markus k. brunnermeier lecture 4: risk preferences

80
FIN501 Asset Pricing Lecture 04 Risk Prefs & EU (1) LECTURE 4: RISK PREFERENCES & EXPECTED UTILITY THEORY Markus K. Brunnermeier

Upload: others

Post on 12-Feb-2022

9 views

Category:

Documents


0 download

TRANSCRIPT

FIN501 Asset PricingLecture 04 Risk Prefs & EU (1)

LECTURE 4: RISK PREFERENCES & EXPECTED UTILITY THEORY

Markus K. Brunnermeier

FIN501 Asset PricingLecture 04 Risk Prefs & EU (2)

specifyPreferences &

Technology

observe/specifyexisting

Asset Prices

State Prices q(or stochastic discount

factor/Martingale measure)

derivePrice for (new) asset

โ€ข evolution of statesโ€ข risk preferencesโ€ข aggregation

absolute asset pricing

relativeasset pricing

NAC/LOOP

LOOP

NAC/LOOP

Only works as long as market completeness doesnโ€™t change

deriveAsset Prices

FIN501 Asset PricingLecture 04 Risk Prefs & EU (3)

Overview: Risk Preferences

1. State-by-state dominance

2. Stochastic dominance [DD4]

3. vNM expected utility theorya) Intuition [L4]

b) Axiomatic foundations [DD3]

4. Risk aversion coefficients and portfolio choice [DD5,L4]

5. Uncertainty/ambiguity aversion

6. Prudence coefficient and precautionary savings [DD5]

7. Mean-variance preferences [L4.6]

FIN501 Asset PricingLecture 04 Risk Prefs & EU (4)

State-by-state Dominance

- State-by-state dominance is an incomplete ranking

- Investment 3 state-by-state dominates investment 1

- Recall: ๐‘ฆ, ๐‘ฅ โˆˆ โ„๐‘†

๐‘ฆ โ‰ฅ ๐‘ฅ โ‡” ๐‘ฆ๐‘  โ‰ฅ ๐‘ฅ๐‘  for each ๐‘  = 1,โ€ฆ , ๐‘†

๐‘ฆ > ๐‘ฅ โ‡” ๐‘ฆ โ‰ฅ ๐‘ฅ, ๐‘ฆ โ‰  ๐‘ฅ

๐‘ฆ โ‰ซ ๐‘ฅ โ‡” ๐‘ฆ๐‘  > ๐‘ฅ๐‘  for each ๐‘  = 1,โ€ฆ , ๐‘†

๐’• = ๐ŸŽ ๐’• = ๐Ÿ

Cost Payoff ๐œ‹1 = ๐œ‹2 = 1/2

๐‘  = 1 ๐‘  = 2

Investment 1 -1000 1050 1200

Investment 2 -1000 500 1600

Investment 3 -1000 1050 1600

FIN501 Asset PricingLecture 04 Risk Prefs & EU (5)

State-by-state Dominance (ctd.)

โ€ข Investment 1 mean-variance dominates 2

โ€ข But, investment 3 does not mean-variance dominate 1

๐’• = ๐ŸŽ ๐’• = ๐Ÿ

Cost Return ๐œ‹1 = ๐œ‹2 = 1/2 E[Return] ๐œŽ

๐‘  = 1 ๐‘  = 2

Investment 1 -1000 + 5% + 20% 12.5% 7.5%

Investment 2 -1000 - 50% + 60% 5% 55%

Investment 3 -1000 + 5% + 60% 32.5% 27.5%

FIN501 Asset PricingLecture 04 Risk Prefs & EU (6)

State-by-state Dominance (ctd.)

โ€ข What is the trade-off between risk and expected return?

โ€ข Investment 4 has a higher Sharpe ratio ๐ธ ๐‘Ÿ โˆ’๐‘Ÿ๐‘“

๐œŽthan investment 5 for ๐‘Ÿ๐‘“ = 0

๐’• = ๐ŸŽ ๐’• = ๐Ÿ

Cost Return ๐œ‹1 = ๐œ‹2 = 1/2 E[Return] ๐œŽ

๐‘  = 1 ๐‘  = 2

Investment 4 -1000 + 3% + 5% 4.0% 1.0%

Investment 5 -1000 + 3% + 8% 5.5% 2.5%

FIN501 Asset PricingLecture 04 Risk Prefs & EU (7)

Overview: Risk Preferences

1. State-by-state dominance

2. Stochastic dominance [DD4]

3. vNM expected utility theorya) Intuition [L4]

b) Axiomatic foundations [DD3]

4. Risk aversion coefficients and portfolio choice [DD5,L4]

5. Prudence coefficient and precautionary savings [DD5]

6. Mean-variance preferences [L4.6]

FIN501 Asset PricingLecture 04 Risk Prefs & EU (8)

Stochastic Dominance

โ€ข No state-space โ€“ probabilities are not assigned specific states

Only applicable for final payoff gamble โ€ข Not for stocks/lotteries that form a portfolio (whose payoff is final)

Random variables before introduction of (ฮฉ, โ„ฑ, ๐‘ƒ)โ€ข Still incomplete ordering

โ€œMore completeโ€ than state-by-state ordering State-by-state dominance โ‡’ stochastic dominance Risk preference not needed for ranking!

โ€ข independently of the specific trade-offs (between return, risk and other characteristics of probability distributions) represented by an agent's utility function. (โ€œrisk-preference-freeโ€)

โ€ข Next Section: Complete preference ordering and utility representations

FIN501 Asset PricingLecture 04 Risk Prefs & EU (9)

From payoffs per state to probability

state ๐’”๐Ÿ ๐’”๐Ÿ ๐’”๐Ÿ‘ ๐’”๐Ÿ’ ๐’”๐Ÿ“

probability ๐œ‹1 ๐œ‹2 ๐œ‹3 ๐œ‹4 ๐œ‹5

Payoff x 10 10 20 20 20

Payoff y 10 20 20 20 30

payoff 10 20 30

Prob x ๐‘10 = ๐œ‹1 + ๐œ‹2 ๐‘20 = ๐œ‹3 + ๐œ‹4 + ๐œ‹5 ๐‘30 = 0

Prob y ๐‘ž10 = ๐œ‹1 ๐‘ž20 = ๐œ‹2 + ๐œ‹3 + ๐œ‹4 ๐‘ž30 = ๐œ‹5

Expressed in โ€œprobability lotteriesโ€ โ€“ only useful for final payoffs (since some cross correlation information ins lost)

Preference ๐‘ฅ โ‰ป ๐‘ฆ โˆˆ โ„๐‘† expressed in probabilities ๐‘๐‘ฅ โ‰ป ๐‘ž๐‘ฆ

FIN501 Asset PricingLecture 04 Risk Prefs & EU (10)

0 10 100 2000

0.1

0.4

0.2

0.3

0.5

0.6

0.7

0.8

0.9

1.0

F1

and F2

F1

F2

Payoff

obabilityPr

ExpectedPayoff

Standard Deviation

Payoffs 10 100 2000

Probability 1 .4 .6 0 64 44

Probability 2 .4 .4 .2 444 779

Note: Payoff of $10 is equally likely, but can bein different states of the world

FIN501 Asset PricingLecture 04 Risk Prefs & EU (11)

โ€ข Definition: Let ๐น๐ด ๐‘ฅ , ๐น๐ต ๐‘ฅ , respectively, represent the cumulative distribution functions of two random variables (cash payoffs) that, without loss of generality assume values in the interval ๐‘Ž, ๐‘ . We say that ๐น๐ด ๐‘ฅ first order stochastically dominates (FSD) ๐น๐ต ๐‘ฅ

if and only if for all ๐‘ฅ โˆˆ ๐‘Ž, ๐‘๐น๐ด ๐‘ฅ โ‰ค ๐น๐ต ๐‘ฅ

Homework: Provide an example which can be ranked according to FSD, but not according to state dominance.

First Order Stochastic Dominance

FIN501 Asset PricingLecture 04 Risk Prefs & EU (12)

X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

FA

FB

First Order Stochastic Dominance

FIN501 Asset PricingLecture 04 Risk Prefs & EU (13)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13

investment 3

investment 4

CDFs of investment 3 and 4

Payoff 1 4 5 6 8 12

Probability 3 0 .25 0.50 0 0 .25

Probability 4 .33 0 0 .33 .33 0

FIN501 Asset PricingLecture 04 Risk Prefs & EU (14)

โ€ข Definition: Let ๐น๐ด ๐‘ฅ , ๐น๐ต ๐‘ฅbe two cumulative probability distribution for random payoffs in ๐‘Ž, ๐‘ . We say that ๐น๐ด ๐‘ฅ second order stochastically dominates (SSD) ๐น๐ต ๐‘ฅif and only if for any ๐‘ฅ โˆˆ ๐‘Ž, ๐‘

โˆ’โˆž

๐‘ฅ

๐น๐ต ๐‘ก โˆ’ ๐น๐ด ๐‘ก ๐‘‘๐‘ก โ‰ฅ 0

(with strict inequality for some meaningful interval of values of t).

Second Order Stochastic Dominance

FIN501 Asset PricingLecture 04 Risk Prefs & EU (15)

f xA

f xB

~,x Payoff x f x dx x f x dxA B

Mean Preserving Spread

๐‘ฅ๐ต = ๐‘ฅ๐ด + ๐‘ง

(where ๐‘ง is independent and has zero mean)

Mean Preserving Spread:

(for normal distributions)

FIN501 Asset PricingLecture 04 Risk Prefs & EU (16)

โ€ข Theorem: Let ๐น๐ด ๐‘ฅ and ๐น๐ต ๐‘ฅ be two distribution functions defined on the same state space with identical means. Then the following statements are equivalent :

๐น๐ด ๐‘ฅ SSD ๐น๐ต ๐‘ฅ

๐น๐ต ๐‘ฅ is a mean-preserving spread of ๐น๐ด ๐‘ฅ

Mean Preserving Spread & SSD

FIN501 Asset PricingLecture 04 Risk Prefs & EU (17)

Overview: Risk Preferences

1. State-by-state dominance

2. Stochastic dominance [DD4]

3. vNM expected utility theorya) Intuition [L4]

b) Axiomatic foundations [DD3]

4. Risk aversion coefficients and portfolio choice [DD5,L4]

5. Prudence coefficient and precautionary savings [DD5]

6. Mean-variance preferences [L4.6]

FIN501 Asset PricingLecture 04 Risk Prefs & EU (18)

A Hypothetical Gamble

โ€ข Suppose someone offers you this gamble: "I have a fair coin here. I'll flip it, and if it's tails I

pay you $1 and the gamble is over. If it's heads, I'll flip again. If it's tails then, I pay you $2, if not I'll flip again. With every round, I double the amount I will pay to you if it turns up tails."

โ€ข Sounds like a good deal. After all, you can't lose. So here's the question: How much are you willing to pay to take this

gamble?

FIN501 Asset PricingLecture 04 Risk Prefs & EU (19)

Proposal 1: Expected Value

โ€ข With probability 1

2you get $1,

1

2

1ร— 20

โ€ข With probability 1

4you get $2,

1

2

2ร— 21

โ€ข With probability 1

8you get $4,

1

2

3ร— 22

โ€ข โ€ฆ

The expected payoff is given by the sum of all these terms, i.e.

๐‘ก=1

โˆž1

2

๐‘ก

ร— 2๐‘กโˆ’1 =

๐‘ก=1

โˆž1

2= โˆž

FIN501 Asset PricingLecture 04 Risk Prefs & EU (20)

St. Petersburg Paradox

โ€ข You should pay everything you own and more to purchase the right to take this gamble!

โ€ข Yet, in practice, no one is prepared to pay such a high price. Why?

โ€ข Even though the expected payoff is infinite, the distribution of payoffs is not attractiveโ€ฆ

with 93% probability we get $8 or less;

with 99% probability we get $64 or less

0

0.1

0.2

0.3

0.4

0.5

0 20 40 60

FIN501 Asset PricingLecture 04 Risk Prefs & EU (21)

Proposal 2

โ€ข Bernoulli suggests that large gains should be weighted less. He suggests to use the natural logarithm. [Cremer - another great mathematician of the time - suggests the square root.]

๐‘ก=1

โˆž1

2

๐‘ก

ร— ln 2๐‘กโˆ’1 = ln 2 < โˆž

According to this Bernoulli would pay at most

๐‘’ln 2 = 2 to participate in this gamble

FIN501 Asset PricingLecture 04 Risk Prefs & EU (22)

Representation of Preferences

A preference ordering is (i) complete, (ii) transitive, (iii) continuous and [(iv) relatively stable] can be represented by a utility function, i.e.

๐‘0, ๐‘1, โ€ฆ , ๐‘๐‘† โ‰ป ๐‘0โ€ฒ , ๐‘1

โ€ฒ , โ€ฆ , ๐‘๐‘†โ€ฒ

โ‡” ๐‘ˆ ๐‘0, ๐‘1, โ€ฆ , ๐‘๐‘† > ๐‘ˆ ๐‘0โ€ฒ , ๐‘1

โ€ฒ , โ€ฆ , ๐‘๐‘†โ€ฒ

(preference ordering over lotteries โ€“(๐‘† + 1)-dimensional space)

FIN501 Asset PricingLecture 04 Risk Prefs & EU (23)

Indifference curvesin โ„2 (for ๐‘† = 2)

45ยฐ

๐‘1

๐‘2

๐…

๐‘ง

๐‘ง

FIN501 Asset PricingLecture 04 Risk Prefs & EU (24)

Preferences over Prob. Distributions

โ€ข Consider ๐‘0 fixed, ๐‘1 is a random variable

โ€ข Preference ordering over probability distributions

โ€ข Let

๐‘ƒ be a set of probability distributions with a finite support over a set ๐‘‹,

โ‰ฝ preference ordering over ๐‘ƒ (that is, a subset of ๐‘ƒ ร— ๐‘ƒ)

FIN501 Asset PricingLecture 04 Risk Prefs & EU (25)

Prob. Distributions

โ€ข S states of the worldโ€ข Set of all possible lotteries

๐‘ƒ = ๐‘ โˆˆ โ„๐‘† ๐‘ ๐‘ โ‰ฅ 0, ๐‘ ๐‘ = 1

โ€ข Space with S dimensions

โ€ข Can we simplify the utility representation of preferences over lotteries?

โ€ข Space with one dimension โ€“ incomeโ€ข We need to assume further axioms

FIN501 Asset PricingLecture 04 Risk Prefs & EU (26)

Expected Utility Theory

โ€ข A binary relation that satisfies the following three axioms if and only if there exists a function ๐‘ข โ‹… such that

๐‘ โ‰ป ๐‘ž โ‡” ๐‘ ๐‘ ๐‘ข ๐‘ > ๐‘ž ๐‘ ๐‘ข ๐‘

i.e. preferences correspond to expected utility.

FIN501 Asset PricingLecture 04 Risk Prefs & EU (27)

vNM Expected Utility Theory

โ€ข Axiom 1 (Completeness and Transitivity): Agents have preference relation over ๐‘ƒ (repeated)

โ€ข Axiom 2 (Substitution/Independence) For all lotteries ๐‘, ๐‘ž, ๐‘Ÿ โˆˆ ๐‘ƒ and ๐›ผ โˆˆ 0,1 ,

๐‘ โ‰ฝ ๐‘ž โ‡” ๐›ผ๐‘ + 1 โˆ’ ๐›ผ ๐‘Ÿ โ‰ฝ ๐›ผ๐‘ž + 1 โˆ’ ๐›ผ ๐‘Ÿ

โ€ข Axiom 3 (Archimedian/Continuity) For all lotteries ๐‘, ๐‘ž, ๐‘Ÿ โˆˆ ๐‘ƒ if ๐‘ โ‰ป ๐‘ž โ‰ป ๐‘Ÿ then there

exists ๐›ผ, ๐›ฝ โˆˆ 0,1 such that,๐›ผ๐‘ + 1 โˆ’ ๐›ผ ๐‘Ÿ โ‰ป ๐‘ž โ‰ป ๐›ฝ๐‘ + 1 โˆ’ ๐›ฝ ๐‘Ÿ

Problem: ๐‘ you get $100 for sure, ๐‘ž you get $ 10 for sure, ๐‘Ÿ you are killed

FIN501 Asset PricingLecture 04 Risk Prefs & EU (28)

Independence Axiom

โ€ข Independence of irrelevant alternatives:

๐‘ โ‰ฝ ๐‘ž โ‡”

๐œ‹ ๐œ‹๐‘

๐‘Ÿ ๐‘Ÿ

๐‘ž

โ‰ฝ

FIN501 Asset PricingLecture 04 Risk Prefs & EU (29)

Allais Paradox โ€“Violation of Independence Axiom

10โ€™

0

15โ€™

0

9%10%โ‰บ

FIN501 Asset PricingLecture 04 Risk Prefs & EU (30)

Allais Paradox โ€“Violation of Independence Axiom

10โ€™

0

15โ€™

0

9%10%โ‰บ

10โ€™

0

15โ€™

0

90%100%

โ‰ป

FIN501 Asset PricingLecture 04 Risk Prefs & EU (31)

10โ€™

0

15โ€™

0

9%10%โ‰บ

10โ€™

0

15โ€™

0

90%100%

โ‰ป10%

0

10%

0

Allais Paradox โ€“Violation of Independence Axiom

FIN501 Asset PricingLecture 04 Risk Prefs & EU (32)

vNM EU Theorem

โ€ข A binary relation that satisfies the axioms 1-3 if and only if there exists a function ๐‘ข โ‹… such that

๐‘ โ‰ป ๐‘ž โ‡” ๐‘ ๐‘ ๐‘ข ๐‘ > ๐‘ž ๐‘ ๐‘ข ๐‘

i.e. preferences correspond to expected utility.

FIN501 Asset PricingLecture 04 Risk Prefs & EU (33)

โ€ข The shape of the von Neumann Morgenstern (NM) utility function reflects risk preference

โ€ข Consider lottery with final wealth of ๐‘1 or ๐‘2

๐ธ ๐‘ข ๐‘

Risk-Aversion and Concavity

๐‘

๐‘ข ๐‘

๐‘1 ๐‘2

๐‘ข ๐‘1

๐‘ข ๐‘2

๐ธ ๐‘

FIN501 Asset PricingLecture 04 Risk Prefs & EU (34)

โ€ข Risk-aversion means that the certainty equivalent is smaller than the expected prize. We conclude that a risk-

averse vNM utility function must be concave. ๐ธ ๐‘ข ๐‘

Risk-aversion and concavity

๐‘ฅ

๐‘ข ๐‘ฅ

๐‘1 ๐‘2

๐‘ข ๐‘1

๐‘ข ๐‘2

๐ธ ๐‘

๐‘ขโˆ’1 ๐ธ ๐‘ข ๐‘

๐‘ข ๐ธ ๐‘

FIN501 Asset PricingLecture 04 Risk Prefs & EU (35)

Theorem:

โ€ข Let ๐‘” โ‹… be a concave function on the interval ๐‘Ž, ๐‘ , and ๐‘ฅ be a random variable such that

๐‘ƒ ๐‘ฅ โˆˆ ๐‘Ž, ๐‘ = 1

โ€ข Suppose the expectations ๐ธ ๐‘ฅ and ๐ธ ๐‘” ๐‘ฅ exist; then

๐ธ ๐‘” ๐‘ฅ โ‰ค ๐‘” ๐ธ ๐‘ฅ

Furthermore, if ๐‘” โ‹… is strictly concave, then the inequality is strict.

Jensenโ€™s Inequality

FIN501 Asset PricingLecture 04 Risk Prefs & EU (36)

โ€ข Theorem: Let ๐น๐ด ๐‘ฅ , ๐น๐ต ๐‘ฅ be two cumulative probability distribution for random payoffs ๐‘ฅ โˆˆ ๐‘Ž, ๐‘ . Then ๐น๐ด ๐‘ฅFSD ๐น๐ต ๐‘ฅ if and only if ๐ธ๐ด[๐‘ข ๐‘ฅ ] โ‰ฅ ๐ธ๐ต[๐‘ข ๐‘ฅ ] for all non decreasing utility functions ๐‘ˆ โ‹… .

โ€ข Theorem: Let ๐น๐ด ๐‘ฅ , ๐น๐ต ๐‘ฅ be two cumulative probability distribution for random payoffs ๐‘ฅ โˆˆ ๐‘Ž, ๐‘ . Then ๐น๐ด ๐‘ฅSSD ๐น๐ต ๐‘ฅ if and only if ๐ธ๐ด[๐‘ข ๐‘ฅ ] โ‰ฅ ๐ธ๐ต[๐‘ข ๐‘ฅ ] for all non decreasing concave utility functions ๐‘ˆ โ‹… .

Expected Utility & Stochastic Dominance

FIN501 Asset PricingLecture 04 Risk Prefs & EU (37)

Certainty Equivalent and Risk Premium

๐ธ ๐‘ข ๐‘ + ๐‘ = ๐‘ข ๐‘ + ๐ถ๐ธ ๐‘, ๐‘

๐ธ ๐‘ข ๐‘ + ๐‘ = ๐‘ข ๐‘ + ๐ธ ๐‘ โˆ’ ฮ  ๐‘, ๐‘

FIN501 Asset PricingLecture 04 Risk Prefs & EU (38)

Certainty Equivalent and Risk Premium

Certainty Equivalent and Risk Premium

U(Y)

Y

~

~ ~

P

)ZY(U 20 +

))Z~

(EY(U 0 +

)ZY(EU 0 +

)ZY(U 10 +

)Z~

(CE

0Y 10 ZY + )ZY(CE 0 + )Z(EY0 + 20 ZY +

FIN501 Asset PricingLecture 04 Risk Prefs & EU (39)

Utility Transformations

โ€ข General utility function: Suppose ๐‘ˆ ๐‘0, ๐‘1, โ€ฆ , ๐‘๐‘† > ๐‘ˆ ๐‘0

โ€ฒ , ๐‘1โ€ฒ , โ€ฆ , ๐‘๐‘†

โ€ฒ represents complete, transitive,โ€ฆ preference ordering,

then ๐‘‰ โ‹… = ๐‘“ ๐‘ˆ โ‹… , where ๐‘“ โ‹… is strictly increasingrepresents the same preference ordering

โ€ข vNM utility function Suppose ๐ธ ๐‘ข ๐‘ represents preference ordering

satisfying vNM axioms,

then ๐‘ฃ ๐‘ = ๐‘Ž + ๐‘๐‘ข ๐‘ represents the same.โ€œaffine transformationโ€

FIN501 Asset PricingLecture 04 Risk Prefs & EU (40)

Overview: Risk Preferences

1. State-by-state dominance

2. Stochastic dominance [DD4]

3. vNM expected utility theorya) Intuition [L4]

b) Axiomatic foundations [DD3]

4. Risk aversion coefficients and portfolio choice [DD5,L4]

5. Uncertainty/ambiguity aversion

6. Prudence coefficient and precautionary savings [DD5]

7. Mean-variance preferences [L4.6]

FIN501 Asset PricingLecture 04 Risk Prefs & EU (41)

Measuring Risk aversionU(W)

WY-h Y Y+h

U(Y-h)

U[0.5(Y+h)+0.5(Y-h)]

0.5U(Y+h)+0.5U(Y-h)

tangent lines

U(Y+h)

A Strictly Concave Utility Function

FIN501 Asset PricingLecture 04 Risk Prefs & EU (42)

Arrow-Pratt Measures of Risk aversion

โ€ข absolute risk aversion = โˆ’๐‘ขโ€ฒโ€ฒ ๐‘

๐‘ขโ€ฒ ๐‘โ‰ก ๐‘…๐ด ๐‘

โ€ข relative risk aversion = โˆ’๐‘๐‘ขโ€ฒโ€ฒ ๐‘

๐‘ขโ€ฒ ๐‘โ‰ก ๐‘…๐‘… ๐‘

โ€ข risk tolerance =1

๐‘…๐ด

FIN501 Asset PricingLecture 04 Risk Prefs & EU (43)

Absolute risk aversion coefficient

๐‘…๐ด = โˆ’๐‘ขโ€ฒโ€ฒ ๐‘

๐‘ขโ€ฒ ๐‘

๐œ‹ ๐‘, ฮ” =1

2+

1

4ฮ”๐‘…๐ด ๐‘ + ๐ป๐‘‚๐‘‡

๐‘

๐‘ + ฮ”

๐‘ โˆ’ ฮ”

๐œ‹

1 โˆ’ ๐œ‹

FIN501 Asset PricingLecture 04 Risk Prefs & EU (44)

Relative risk aversion coefficient

๐‘…๐‘… = โˆ’๐‘ขโ€ฒโ€ฒ ๐‘

๐‘ขโ€ฒ ๐‘๐‘

๐œ‹ ๐‘, ๐œƒ =1

2+

1

4๐›ฟ๐‘…๐‘… ๐‘ + ๐ป๐‘‚๐‘‡

Homework: Derive this result.

๐‘

๐‘(1 + ๐›ฟ)

๐‘(1 โˆ’ ๐›ฟ)

๐œ‹

1 โˆ’ ๐œ‹

FIN501 Asset PricingLecture 04 Risk Prefs & EU (45)

CARA and CRRA-utility functions

โ€ข Constant Absolute RA utility function๐‘ข ๐‘ = โˆ’๐‘’โˆ’๐œŒ๐‘

โ€ข Constant Relative RA utility function

๐‘ข ๐‘ =๐‘1โˆ’๐›พ

1 โˆ’ ๐›พ, ๐›พ โ‰  1

๐‘ข ๐‘ = ln ๐‘ , ๐›พ = 1

FIN501 Asset PricingLecture 04 Risk Prefs & EU (46)

Level of Relative Risk Aversion

๐‘Œ + ๐ถ๐ธ 1โˆ’๐›พ

1 โˆ’ ๐›พ=

12

๐‘Œ + 50000 1โˆ’๐›พ

1 โˆ’ ๐›พ+

12

๐‘Œ + 100000 1โˆ’๐›พ

1 โˆ’ ๐›พ

๐‘Œ = 0 = 0 CE = 75,000 (risk neutrality)

= 1 CE = 70,711

= 2 CE = 66,246

= 5 CE = 58,566

= 10 CE = 53,991

= 20 CE = 51,858

= 30 CE = 51,209

๐‘Œ = 100000 = 5 CE = 66,530

FIN501 Asset PricingLecture 04 Risk Prefs & EU (47)

Risk aversion and Portfolio Allocation

โ€ข No savings decision (consumption occurs only at t=1)

โ€ข Asset structure

One risk free bond with net return ๐‘Ÿ๐‘“

One risky asset with random net return ๐‘Ÿ(a =quantity of risky assets)

max๐‘Ž

๐ธ ๐‘ข ๐‘Œ0 1 + ๐‘Ÿ๐‘“ + ๐‘Ž ๐‘Ÿ โˆ’ ๐‘Ÿ๐‘“

FOC โ‡’ ๐ธ ๐‘ขโ€ฒ ๐‘Œ0 1 + ๐‘Ÿ๐‘“ + ๐‘Ž ๐‘Ÿ โˆ’ ๐‘Ÿ๐‘“ ๐‘Ÿ โˆ’ ๐‘Ÿ๐‘“ = 0

FIN501 Asset PricingLecture 04 Risk Prefs & EU (48)

a

Wโ€™(a)

0

โ€ข Theorem 4.1: Assume ๐‘ˆโ€ฒ > 0,๐‘ˆโ€ฒโ€ฒ < 0 and let ๐‘Ž denote the solution to above problem. Then

๐‘Ž > 0 โ‡” ๐ธ ๐‘Ÿ > ๐‘Ÿ๐‘“ ๐‘Ž = 0 โ‡” ๐ธ ๐‘Ÿ = ๐‘Ÿ๐‘“ ๐‘Ž < 0 โ‡” ๐ธ ๐‘Ÿ < ๐‘Ÿ๐‘“

โ€ข Define ๐‘Š ๐‘Ž = ๐ธ ๐‘ข ๐‘Œ0 1 + ๐‘Ÿ๐‘“ + ๐‘Ž ๐‘Ÿ โˆ’ ๐‘Ÿ๐‘“ . The FOC can then be

written ๐‘Šโ€ฒ ๐‘Ž = ๐ธ ๐‘ขโ€ฒ ๐‘Œ0 1 + ๐‘Ÿ๐‘“ + ๐‘Ž ๐‘Ÿ โˆ’ ๐‘Ÿ๐‘“ ๐‘Ÿ โˆ’ ๐‘Ÿ๐‘“ = 0.

โ€ข By risk aversion ๐‘Šโ€ฒโ€ฒ ๐‘Ž = ๐ธ ๐‘ขโ€ฒโ€ฒ ๐‘Œ0 1 + ๐‘Ÿ๐‘“ + ๐‘Ž ๐‘Ÿ โˆ’ ๐‘Ÿ๐‘“ ๐‘Ÿ โˆ’ ๐‘Ÿ๐‘“2

<

0, that is, ๐‘Šโ€ฒ ๐‘Ž is everywhere decreasing It follows that ๐‘Ž will be positive โ‡” ๐‘Šโ€ฒ 0 > 0

โ€ข Since ๐‘ขโ€ฒ > 0 this implies that ๐‘Ž > 0 โ‡” ๐ธ ๐‘Ÿ โˆ’ ๐‘Ÿ๐‘“ > 0 The other assertion follows similarly

Risk aversion and Portfolio Allocation

FIN501 Asset PricingLecture 04 Risk Prefs & EU (49)

Portfolio as wealth changes

โ€ข Theorem (Arrow, 1971):Let ๐‘Ž = ๐‘Ž ๐‘Œ0 be the solution to max-problem above; then:

i.๐œ•๐‘…๐ด

๐œ•๐‘Œ< 0 (DARA) โ‡’

๐œ• ๐‘Ž

๐œ•๐‘Œ0> 0

ii.๐œ•๐‘…๐ด

๐œ•๐‘Œ= 0 (CARA) โ‡’

๐œ• ๐‘Ž

๐œ•๐‘Œ0= 0

iii.๐œ•๐‘…๐ด

๐œ•๐‘Œ> 0 (IARA) โ‡’

๐œ• ๐‘Ž

๐œ•๐‘Œ0< 0

FIN501 Asset PricingLecture 04 Risk Prefs & EU (50)

Portfolio as wealth changes

โ€ข Theorem (Arrow 1971): If, for all wealth levels Y,

i.๐œ•๐‘…๐‘…

๐œ•๐‘Œ= 0 (CRRA) โ‡’ ๐œ‚ = 1

ii.๐œ•๐‘…๐‘…

๐œ•๐‘Œ< 0 (DRRA) โ‡’ ๐œ‚ > 1

iii.๐œ•๐‘…๐‘…

๐œ•๐‘Œ> 0 (IRRA) โ‡’ ๐œ‚ < 1

where ๐œ‚ = ๐‘‘๐‘Ž ๐‘Ž

๐‘‘๐‘Œ ๐‘Œ

FIN501 Asset PricingLecture 04 Risk Prefs & EU (51)

Log utility & Portfolio Allocation

๐‘ข ๐‘Œ = ln๐‘Œ

๐ธ ๐‘Ÿ โˆ’ ๐‘Ÿ๐‘“

๐‘Œ0 1 + ๐‘Ÿ๐‘“ + ๐‘Ž ๐‘Ÿ โˆ’ ๐‘Ÿ๐‘“= 0

๐‘Ž

๐‘Œ0=

1 + ๐‘Ÿ๐‘“ ๐ธ ๐‘Ÿ โˆ’ ๐‘Ÿ๐‘“

โˆ’ ๐‘Ÿ1 โˆ’ ๐‘Ÿ๐‘“ ๐‘Ÿ2 โˆ’ ๐‘Ÿ๐‘“> 0

2 states, where ๐‘Ÿ2 > ๐‘Ÿ๐‘“ > ๐‘Ÿ1

Constant fraction of wealth is invested in risky asset!Homework: show that this result holds for

โ€ข any CRRA utility functionโ€ข any distribution of r

FIN501 Asset PricingLecture 04 Risk Prefs & EU (52)

โ€ข Theorem (Cass and Stiglitz,1970): Let the vector ๐‘Ž1 ๐‘Œ0

โ‹ฎ ๐‘Ž๐ฝ ๐‘Œ0

denote the

amount optimally invested in the ๐ฝ risky assets if the wealth level is ๐‘Œ0.

Then ๐‘Ž1 ๐‘Œ0

โ‹ฎ ๐‘Ž๐ฝ ๐‘Œ0

=

๐‘Ž1

โ‹ฎ๐‘Ž๐ฝ

๐‘“ ๐‘Œ0 if and only if either

i. ๐‘ขโ€ฒ(๐‘Œ0) = ๐ต๐‘Œ0 + ๐ถ ฮ” orii. ๐‘ขโ€ฒ ๐‘Œ0 = ๐œ‰๐‘’โˆ’๐œŒ๐‘Œ0

โ€ข In words, it is sufficient to offer a mutual fund.

Risk aversion and Portfolio Allocation

FIN501 Asset PricingLecture 04 Risk Prefs & EU (53)

LRT/HARA-utility functions

โ€ข Linear Risk Tolerance/hyperbolic absolute risk aversion

โˆ’๐‘ขโ€ฒโ€ฒ ๐‘

๐‘ขโ€ฒ ๐‘=

1

๐ด + ๐ต๐‘

โ€ข Special Cases

๐ต = 0, ๐ด > 0 CARA ๐‘ข ๐‘ =1

๐ตโˆ’1๐ด + ๐ต๐‘

๐ตโˆ’1

๐ต

๐ต โ‰  0,โ‰  1 Generalized Power

โ€ข ๐ต = 1 Log utility ๐‘ข ๐‘ = ln ๐ด + ๐ต๐‘

โ€ข ๐ต = โˆ’1 Quadratic Utility ๐‘ข ๐‘ = โˆ’ ๐ด โˆ’ ๐‘ 2

โ€ข ๐ต โ‰  1, ๐ด = 0 CRRA Utility function ๐‘ข ๐‘ =1

๐ตโˆ’1๐ต๐‘

๐ตโˆ’1

๐ต

FIN501 Asset PricingLecture 04 Risk Prefs & EU (54)

Overview: Risk Preferences

1. State-by-state dominance

2. Stochastic dominance [DD4]

3. vNM expected utility theorya) Intuition [L4]

b) Axiomatic foundations [DD3]

4. Risk aversion coefficients and portfolio choice [DD5,L4]

5. Uncertainty/ambiguity aversion

6. Prudence coefficient and precautionary savings [DD5]

7. Mean-variance preferences [L4.6]

FIN501 Asset PricingLecture 04 Risk Prefs & EU (55)

Digression: Subjective EU Theory

โ€ข Derive perceived probability from preferences!

Set ๐‘† of prizes/consequences

Set ๐‘ of states

Set of functions ๐‘“ ๐‘  โˆˆ ๐‘, called acts (consumption plans)

โ€ข Seven SAVAGE Axioms

Goes beyond scope of this course.

FIN501 Asset PricingLecture 04 Risk Prefs & EU (56)

Digression: Ellsberg Paradox

โ€ข 10 balls in an urn Lottery 1: win $100 if you draw a red ballLottery 2: win $100 if you draw a blue ball

โ€ข Uncertainty: Probability distribution is not known

โ€ข Risk: Probability distribution is known(5 balls are red, 5 balls are blue)

โ€ข Individuals are โ€œuncertainty/ambiguity averseโ€(non-additive probability approach)

FIN501 Asset PricingLecture 04 Risk Prefs & EU (57)

Digression: Prospect Theoryโ€ข Value function (over gains and losses)

โ€ข Overweight low probability events

โ€ข Experimental evidence

FIN501 Asset PricingLecture 04 Risk Prefs & EU (58)

Overview: Risk Preferences

1. State-by-state dominance

2. Stochastic dominance [DD4]

3. vNM expected utility theorya) Intuition [L4]

b) Axiomatic foundations [DD3]

4. Risk aversion coefficients and portfolio choice [DD5,L4]

5. Uncertainty/ambiguity aversion

6. Prudence coefficient and precautionary savings [DD5]

7. Mean-variance preferences [L4.6]

FIN501 Asset PricingLecture 04 Risk Prefs & EU (59)

Introducing Savings

โ€ข Introduce savings decision: Consumption at ๐‘ก = 0 and ๐‘ก = 1

โ€ข Asset structure 1:

โ€“ risk free bond ๐‘…๐‘“

โ€“ NO risky asset with random return

โ€“ Increase ๐‘…๐‘“:โ€“ Substitution effect: shift consumption from ๐‘ก = 0 to ๐‘ก = 1

โ‡’ save more

โ€“ Income effect: agent is โ€œeffectively richerโ€ and wants to consume some of the additional richness at ๐‘ก = 0โ‡’ save less

โ€“ For log-utility (๐›พ = 1) both effects cancel each other

FIN501 Asset PricingLecture 04 Risk Prefs & EU (60)

Savings: Euler Equationfor CRRA: ๐‘ข ๐‘ = ๐‘1โˆ’๐›พ

1โˆ’๐›พ

โ€ข max๐‘0,๐‘1

๐‘ข ๐‘0 + ๐›ฟ๐‘ข(๐‘1)

s.t. ๐‘1 = ๐‘…๐‘“(๐‘’0โˆ’๐‘0) + ๐‘’1

โ€ข max๐‘0

๐‘ข ๐‘0 + ๐›ฟ๐‘ข(๐‘…๐‘“๐‘’0 + ๐‘’1)

โ€ข FOC: 1 = ๐›ฟ๐‘ขโ€ฒ ๐‘1๐‘ขโ€ฒ ๐‘0

๐‘…๐‘“ 1 = ๐›ฟ ๐‘1๐‘0

โˆ’๐›พ๐‘…๐‘“

๐•ฃ๐‘“ โ‰ˆ ln๐‘…๐‘“ = โˆ’ ln ๐‘ขโ€ฒ ๐‘1๐‘ขโ€ฒ ๐‘0

โˆ’ ๐‘™๐‘›๐›ฟ

for log: ๐‘ข ๐‘ = ln ๐‘ & ๐‘’1 = 0

๐‘0 = 1

๐›ฟ(๐›ฟ+1)[๐‘’0 + 1

๐‘…๐‘’1]

๐‘1 = 1 โˆ’ 1

๐›ฟ ๐›ฟ+1[๐‘…๐‘’0 + ๐‘’_1]

for e1 = 0 saving does not depend on (risk of) ๐‘…๐‘“: 1 = ๐›ฟ ๐‘0

๐‘…๐‘“(๐‘’0โˆ’๐‘0)๐‘…๐‘“

FIN501 Asset PricingLecture 04 Risk Prefs & EU (61)

Intertemporal Elasticity of Substitution

โ€ข ๐ผ๐ธ๐‘† โ‰”๐œ• ln

๐‘1๐‘0

๐œ•๐‘Ÿ= โˆ’

๐œ• ln๐‘1๐‘0

๐œ• ln๐‘ขโ€ฒ(๐‘1)

๐‘ขโ€ฒ(๐‘0)

โ€ข For CRRA ๐‘ข ๐‘ = ๐‘1โˆ’๐›พ

1โˆ’๐›พ๐ผ๐ธ๐‘† = 1

๐›พ

FIN501 Asset PricingLecture 04 Risk Prefs & EU (62)

Investment Risk

โ€ข Savings decision: Consumption at ๐‘ก = 0 and ๐‘ก = 1โ€ข No endowment risk at ๐‘ก = 1โ€ข Asset structure 2: (no portfolio choice yet)

Single risky asset only No risk-free asset

โ€ข Theorem (Rothschild and Stiglitz, 1971): For ๐‘…๐ต = ๐‘…๐ด + ฮต, where E ํœ€ = 0 and ํœ€ โŠฅ ๐‘…๐ด, then respective savings ๐‘ ๐ด , ๐‘ ๐ต out of initial wealth level ๐‘Š0 are If ๐œ•๐‘…๐‘…

๐œ•๐‘Š0โ‰ค 0 and ๐‘…๐‘… > 1, then ๐‘ ๐ด < ๐‘ ๐ต.

If ๐œ•๐‘…๐‘…๐œ•๐‘Š0

โ‰ฅ 0 and ๐‘…๐‘… < 1, then ๐‘ ๐ด > ๐‘ ๐ต.

FIN501 Asset PricingLecture 04 Risk Prefs & EU (63)

Investment Risk with Portfolio and Savings Decision

โ€ข Savings decision: Consumption at ๐‘ก = 0 and ๐‘ก = 1

โ€ข No endowment risk at ๐‘ก = 1, ๐‘’1 = 0

โ€ข Asset structure 3: portfolio shares ๐›ผ๐‘—

โ€ข max๐‘0,๐‘1,๐œถ๐ŸŽ๐‘ข ๐‘0 + ๐›ฟ๐ธ0[๐‘ข(๐‘1)]

s.t. ๐‘Š1 = ๐›ผ0๐‘—๐‘…1

๐‘—(๐‘Š0 โˆ’ ๐‘0)

๐‘ขโ€ฒ ๐‘0 = ๐ธ0 ๐›ฟ๐‘ขโ€ฒ ๐‘1 ๐‘…๐‘— โˆ€๐‘—

FIN501 Asset PricingLecture 04 Risk Prefs & EU (64)

Investment Risk: Excess Return

1 = ๐ธ0 ๐›ฟ๐‘ข(๐‘1)๐‘ข(๐‘0)

๐‘…๐‘— โˆ€๐‘—

โ€ข For CRRA 1 = ๐›ฟ๐ธ0๐‘1๐‘0

โˆ’๐›พ๐‘…๐‘—

โ€ข In โ€œlog-notationโ€: ๐•”๐‘ก โ‰ก log ๐‘๐‘ก, ๐•ฃ๐‘ก๐‘—โ‰ก log๐‘…๐‘ก

๐‘—

1 = ๐›ฟ๐ธ0 ๐‘’โˆ’๐›พ ๐•”1โˆ’๐•”0 +๐•ฃ๐‘—

โ€ข Assume ๐•”๐‘ก, ๐•ฃ๐‘ก๐‘—~๐’ฉ

1 = ๐›ฟ[๐‘’โˆ’๐›พ๐ธ0 ฮ”๐•”1 +๐ธ0 ๐•ฃ๐‘— +12๐‘‰๐‘Ž๐‘Ÿ0 โˆ’๐›พฮ”๐•”1+๐•ฃ๐‘— ]

0 = ln ๐›ฟ โˆ’ ๐›พ๐ธ0 ฮ”๐•”1 + ๐ธ0 ๐•ฃ๐‘— +๐›พ2

2๐‘‰๐‘Ž๐‘Ÿ0 ฮ”๐•”1 +

1

2๐‘‰๐‘Ž๐‘Ÿ0 ๐•ฃ๐‘— โˆ’ ๐›พ๐ถ๐‘œ๐‘ฃ0[ฮ”๐•”1, ๐•ฃ

๐‘—]

โ€ข For risk free asset:

๐•ฃ๐‘“ = โˆ’ ln ๐›ฟ + ๐›พ๐ธ0 ฮ”๐•”1 โˆ’๐›พ2

2๐‘‰๐‘Ž๐‘Ÿ0 ฮ”๐•”1

โ€ข Excess return of any asset:

๐ธ0 ๐•ฃ๐‘— +1

2๐‘‰๐‘Ž๐‘Ÿ0 ๐•ฃ๐‘— โˆ’ ๐•ฃ๐‘“ = ๐›พ๐ถ๐‘œ๐‘ฃ0[ฮ”๐•”1, ๐•ฃ

๐‘—]

FIN501 Asset PricingLecture 04 Risk Prefs & EU (65)

Investment Risk: Portfolio Shares

โ€ข Excess return

๐ธ0 ๐•ฃ๐‘— +1

2๐‘‰๐‘Ž๐‘Ÿ0 ๐•ฃ๐‘— โˆ’ ๐•ฃ๐‘“ = ๐›พ๐ถ๐‘œ๐‘ฃ0[ฮ”๐•”1, ๐•ฃ

๐‘—]

โ€ข If consumption growth ฮ”๐•”1 = ฮ”๐•จ1 wealth growth

โ€ข ๐ถ๐‘œ๐‘ฃ0 ฮ”๐•จ1, ๐•ฃ๐‘— = ๐ถ๐‘œ๐‘ฃ0 ๐›ผ0

๐‘—๐•ฃ๐‘—, ๐•ฃ๐‘— = ๐›ผ0

๐‘—๐‘‰๐‘Ž๐‘Ÿ0[๐•ฃ

๐‘—]

โ€ข Hence, optimal portfolio share

๐›ผ0๐‘—=

๐ธ0 ๐•ฃ๐‘— +12๐‘‰๐‘Ž๐‘Ÿ0 ๐•ฃ๐‘— โˆ’๐•ฃ๐‘“

๐›พ๐‘‰๐‘Ž๐‘Ÿ0[๐•ฃ๐‘—]

FIN501 Asset PricingLecture 04 Risk Prefs & EU (66)

Making ฮ”๐•จ1 Linear in ๐•”0 โˆ’ ๐•จ0

โ€ข ๐‘Š1 = ๐›ผ0๐‘—๐‘…1

๐‘—(๐‘Š0 โˆ’ ๐‘0) recall ๐‘’1 = 0

โ€ข ๐‘Š1๐‘Š0

= ๐›ผ0๐‘—๐‘…1

๐‘—(1 โˆ’ ๐‘0

๐‘Š0) let ๐‘…1

๐‘= ๐›ผ0

๐‘—๐‘…1

๐‘—

โ€ข In โ€œlog-notationโ€: ฮ”๐•จ1 = ๐•ฃ1๐‘—+ log(1 โˆ’ ๐‘’๐•”0โˆ’๐•จ0)

โ€ข Linearize using Taylor expansion around ๐•” โˆ’ ๐•จ

โ€ข ฮ”๐•จ1 = ๐•ฃ1๐‘—+ ๐‘˜ + 1 โˆ’ 1

๐œŒ๐•”0 โˆ’ ๐•จ0

Where ๐‘˜ โ‰ก log ๐œŒ + 1 โˆ’ ๐œŒ log 1โˆ’๐œŒ

๐œŒ, ๐œŒ = 1 โˆ’ ๐‘’๐•”โˆ’๐•จ

Hint: in continuous time this approximation is precise

nonlinear

FIN501 Asset PricingLecture 04 Risk Prefs & EU (67)

Endowment Risk: Prudence and Pre-cautionary Savings

โ€ข Savings decisionConsumption at ๐‘ก = 0 and ๐‘ก = 1

โ€ข Asset structure 2: No investment risk: riskfree bond

Endowment at ๐‘ก = 1 is random (background risk)

โ€ข 2 effects: Tomorrow consumption is more volatile consume more today, since itโ€™s not risky

save more for precautionary reasons

FIN501 Asset PricingLecture 04 Risk Prefs & EU (68)

โ€ข Risk aversion is about the willingness to insure โ€ฆ

โ€ข โ€ฆ but not about its comparative statics.

โ€ข How does the behavior of an agent change when we marginally increase his exposure to risk?

โ€ข An old hypothesis (J.M. Keynes) is that people save more when they face greater uncertainty

precautionary saving

โ€ข Two forms: Shape of utility function ๐‘ขโ€ฒโ€ฒโ€ฒ

Borrowing constraint ๐‘Ž๐‘ก โ‰ฅ โˆ’๐‘

Prudence and Pre-cautionary Savings

FIN501 Asset PricingLecture 04 Risk Prefs & EU (69)

Precautionary Savings 1: Prudence

โ€ข Utility maximization ๐‘ข ๐‘0 + ๐›ฟ๐‘ข๐ธ0[๐‘ข(๐‘1)] Budget constraint: ๐‘1 = ๐‘’1 + 1 + ๐‘Ÿ (๐‘’0 โˆ’ ๐‘0) Standard Euler equation: ๐‘ขโ€ฒ ๐‘๐‘ก = ๐›ฟ 1 + ๐‘Ÿ ๐ธ๐‘ก ๐‘ขโ€ฒ ๐‘๐‘ก+1

โ€ข If ๐‘ขโ€ฒโ€ฒโ€ฒ > 0, then Jensenโ€™s inequality implies:

โ€ข1

๐›ฟ 1+๐‘Ÿ=

๐ธ๐‘ก ๐‘ขโ€ฒ ๐‘๐‘ก+1

๐‘ขโ€ฒ ๐‘๐‘ก>

๐‘ขโ€ฒ ๐ธ๐‘ก ๐‘๐‘ก+1

๐‘ขโ€ฒ ๐‘๐‘กโ€ข Increase variance of ๐‘’1 (mean preserving spread)โ€ข Numerator ๐ธ๐‘ก[๐‘ข

โ€ฒ ๐‘๐‘ก+1 ] increases with variance of ๐‘๐‘ก+1

โ€ข For equality to hold, denominator has to increase๐‘๐‘ก has to decrease, i.e. savings has to increase precautionary savings

โ€ข Prudence refers to curvature of ๐‘ขโ€ฒ, i.e. ๐‘ƒ = โˆ’๐‘ขโ€ฒโ€ฒโ€ฒ

๐‘ขโ€ฒโ€ฒ

FIN501 Asset PricingLecture 04 Risk Prefs & EU (70)

โ€ข Does not directly follow from risk aversion, involves ๐‘ขโ€ฒโ€ฒโ€ฒ Leland (1968)

โ€ข Kimball (1990) defines absolute prudence as

๐‘ƒ ๐‘ โ‰” โˆ’๐‘ขโ€ฒโ€ฒโ€ฒ ๐‘

๐‘ขโ€ฒโ€ฒ ๐‘โ€ข Precautionary saving if any only if prudent.

important for comparative statics of interest rates.

โ€ข DARA โ‡’ Prudence๐œ• โˆ’

๐‘ขโ€ฒโ€ฒ

๐‘ขโ€ฒ

๐œ•๐‘< 0, โˆ’

๐‘ขโ€ฒโ€ฒโ€ฒ

๐‘ขโ€ฒโ€ฒ> โˆ’

๐‘ขโ€ฒโ€ฒ

๐‘ขโ€ฒ

Precautionary Savings 1: Prudence

FIN501 Asset PricingLecture 04 Risk Prefs & EU (71)

Precautionary Savings 2: Future Borrowing Constraint

โ€ข Agent might be concerned that he faces borrowing constraints in some state in the future

โ€ข agents engage in precautionary savings (self-insurance)

โ€ข In Bewley (1977) idiosyncratic income shocks, mean asset holdings mean ๐‘Ž (across individuals) result from individual optimization

mean[a]

-b

r

๐œŒ

FIN501 Asset PricingLecture 04 Risk Prefs & EU (76)

โ€ข Asset structure 3:โ€“ No risk free bondโ€“ One risky asset with random gross return ๐‘…

โ€ข Theorem (Rothschild and Stiglitz,1971) : Let ๐‘…๐ด, ๐‘…๐ต be two return distributions with identical means such that ๐‘…๐ต = ๐‘…๐ด + ๐‘’, where ๐‘’ is white noise, and let ๐‘ ๐ด, ๐‘ ๐ต be the savings out of ๐‘Œ0 corresponding to the return distributions ๐‘…๐ด, ๐‘…๐ตrespectively.

If ๐‘…๐‘…โ€ฒ ๐‘Œ โ‰ค 0 and ๐‘…๐‘… ๐‘Œ > 1, then ๐‘ ๐ด < ๐‘ ๐ต

If ๐‘…๐‘…โ€ฒ ๐‘Œ โ‰ฅ 0 and ๐‘…๐‘… ๐‘Œ < 1, then ๐‘ ๐ด > ๐‘ ๐ต

Precautionary Savings 1: Prudence

FIN501 Asset PricingLecture 04 Risk Prefs & EU (77)

๐‘ƒ ๐‘ = โˆ’๐‘ขโ€ฒโ€ฒโ€ฒ ๐‘

๐‘ขโ€ฒโ€ฒ ๐‘

๐‘ƒ ๐‘ ๐‘ = โˆ’๐‘๐‘ขโ€ฒโ€ฒโ€ฒ ๐‘

๐‘ขโ€ฒโ€ฒ ๐‘

โ€ข Theorem: Let ๐‘…๐ด, ๐‘…๐ต be two return distributions such that ๐‘…๐ด SSD ๐‘…๐ต,

let ๐‘ ๐ด and ๐‘ ๐ต be, respectively, the savings out of ๐‘Œ0. Then,

๐‘ ๐ด โ‰ฅ ๐‘ ๐ต โ‡” ๐‘๐‘ƒ ๐‘ โ‰ค 2 and conversely,

๐‘ ๐ด < ๐‘ ๐ต โ‡” ๐‘๐‘ƒ ๐‘ > 2

Precautionary Savings 1: Prudence

FIN501 Asset PricingLecture 04 Risk Prefs & EU (78)

Overview: Risk Preferences

1. State-by-state dominance

2. Stochastic dominance [DD4]

3. vNM expected utility theorya) Intuition [L4]

b) Axiomatic foundations [DD3]

4. Risk aversion coefficients and portfolio choice [DD5,L4]

5. Uncertainty/ambiguity aversion

6. Prudence coefficient and precautionary savings [DD5]

7. Mean-variance preferences [L4.6]

FIN501 Asset PricingLecture 04 Risk Prefs & EU (79)

Mean-variance Preferences

โ€ข Early research (e.g. Markowitz and Sharpe) simply used mean and variance of return

โ€ข Mean-variance utility often easier than vNM utility function

โ€ข โ€ฆ but is it compatible with vNM theory?

โ€ข The answer is yes โ€ฆ approximately โ€ฆ under some conditions.

FIN501 Asset PricingLecture 04 Risk Prefs & EU (80)

Mean-Variance: quadratic utility

Suppose utility is quadratic, ๐‘ข ๐‘ = ๐‘Ž๐‘ โˆ’ ๐‘๐‘2

Expected utility is then๐ธ ๐‘ข ๐‘ = ๐‘Ž๐ธ ๐‘ โˆ’ ๐‘๐ธ ๐‘2

= ๐‘Ž๐ธ ๐‘ โˆ’ ๐‘ ๐ธ ๐‘ 2 + var ๐‘

Thus, expected utility is a function of the mean ๐ธ ๐‘ , and the variance var ๐‘ ,only.

FIN501 Asset PricingLecture 04 Risk Prefs & EU (81)

Mean-Variance: joint normals

โ€ข Suppose all lotteries in the domain have normally distributed prized. (independence is not needed). This requires an infinite state space.

โ€ข Any linear combination of jointly normals is also normal.

โ€ข The normal distribution is completely described by its first two moments.

โ€ข Hence, expected utility can be expressed as a function of just these two numbers as well.

FIN501 Asset PricingLecture 04 Risk Prefs & EU (86)

Mean-Variance: small risks

โ€ข Let ๐‘“:โ„ โ†’ โ„ be a smooth function. The Taylor approximation is

๐‘“ ๐‘ฅ

โ‰ˆ ๐‘“ ๐‘ฅ0 + ๐‘“โ€ฒ ๐‘ฅ0

๐‘ฅ โˆ’ ๐‘ฅ01

1!

+ ๐‘“โ€ฒโ€ฒ ๐‘ฅ0

๐‘ฅ โˆ’ ๐‘ฅ02

2!+ โ‹ฏ

โ€ข Use the Taylor approximation for ๐ธ ๐‘ข ๐‘ฅ

FIN501 Asset PricingLecture 04 Risk Prefs & EU (87)

Mean-Variance: small risks

โ€ข Since ๐ธ ๐‘ข ๐‘ค + ๐‘ฅ = ๐‘ข ๐‘๐ถ๐ธ , this simplifies

to ๐‘ค โˆ’ ๐‘๐ถ๐ธ โ‰ˆ ๐‘…๐ด ๐‘คvar ๐‘ฅ

2

๐‘ค โˆ’ ๐‘๐ถ๐ธ is the risk premium

We see here that the risk premium is approximately a linear function of the variance of the additive risk, with the slope of the effect equal to half the coefficient of absolute risk.

FIN501 Asset PricingLecture 04 Risk Prefs & EU (88)

Mean-Variance: small risks

โ€ข Same exercise can be done with a multiplicative risk.

โ€ข Let ๐‘ฆ = ๐‘”๐‘ค, where ๐‘” is a positive random variable with unit mean.

โ€ข Doing the same steps as before leads to

1 โˆ’ ๐œ… โ‰ˆ ๐‘…๐‘… ๐‘คvar ๐‘”

2 where ๐œ… is the certainty equivalent growth rate, ๐‘ข ๐œ…๐‘ค =

๐ธ[๐‘ข ๐‘”๐‘ค ].

The coefficient of relative risk aversion is relevant for multiplicative risk, absolute risk aversion for additive risk.