masc seminar: validation of volumetric contact dynamics models

35
Motivation Model Experiments Conclusions Validation of Volumetric Contact Dynamics Models Mike Boos May 11, 2011 Mike Boos Validation of Volumetric Contact Dynamics Models

Upload: mboos

Post on 13-Jul-2015

138 views

Category:

Technology


3 download

TRANSCRIPT

Page 1: MASc Seminar: Validation of Volumetric Contact Dynamics Models

MotivationModel

ExperimentsConclusions

Validation of Volumetric Contact DynamicsModels

Mike Boos

May 11, 2011

Mike Boos Validation of Volumetric Contact Dynamics Models

Page 2: MASc Seminar: Validation of Volumetric Contact Dynamics Models

MotivationModel

ExperimentsConclusions

Outline

1 Motivation

2 ModelVolumetric modelNormal forcesFriction forces

3 ExperimentsNormal forcesFriction forcesExperimental apparatus

4 Conclusions

Mike Boos Validation of Volumetric Contact Dynamics Models

Page 3: MASc Seminar: Validation of Volumetric Contact Dynamics Models

MotivationModel

ExperimentsConclusions

Outline

1 Motivation

2 ModelVolumetric modelNormal forcesFriction forces

3 ExperimentsNormal forcesFriction forcesExperimental apparatus

4 Conclusions

Mike Boos Validation of Volumetric Contact Dynamics Models

Page 4: MASc Seminar: Validation of Volumetric Contact Dynamics Models

MotivationModel

ExperimentsConclusions

Motivation

Figure: Dextre at the tip of Canadarm2 [1].

Mike Boos Validation of Volumetric Contact Dynamics Models

Page 5: MASc Seminar: Validation of Volumetric Contact Dynamics Models

MotivationModel

ExperimentsConclusions

Contact Models

Electrical Connectors

Alignment Sleeve

Alignment Pins

Micro Fixture

Coarse Alignment Bumper

36"28"

12"

Battery WorksiteBattery

Worksite

SPDM OTCM

Figure: ISS battery box [1].

Point contact models

Small contact patches only

Simple, convex geometries

No rolling resistance,spinning friction torque

FEM

Too complex for real-time

Mike Boos Validation of Volumetric Contact Dynamics Models

Page 6: MASc Seminar: Validation of Volumetric Contact Dynamics Models

MotivationModel

ExperimentsConclusions

Contact Models

Falling ISS battery box:real-time

Point contact models

Small contact patches only

Simple, convex geometries

No rolling resistance,spinning friction torque

FEM

Too complex for real-time

Mike Boos Validation of Volumetric Contact Dynamics Models

Page 7: MASc Seminar: Validation of Volumetric Contact Dynamics Models

MotivationModel

ExperimentsConclusions

Goals

1 Experimentally validate the volumetric contact dynamicsmodel for hard-on-hard (metal) contact

2 Demonstrate parameter identification for the model

Mike Boos Validation of Volumetric Contact Dynamics Models

Page 8: MASc Seminar: Validation of Volumetric Contact Dynamics Models

MotivationModel

ExperimentsConclusions

Volumetric modelNormal forcesFriction forces

Outline

1 Motivation

2 ModelVolumetric modelNormal forcesFriction forces

3 ExperimentsNormal forcesFriction forcesExperimental apparatus

4 Conclusions

Mike Boos Validation of Volumetric Contact Dynamics Models

Page 9: MASc Seminar: Validation of Volumetric Contact Dynamics Models

MotivationModel

ExperimentsConclusions

Volumetric modelNormal forcesFriction forces

Volumetric model

fN

kv

Figure: The modified Winkler elastic foundation model [1].

Mike Boos Validation of Volumetric Contact Dynamics Models

Page 10: MASc Seminar: Validation of Volumetric Contact Dynamics Models

MotivationModel

ExperimentsConclusions

Volumetric modelNormal forcesFriction forces

Volumetric properties

nj

Kw

fs,j(s)

fs,i(s)

Contact Surface S

Contact Plate

ni

s

Bi

Bj

Figure: The contact surface between two deformable bodies [1].

Volumetric properties

V - volume of interference Js - surface-inertia tensorn - contact normal Jv - volume-inertia tensor

Mike Boos Validation of Volumetric Contact Dynamics Models

Page 11: MASc Seminar: Validation of Volumetric Contact Dynamics Models

MotivationModel

ExperimentsConclusions

Volumetric modelNormal forcesFriction forces

Normal forces

Normal force

fn = kvV (1 + avcn)nn

V

S

vcn

Mike Boos Validation of Volumetric Contact Dynamics Models

Page 12: MASc Seminar: Validation of Volumetric Contact Dynamics Models

MotivationModel

ExperimentsConclusions

Volumetric modelNormal forcesFriction forces

Rolling resistance

Rolling resistance torque

τ r = kv aJs · ωtn

V

S

ωt

Mike Boos Validation of Volumetric Contact Dynamics Models

Page 13: MASc Seminar: Validation of Volumetric Contact Dynamics Models

MotivationModel

ExperimentsConclusions

Volumetric modelNormal forcesFriction forces

Friction

f t Friction force

τ s Spinning friction torque

7-parameter model

Bristle stiffness and damping (σo,σ1)

Slip-stick effects (µS, µC, vS)

Dwell-time dependency (τdw)

Viscous damping (σ2)

fN

Contact sites

Figure: Surface asperities(‘bristles’) in contact [1].

Mike Boos Validation of Volumetric Contact Dynamics Models

Page 14: MASc Seminar: Validation of Volumetric Contact Dynamics Models

MotivationModel

ExperimentsConclusions

Volumetric modelNormal forcesFriction forces

The Contensou effect

Translational friction forcestend to ‘cancel out’ as angularvelocity increases.

C

A Bv

ωvA

vB

vC

vDD

ω r

ω r

ω r

ω r

Figure: v << ωr [2]

Mike Boos Validation of Volumetric Contact Dynamics Models

Page 15: MASc Seminar: Validation of Volumetric Contact Dynamics Models

MotivationModel

ExperimentsConclusions

Volumetric modelNormal forcesFriction forces

The Contensou effect

Translational friction forcestend to ‘cancel out’ as angularvelocity increases.

C

AB

v

ωvA

vB

vC

vDD

ω r

ω r

ω r

ω r

Figure: v >> ωr [2]

Mike Boos Validation of Volumetric Contact Dynamics Models

Page 16: MASc Seminar: Validation of Volumetric Contact Dynamics Models

MotivationModel

ExperimentsConclusions

Volumetric modelNormal forcesFriction forces

The Contensou effect

Translational friction forcestend to ‘cancel out’ as angularvelocity increases.

C

A B

v

ωvA

vB

vC

vDD

ω r

ω r

ω r

ω r

Figure: v ' ωr [2]

Mike Boos Validation of Volumetric Contact Dynamics Models

Page 17: MASc Seminar: Validation of Volumetric Contact Dynamics Models

MotivationModel

ExperimentsConclusions

Volumetric modelNormal forcesFriction forces

Volumetric contact model

Ball-table simulation: real-time

Mike Boos Validation of Volumetric Contact Dynamics Models

Page 18: MASc Seminar: Validation of Volumetric Contact Dynamics Models

MotivationModel

ExperimentsConclusions

Normal forcesFriction forcesExperimental apparatus

Outline

1 Motivation

2 ModelVolumetric modelNormal forcesFriction forces

3 ExperimentsNormal forcesFriction forcesExperimental apparatus

4 Conclusions

Mike Boos Validation of Volumetric Contact Dynamics Models

Page 19: MASc Seminar: Validation of Volumetric Contact Dynamics Models

MotivationModel

ExperimentsConclusions

Normal forcesFriction forcesExperimental apparatus

Contact geometries

Focus on simple geometric pairs:

Cylinder-on-plane

Sphere-on-plane

Mike Boos Validation of Volumetric Contact Dynamics Models

Page 20: MASc Seminar: Validation of Volumetric Contact Dynamics Models

MotivationModel

ExperimentsConclusions

Normal forcesFriction forcesExperimental apparatus

Contact geometries

Focus on simple geometric pairs:

Cylinder-on-plane

Sphere-on-plane

Mike Boos Validation of Volumetric Contact Dynamics Models

Page 21: MASc Seminar: Validation of Volumetric Contact Dynamics Models

MotivationModel

ExperimentsConclusions

Normal forcesFriction forcesExperimental apparatus

Normal force experiments

fN = kvV

Volumetric stiffness

Increase force on payload quasi-statically

Measure normal forces and displacements(to calculate volume of interference)

Damping

Drive the payload into contact plate at setvelocities

Measure forces and displacements overtime

Mike Boos Validation of Volumetric Contact Dynamics Models

Page 22: MASc Seminar: Validation of Volumetric Contact Dynamics Models

MotivationModel

ExperimentsConclusions

Normal forcesFriction forcesExperimental apparatus

Normal force experiments

fN = kvV (1 + avcn)

Volumetric stiffness

Increase force on payload quasi-statically

Measure normal forces and displacements(to calculate volume of interference)

Damping

Drive the payload into contact plate at setvelocities

Measure forces and displacements overtime

Mike Boos Validation of Volumetric Contact Dynamics Models

Page 23: MASc Seminar: Validation of Volumetric Contact Dynamics Models

MotivationModel

ExperimentsConclusions

Normal forcesFriction forcesExperimental apparatus

Translation

Static friction and bristle dynamics

1 Begin with payload at rest

2 Slowly increase force until slipping occurs

Peak force can be used to estimate µS:

ft

t

f µN S

Also, σo =µSδz

Mike Boos Validation of Volumetric Contact Dynamics Models

Page 24: MASc Seminar: Validation of Volumetric Contact Dynamics Models

MotivationModel

ExperimentsConclusions

Normal forcesFriction forcesExperimental apparatus

Translation

ft ≈ fn(µC + σ2vt)

Coulomb friction and viscous damping

Drive payload at different constantvelocities

ft

f µN C

vt

f σN 2

Mike Boos Validation of Volumetric Contact Dynamics Models

Page 25: MASc Seminar: Validation of Volumetric Contact Dynamics Models

MotivationModel

ExperimentsConclusions

Normal forcesFriction forcesExperimental apparatus

Translation

τdw ≈tpeak − tstopln( µS−µC

µS−µpeak )

Dwell-time dependency

Static friction: Bonds between surfacesform over time when at rest.

1 Drive payload at a constant velocity

2 Bring to a stop for a set period of time

3 Slowly increase force until slippingoccurs

4 Repeat, increasing the dwell time,until no change in peak force detectedbetween iterations

Mike Boos Validation of Volumetric Contact Dynamics Models

Page 26: MASc Seminar: Validation of Volumetric Contact Dynamics Models

MotivationModel

ExperimentsConclusions

Normal forcesFriction forcesExperimental apparatus

Rotation

Repeat translation experiments, rotatinginstead of translating

Compare parameters for translation androtation

Mike Boos Validation of Volumetric Contact Dynamics Models

Page 27: MASc Seminar: Validation of Volumetric Contact Dynamics Models

MotivationModel

ExperimentsConclusions

Normal forcesFriction forcesExperimental apparatus

Combined translation and rotation

Contensou effect

1 Drive at constant tangential velocity withincreasing angular velocity

2 Drive at constant angular velocity withincreasing tangential velocity

3 Using parameters identified in previousexperiments, model the friction forces tocompare with observed Contensou effect

Mike Boos Validation of Volumetric Contact Dynamics Models

Page 28: MASc Seminar: Validation of Volumetric Contact Dynamics Models

MotivationModel

ExperimentsConclusions

Normal forcesFriction forcesExperimental apparatus

Normal force configuration

Mike Boos Validation of Volumetric Contact Dynamics Models

Page 29: MASc Seminar: Validation of Volumetric Contact Dynamics Models

MotivationModel

ExperimentsConclusions

Normal forcesFriction forcesExperimental apparatus

Friction configuration

Mike Boos Validation of Volumetric Contact Dynamics Models

Page 30: MASc Seminar: Validation of Volumetric Contact Dynamics Models

MotivationModel

ExperimentsConclusions

Normal forcesFriction forcesExperimental apparatus

Apparatus

Mike Boos Validation of Volumetric Contact Dynamics Models

Page 31: MASc Seminar: Validation of Volumetric Contact Dynamics Models

MotivationModel

ExperimentsConclusions

Outline

1 Motivation

2 ModelVolumetric modelNormal forcesFriction forces

3 ExperimentsNormal forcesFriction forcesExperimental apparatus

4 Conclusions

Mike Boos Validation of Volumetric Contact Dynamics Models

Page 32: MASc Seminar: Validation of Volumetric Contact Dynamics Models

MotivationModel

ExperimentsConclusions

Conclusions

Volumetric contact dynamics model discussed

Experimental procedure developed for parameter identificationand validation

Design of experimental apparatus

Mike Boos Validation of Volumetric Contact Dynamics Models

Page 33: MASc Seminar: Validation of Volumetric Contact Dynamics Models

MotivationModel

ExperimentsConclusions

References

Y. Gonthier.Contact Dynamics Modelling for Robotic Task Simulation.PhD Thesis, University of Waterloo, 2007.

Y. Gonthier, J. McPhee, C. Lange.On the Implementation of Coulomb Friction in aVolumetric-Based Model for Contact Dynamics.Proceedings of IDETC’07, 2007.

Mike Boos Validation of Volumetric Contact Dynamics Models

Page 34: MASc Seminar: Validation of Volumetric Contact Dynamics Models

MotivationModel

ExperimentsConclusions

Research supported by

Mike Boos Validation of Volumetric Contact Dynamics Models

Page 35: MASc Seminar: Validation of Volumetric Contact Dynamics Models

MotivationModel

ExperimentsConclusions

Questions

Mike Boos Validation of Volumetric Contact Dynamics Models