A,x−a − Y A,x+a

2a

=

Y A,x−a

−Y A,x+a

4λ/3

(4.15)

4. Heat & Mass Transfer  15 AER 1304–ÖLG

Page 16: Mass Transfer1

8/4/2019 Mass Transfer1

http://slidepdf.com/reader/full/mass-transfer1 16/44

• From the last two equations, we get

m

A = −ρvλ

3

dY Adx

(4.16)

• Comparing Eqn. 3.16 with Eqn. 3.3b, DAB is

DAB = vλ/3 (4.17)

• Substituting for  v and λ, along with ideal-gas

equation of state, P V  = nkBT 

DAB = 23

k3BT π3mA

1/2 T σ2P 

(4.18a)

4. Heat & Mass Transfer  16 AER 1304–ÖLG

Page 17: Mass Transfer1

8/4/2019 Mass Transfer1

http://slidepdf.com/reader/full/mass-transfer1 17/44

or 

DAB ∝ T 3/2P −1 (4.18b)

• Diffusivity strongly depends on temperature and is

inversely proportional to pressure.

• Mass flux of species A, however, depends on

ρDAB, which then gives:

ρDAB ∝ T 1/2P 0 = T 1/2 (4.18c)

• In some practical/simple combustion calculations,

the weak temperature dependence is neglected and

ρD is treated as a constant.

4. Heat & Mass Transfer  17 AER 1304–ÖLG

Page 18: Mass Transfer1

8/4/2019 Mass Transfer1

http://slidepdf.com/reader/full/mass-transfer1 18/44

Comparison with Heat Conduction:

• We apply the same kinetic theory concepts to the

transport of energy.

• Same assumptions as in the molecular diffusioncase.

• v and λ have the same definitions.

• Molecular collision frequency is now based on the

total number density of molecules, ntot/V ,

Z  = Average wall collisionfrequency per unit area = 1

4ntot

v (4.19)

4. Heat & Mass Transfer  18 AER 1304–ÖLG

Page 19: Mass Transfer1

8/4/2019 Mass Transfer1

http://slidepdf.com/reader/full/mass-transfer1 19/44

4. Heat & Mass Transfer  19 AER 1304–ÖLG

Page 20: Mass Transfer1

8/4/2019 Mass Transfer1

http://slidepdf.com/reader/full/mass-transfer1 20/44

• In the no-interaction-at-a-distance hard-sphere

model of the gas, the only energy storage mode

is molecular translational (kinetic) energy.

•Energy balance at the x-plane;

Net energy flowin x−direction =

kinetic energy fluxwith moleculesfrom x−a to x

− kinetic energy fluxwith moleculesfrom x+a to x

Q

x = Z 

(ke)x−a − Z 

(ke)x+a (4.20)

• ke is given by

ke = 12

mv2 = 32

kBT  (4.21)

4. Heat & Mass Transfer  20 AER 1304–ÖLG

Page 21: Mass Transfer1

8/4/2019 Mass Transfer1

http://slidepdf.com/reader/full/mass-transfer1 21/44

heat flux can be related to temperature as

Q

x =3

2kBZ (T x−a − T x+a) (4.22)

• The temperature gradient

dT 

dx=

T x+a − T x−a

2a(4.23)

• Eqn. 4.23 into 3.22, and definitions of  Z  and a

Q

x = −12

kB n

vλdT 

dx(4.24)

4. Heat & Mass Transfer  21 AER 1304–ÖLG

Page 22: Mass Transfer1

8/4/2019 Mass Transfer1

http://slidepdf.com/reader/full/mass-transfer1 22/44

Page 23: Mass Transfer1

8/4/2019 Mass Transfer1

http://slidepdf.com/reader/full/mass-transfer1 23/44

4. Heat & Mass Transfer  23 AER 1304–ÖLG

Page 24: Mass Transfer1

8/4/2019 Mass Transfer1

http://slidepdf.com/reader/full/mass-transfer1 24/44

  Species Conservation:

• One-dimensional control volume

• Species A flows into and out of the control vol-

ume as a result of the combined action of bulk flow and diffusion.

• Within the control volume, species A may be cre-

ated or destroyed as a result of chemical reaction.

• The net rate of increase in the mass of A within

the control volume relates to the mass fluxes andreaction rate as follows:

4. Heat & Mass Transfer  24 AER 1304–ÖLG

Page 25: Mass Transfer1

8/4/2019 Mass Transfer1

http://slidepdf.com/reader/full/mass-transfer1 25/44

dmA,cv

dt   Rate of increase

of mass Awithin CV

= [ m

AA]x

   Mass flowof A into

CV

− [ m

AA]x+∆x

   Mass flowof A out

of the CV

+ m

A V 

   Mass prod.rate of A

by reaction

(4.28)

- where

- m

A is the mass production rate of species A

 per unit volume.

- m

A is defined by Eqn. 4.1.

4. Heat & Mass Transfer  25 AER 1304–ÖLG

Page 26: Mass Transfer1

8/4/2019 Mass Transfer1

http://slidepdf.com/reader/full/mass-transfer1 26/44

• Within the control volume mA,cv = Y Amcv =Y AρV cv, and the volume V cv = A ·∆x; Eqn. 4.28

A∆x∂ (ρY A)

∂ t= AY Am

−ρDAB

∂ Y A

∂ x xA

Y Am − ρDAB∂ Y A∂ x

x+∆x

+ m

A A∆x

(4.29)• Dividing by A∆x and taking limit as ∆x → 0,

∂ (ρY A)∂ t = − ∂ ∂ xY Am − ρDAB ∂ Y A∂ x

+ mA

(4.30)

4. Heat & Mass Transfer  26 AER 1304–ÖLG

Page 27: Mass Transfer1

8/4/2019 Mass Transfer1

http://slidepdf.com/reader/full/mass-transfer1 27/44

• For the steady-flow,

m

A − d

dx

Y Am − ρDAB

dY Adx

= 0 (4.31)

• Eqn. 4.31 is the steady-flow, one-dimensionalform of species conservation for a binary gas mix-

ture. For a multidimensional case, Eqn. 4.31 can

 be generalized as

m

A  Net rate of species A productionby chemical reaction

− ∇ ·−→m

A   Net flow of speciesA out of 

control volume

= 0 (4.32)

4. Heat & Mass Transfer  27 AER 1304–ÖLG

Page 28: Mass Transfer1

8/4/2019 Mass Transfer1

http://slidepdf.com/reader/full/mass-transfer1 28/44

Some Applications of Mass Transfer:

The Stefan Problem:

4. Heat & Mass Transfer  28 AER 1304–ÖLG

Page 29: Mass Transfer1

8/4/2019 Mass Transfer1

http://slidepdf.com/reader/full/mass-transfer1 29/44

• Assumptions:

- Liquid A in the cylinder maintained at a

fixed height.

- Steady-state- [A] in the flowing gas is less than [A] at the

liquid-vapour interface.

- B is insoluble in liquid A

• Overall conservation of mass:

m(x) = constant = m

A + m

B (4.33)

4. Heat & Mass Transfer  29 AER 1304–ÖLG

Page 30: Mass Transfer1

8/4/2019 Mass Transfer1

http://slidepdf.com/reader/full/mass-transfer1 30/44

Since m

B

= 0, then

m

A = m(x) = constant (4.34)

Then, Eqn. 3.1 now becomes

m

A = Y Am

A

−ρDAB

dY A

dx

(4.35)

Rearranging and separating variables

− m

AρDAB

dx = dY A1 − Y A(4.36)

4. Heat & Mass Transfer  30 AER 1304–ÖLG

Page 31: Mass Transfer1

8/4/2019 Mass Transfer1

http://slidepdf.com/reader/full/mass-transfer1 31/44

Assuming ρDAB to be constant, integrate Eqn.

4.36

m

A

ρD

AB

x =

−ln[1

−Y A] + C  (4.37)

With the boundary condition

Y A(x = 0) = Y A,i (4.38)

We can eliminate C ; then

Y A(x) = 1 − (1 − Y A,i)exp m

AxρDAB

(4.39)

4. Heat & Mass Transfer  31 AER 1304–ÖLG

Page 32: Mass Transfer1

8/4/2019 Mass Transfer1

http://slidepdf.com/reader/full/mass-transfer1 32/44

• The mass flux of A, m

A, can be found by letting

Y A(x = L) = Y A,∞

Then, Eqn. 4.39 reads

m

A =ρDAB

L ln1−

Y A,∞

1 − Y A,i (4.40)

•Mass flux is proportional to ρ

D, and inversely

 proportional to L.

4. Heat & Mass Transfer  32 AER 1304–ÖLG

Page 33: Mass Transfer1

8/4/2019 Mass Transfer1

http://slidepdf.com/reader/full/mass-transfer1 33/44

 Liquid-Vapour Interface:

• Saturation pressure

P A,i = P sat(T liq,i) (4.41)

• Partial pressure can be related to mole fraction and

mass fraction

Y A,i =P sat(T liq,i)

M W AM W mix,i

(4.42)

- To find Y A,i we need to know the interface

temperature.

4. Heat & Mass Transfer  33 AER 1304–ÖLG

Page 34: Mass Transfer1

8/4/2019 Mass Transfer1

http://slidepdf.com/reader/full/mass-transfer1 34/44

• In crossing the liquid-vapour boundary, we main-

tain continuity of temperature

T liq,i(x = 0−) = T vap,i(x = 0+) = T (0) (4.43)

and energy is conserved at the interface. Heat istransferred from gas to liquid, Qg−i. Some of this

heats the liquid, Qi−l, while the remainder causes

 phase change.

Qg−i − Qi−l = m(hvap − hliq) = mhfg (4.44)

or Qnet = mhfg (4.45)

4. Heat & Mass Transfer  34 AER 1304–ÖLG

Page 35: Mass Transfer1

8/4/2019 Mass Transfer1

http://slidepdf.com/reader/full/mass-transfer1 35/44

  Droplet Evaporation:

4. Heat & Mass Transfer  35 AER 1304–ÖLG

Page 36: Mass Transfer1

8/4/2019 Mass Transfer1

http://slidepdf.com/reader/full/mass-transfer1 36/44

• Assumptions:

- The evaporation process is quasi-steady.

- The droplet temperature is uniform, and the tem-

 perature is assumed to be some fixed value belowthe boiling point of the liquid.

- The mass fraction of vapour at the droplet surface

is determined by liquid-vapour equilibrium at the

droplet temperature.

- We assume constant physical properties, e.g., ρD.

4. Heat & Mass Transfer  36 AER 1304–ÖLG

Page 37: Mass Transfer1

8/4/2019 Mass Transfer1

http://slidepdf.com/reader/full/mass-transfer1 37/44

Evaporation Rate:

• Same approach as the Stefan problem; except

change in coordinate sysytem.

• Overall mass conservation:

m(r) = constant = 4πr2m (4.46)

• Species conservation for the droplet vapour:

mA = Y Am

A − ρDAB dY Adr (4.47)

4. Heat & Mass Transfer  37 AER 1304–ÖLG

Page 38: Mass Transfer1

8/4/2019 Mass Transfer1

http://slidepdf.com/reader/full/mass-transfer1 38/44

• Substitute Eqn. 4.46 into 4.47 and solve for  m,

m = −4πr2 ρDAB

1 − Y A

dY Adr

(4.48)

• Integrating and applying the boundary condition

Y A(r = rs) = Y A,s (4.49)

- yields

Y A(r) = 1 −(1

−Y A,s)exp[

−m/(4πρDABr)

exp[−m/(4πρDABrs)](4.50)

4. Heat & Mass Transfer  38 AER 1304–ÖLG

Page 39: Mass Transfer1

8/4/2019 Mass Transfer1

http://slidepdf.com/reader/full/mass-transfer1 39/44

• Evaporation rate can be determined from Eqn.

4.50 by letting Y A = Y A,∞ for  r → ∞:

m = 4πrsρDAB ln (1

−Y A,∞)

(1 − Y A,s) (4.51)

• In Eqn. 4.51, we can define the dimensionless

transfer number , BY  ,

1 + BY  ≡1

−Y A,∞

1 − Y A,s (4.52a)

4. Heat & Mass Transfer  39 AER 1304–ÖLG

Page 40: Mass Transfer1

8/4/2019 Mass Transfer1

http://slidepdf.com/reader/full/mass-transfer1 40/44

or 

BY  = Y A,s − Y A,∞

1 − Y A,s(4.52b)

• Then the evaporation rate is

m = 4πrsρDAB ln (1 + BY ) (4.53)

• Droplet Mass Conservation:

dmd

dt= −m (4.54)

where md is given bymd = ρlV  = ρlπD3/6 (4.55)

4. Heat & Mass Transfer  40 AER 1304–ÖLG

Page 41: Mass Transfer1

8/4/2019 Mass Transfer1

http://slidepdf.com/reader/full/mass-transfer1 41/44

where D = 2rs, and V  is the volume of the

droplet.

• Substituting Eqns 4.55 and 4.53 into 4.54 and dif-

ferentiating

dD

dt= −4ρDAB

ρlDln (1 + BY ) (4.56)

• Eqn 4.56 is more commonly expressed in term of 

D2 rather than D,

dD2

dt= −8ρDAB

ρlln (1 + BY ) (4.57)

4. Heat & Mass Transfer  41 AER 1304–ÖLG

Page 42: Mass Transfer1

8/4/2019 Mass Transfer1

http://slidepdf.com/reader/full/mass-transfer1 42/44

• Equation 4.57 tells us that time derivative of 

the square of the droplet diameter is constant.

D2 varies with t with a slope equal to RHS of 

Eqn.4.57. This slope is defined as evaporation

constant  K :

K  =8ρDAB

ρlln (1 + BY ) (4.58)

• Droplet evaporation time can be calculated from:

0 D2o

dD2 = −td 

0

K dt (4.59)

4. Heat & Mass Transfer  42 AER 1304–ÖLG

Page 43: Mass Transfer1

8/4/2019 Mass Transfer1

http://slidepdf.com/reader/full/mass-transfer1 43/44

which yields

td = D2o/K  (4.60)

• We can change the limits to get a more general

relationship to provide a general expression for thevariation of  D with time:

D2(t) = D2o − Kt (4.61)

• Eq. 4.61 is referred to as the D2 law for droplet

evaporation.

4. Heat & Mass Transfer  43 AER 1304–ÖLG

Page 44: Mass Transfer1

8/4/2019 Mass Transfer1

http://slidepdf.com/reader/full/mass-transfer1 44/44

D2 law for droplet evaporation:

4. Heat & Mass Transfer  44 AER 1304–ÖLG