marks + channelsdap.vsb.cz/cass2017/img/3_thu_0830_vis_encoding... · 2017. 9. 7. · ©...

110
© Munzner/Möller Marks + Channels 2017 Czech-Austrian summer school Thomas Torsney-Weir

Upload: others

Post on 04-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • © Munzner/Möller

    Marks + Channels

    2017 Czech-Austrian summer school
Thomas Torsney-Weir

  • © Munzner/Möller

    Overview• Marks + channels • Channel effectiveness

    – Accuracy – Discriminability – Separability – Popout

    • Channel characteristics – Spatial position – Colour – Size – Tilt (angle) – Shape (glyph) – Stipple (texture) – Curvature – Motion 2

  • © Munzner/Möller 3

    Readings• Munzner, “Visualization Analysis and Design”:

    – Chapter 5 (Marks and Channels) • Colin Ware:

    – Chapter 4 (Color) – Chapter 5 (Visual Attention and Information that

    Pops Out) • The Visualization Handbook:

    – Chapter 1 (Overview of Visualization) • Additional (background) reading

    – J. Mackinlay: Automating the design of graphical presentations of relational information. ACM ToG, 5(2), 110-141, 1986

  • Marks + Channels

  • Rectangle

    Width

    Height

    Text x-position

    y-position

    color

    Line

  • © Munzner/Möller

    Marks + Channels• Mark: basic graphical element / geometric primitive:

    – point (0D) – line (1D) – area (2D) – volume (3D)

    • Channel: control appearance (of a mark) – position – size – shape – orientation – hue, saturation, lightness – etc.

    7

  • Height: bin size

    x-position: bin name

  • © Munzner/Möller

    Visual Language is a Sign System

    • Image perceived as a set of signs • Sender encodes information in signs • Receiver decodes information from

    signs

    • Jacques Bertin – French cartographer [1918-2010] – Semiology of Graphics [1967] – Theoretical principles for visual encodings

    Semiology of Graphics [J. Bertin, 83]

    13

    Image

    Visual language is a sign system

    Images perceived as a set of signs

    Sender encodes information in signs

    Receiver decodes information from signs

    Semiology of Graphics, 1983

    Jacques Bertin

    9

  • © Munzner/Möller

    According to Bertin ...

    Position

    Size

    (Grey)Value

    Texture

    Color

    Orientation

    ShapeSemiology of Graphics [J. Bertin, 67]

    Points Lines AreasMarks

    Cha

    nnels

    10

  • © Munzner/Möller

    Stolte / Hanrahan

    “Polaris: A System for Query, Analysis and Visualization of Multi-dimensional Relational Databases”, Chris Stolte and Pat Hanrahan

    11

    http://graphics.stanford.edu/papers/polaris/

  • © Munzner/Möller

    Progression

    12

  • © Munzner/Möller

    Progression

    13

  • © Munzner/Möller

    Progression

    14

  • © Munzner/Möller

    Progression

    15

  • © Munzner/Möller

    Channel types: What/where

    16

    Where/how much

    What

  • © Munzner/Möller

    What vs. How Much channels• What: categorical

    – shape – spatial region – colour (hue)

    • How Much: ordered (ordinal, quantitative) – length (1D) – area (2D) – volume (3D) – tilt – position – colour (lightness) 17

  • © Munzner/Möller

    Mark types• tables: item = point • network: node+link • link types:

    – connection: relationship btw. two nodes – containment: hierarchy

    18

    Marks as Items/Nodes

    Marks as Links

    Points Lines Areas

    Containment Connection

  • © Munzner/Möller

    Expressiveness + Effectiveness

    • expressiveness principle: – visual encoding should express all of, and

    only, the information in the dataset attributes

    – lie factor

    19

  • © Munzner/Möller

    Expressiveness + Effectiveness

    • effectiveness principle: – importance of the attribute should match

    the salience of the channel – data-ink ratio

    20

  • © Munzner/Möller 21

    Effectiveness of Mappings

    • Effectiveness according to neurophysiology

    • Cells in Visual Areas 1 and 2 differentially tuned to each of the following properties: – Orientation and size (with luminance) – Color (two types of signal) – Stereoscopic depth – Motion

  • © Munzner/Möller

    Effectiveness -- Accuracy

    • perceptual
judgement
vs. stimulus

    • Weber’s law: 
S = In

    22

  • Magnitude Channels: Ordered Attributes Identity Channels: Categorical Attributes

    Spatial region

    Color hue

    Motion

    Shape

    Position on common scale

    Position on unaligned scale

    Length (1D size)

    Tilt/angle

    Area (2D size)

    Depth (3D position)

    Color luminance

    Color saturation

    Curvature

    Volume (3D size)

    Channels: Expressiveness Types and Effectiveness Ranks

  • © Munzner/Möller

    Effectiveness -- Discriminability• how many 


    colors can 
I tell apart?

    • how many 
levels of 
grey etc.

    • Ex: line width

    24

  • © Munzner/Möller

    Effectiveness -- Separability

    • separable vs. integral channels

    25

  • © Munzner/Möller 26

    According to Ware ...• Integral display dimensions

    – Two or more attributes perceived holistically

    • Separable dimensions – Separate judgments about each

    graphical dimension • Simplistic classification, with a large 


    number of exceptions and asymmetries

    More integral coding pairs

    More separable coding pairs

    [C. W

    are,

    Info

    rmat

    ion

    Visu

    aliza

    tion]

  • © Munzner/Möller

    Popout - Preattentive processing

    • parallel (visual processing)

    27

  • © Munzner/Möller

    Popout - Preattentive processing

    • parallel (visual processing)

    28

  • © Munzner/Möller

    Popout - Preattentive processing

    • parallel (visual processing)

    29

  • © Munzner/Möller

    Popout - Preattentive processing

    • parallel (visual processing)

    30

  • © Munzner/Möller

    Popout - Preattentive processing

    • parallel (visual processing)

    31

  • © Munzner/Möller

    Overview• Marks + channels • Channel effectiveness • Channel characteristics

    – Spatial position – Color – Size – Tilt (angle) – Shape (glyph) – Stipple (texture) – Curvature – Motion 32

  • © Munzner/Möller

    Channels

    • Spatial position: most effective for all data types (remember the power of the plane)

    • Size: ‘how much’, interacts with others • Shape/Glyph: ‘what channel’ • Stipple/texture: less popular today • Curvature • Motion: large popout effect

    33

  • © Munzner/Möller

    Spatial position

    34

    2.05D

  • © Munzner/Möller

    Colour

    35

  • Thanks to Moritz Wustinger

  • Thanks to Moritz Wustinger

  • Thanks to Moritz Wustinger

  • Thanks to Moritz WustingerSmiley based on http://upload.wikimedia.org/wikipedia/commons/b/bd/A_Smiley.jpg

    http://upload.wikimedia.org/wikipedia/commons/b/bd/A_Smiley.jpg

  • Color deficiency

  • © Munzner/Möller

    Model “Color blindness” • Flaw in opponent processing

    – Red-green common (deuteranope, protanope) – Blue-yellow possible (tritanope -- most common) – Luminance channel almost “normal”

    • 8% of all men, 0.5% of all women • Effect is 2D color vision model

    – Flatten color space – Can be simulated (Brettel et. al.) – http://colorfilter.wickline.org – http://www.colblindor.com/coblis-color-

    blindness-simulator/41

    Source: M. Stone

    http://colorfilter.wickline.orghttp://www.colblindor.com/coblis-color-blindness-simulator/http://www.colblindor.com/coblis-color-blindness-simulator/

  • © Munzner/Möller

    Color Blindness

    DeuteranopeProtanope TritanopeNo M cones No L cones No S cones

    Red / green deficiencies

    Blue / Yellow deficiency

    42

    Source: M. Stone

  • © Munzner/Möller

    Color-Blindness

    Normal Protanope Deuteranope Lightness43

    Source: M. Stone

  • Using Color

  • Categorical Data

  • © Munzner/Möller

    Categorical Data

    • Limited distinguishability (8-14) – Best with Hue – Best choices from Ware:

    Source: Ware, “Information Visualization”

  • © Munzner/Möller

    Maximum Hue Separation

    47

    Source: H.P. Pfister

  • © Munzner/Möller

    Analogous, yet distinctSource: H.P. Pfister

  • © Munzner/Möller

    Primary Colors

    • Primary color terms are remarkably consistent across cultures [Berlin & Kay, 69]

    Source: Ware, “Information Visualization”

    49

  • © Munzner/Möller

    Take-home message

    • Only a small number of colors can be used effectively as categorical labels

    • Keep the number of colors for categorical data to less than eight, and use quiet medium grey backgrounds

    50

    Source: H.P. Pfister

  • © Munzner/Möller

    Small Areas

    Tableau Software

    51

  • © Munzner/Möller Tufte, VDQI (Vol. 1), p. 77

    Large Areas

    52

  • © Munzner/Möller

    Large Areas

    53Tufte, VDQI (Vol. 1), p. 77

  • © Munzner/Möller

    Large Areas

    Cleveland & McGill, “A Color-Caused Optical Illusion on a Statistical Graph”, 1983

    1 = Red is bigger 2 = Green is bigger 3 = Both look the same

    54

    http://graphics.stanford.edu/papers/polaris/http://graphics.stanford.edu/papers/polaris/

  • © Munzner/Möller

    Color Size Illusion

    55Cleveland & McGill, “A Color-Caused Optical Illusion on a Statistical Graph”, 1983

    http://graphics.stanford.edu/papers/polaris/http://graphics.stanford.edu/papers/polaris/

  • © Munzner/Möller

    Maps

    56

    Source: Ware, “Visual Thinking for Design”

  • © Munzner/Möller

    Take-home message

    • Color in small regions is difficult to perceive, and bright colors in large areas appear bigger

    • Use bright, saturated colors for small regions, and use low saturation pastel colors for large regions and backgrounds

    57

    Source: H.P. Pfister

  • Ordinal

  • © Munzner/Möller

    Order These Colors

    59

    Source: J. Stasko

  • © Munzner/Möller

    Order These Colors

    60

    Source: J. Stasko

  • http://colorbrewer2.org/

  • © Munzner/Möller

    Brewer Scales

    Cynthia Brewer, Color Use Guidelines for Data Representation

    Nominal

    Ordinal

    62

    http://graphics.stanford.edu/papers/polaris/

  • © Munzner/Möller

    SequentialSource: H.P. Pfister

  • © Munzner/Möller

    Take-home message

    • Lightness and saturation are effective for ordinal data because they have an implicit perceptual ordering

    • Show ordinal data with a discrete set of color values that change in lightness or saturation

    64

    Source: H.P. Pfister

  • Quantitative

  • © Munzner/Möller

    Rainbow Colormap

    Rogowitz and Treinish, Why should engineers and scientists be worried about color?

    66

    http://graphics.stanford.edu/papers/polaris/http://graphics.stanford.edu/papers/polaris/http://graphics.stanford.edu/papers/polaris/

  • © Munzner/Möller

    Rainbow Colormap

    67

    Rogowitz and Treinish, Why should engineers and scientists be worried about color?

    http://graphics.stanford.edu/papers/polaris/http://graphics.stanford.edu/papers/polaris/http://graphics.stanford.edu/papers/polaris/

  • © Munzner/Möller

    Rainbow Colormap

    • Hue is used to show ordinal data

    • Not perceptually linear: Equal steps in the continuous range are not perceived as equal steps

    • Not good for colorblind people

    68

  • © Munzner/Möller

    Rainbow colour map

    • Learned order • Visually segmented

    – Solution — isoluminant rainbow – Solution — discretize colormap

    69

  • © Munzner/Möller

    Color Segmentation

    C. Ware, “Visual Thinking for Design”

    70

    http://graphics.stanford.edu/papers/polaris/

  • © Munzner/Möller

    ColormapsDensity Map

    Lightness scale

    Lightness scale

    with hue and

    chroma variation

    Hue scale with

    lightness variation

    Density Map

    Lightness scale

    Lightness scale

    with hue and

    chroma variation

    Hue scale with

    lightness variation

    Density Map

    Lightness scale

    Lightness scale

    with hue and

    chroma variation

    Hue scale with

    lightness variation

    After slide from M. Stone 71

    http://graphics.stanford.edu/papers/polaris/

  • © Munzner/Möller

    Take-home message

    • Quantitative data can be shown with a discrete or continuous colormap

    • Use colormaps with a limited hue palette and redundantly vary lightness and saturation, and use discrete colormaps for accuracy

    72

  • Color Aesthetics

  • © Munzner/Möller

    DANGER!

    zInappropriate use of colour can be disasterous to the application

    74

  • © Munzner/Möller

    Why Should We Care?

    • Poorly designed color is confusing – Creates visual clutter – Misdirects attention

    • Poor design devalues the information – Visual sophistication – Evolution of document and web design

    • Don Norman:
“Attractive things work better”

    75

    Source: M. Stone

  • © Munzner/Möller

    Overview• Marks + channels • Channel effectiveness • Channel characteristics

    – Spatial position – Color

    • Other channels: – Size – Tilt (angle) – Shape (glyph) – Stipple (texture) – Curvature – Motion 76

  • Magnitude Channels: Ordered Attributes Identity Channels: Categorical Attributes

    Spatial region

    Color hue

    Motion

    Shape

    Position on common scale

    Position on unaligned scale

    Length (1D size)

    Tilt/angle

    Area (2D size)

    Depth (3D position)

    Color luminance

    Color saturation

    Curvature

    Volume (3D size)

    Channels: Expressiveness Types and Effectiveness Ranks

  • © Munzner/Möller

    Relative vs absolute judgement

    • Weber’s law says that everything is relative, i.e. the “intensity” depends on the background signal

    78

  • © Munzner/Möller

    Relative vs absolute judgement

    • Weber’s law says that everything is relative, i.e. the “intensity” depends on the background signal

    79

  • © Munzner/Möller

    Relative vs absolute judgement

    • Weber’s law says that everything is relative, i.e. the “intensity” depends on the background signal

    80

  • © Munzner/Möller

    Relative vs absolute judgement

    81https://thenextweb.com/dd/2015/05/15/7-most-common-data-visualization-mistakes/#.tnw_LZw9olbK

    Unframed Framed

  • 83http://de.wikipedia.org/wiki/Optische_Täuschung

    http://de.wikipedia.org/wiki/Optische_T%C3%A4uschung

  • In conclusion• Visualizations are broken down into marks

    (elements) and channels (parameters) • Data is linked to these channels • Alot of care in choosing which and how

    many channels to use

    84

  • © Munzner/Möller

    Encode: Single View Methods

    2017 Czech-Austrian summer school
Thomas Torsney-Weir

  • © Munzner/Möller 86

    Readings

    • Munzner, “Visualization Analysis and Design”: – Chapter 7 (Encode: Arrange in Space) – Chapter 8 (Encode: Spatial Layouts and Link

    Marks) – Chapter 9 (Encode: Color and Other

    Channels)

  • © Munzner/Möller

    Statistical Graphics

    • heavy focus on spatial position for visual encoding

    • long history for paper-based views of data, see
http://www.datavis.ca/milestones/

    • many ways to make interactive • many ways to refine / improve / combine

    87

    http://www.datavis.ca/milestones/

  • © Munzner/Möller

    1D keys

    • categorical: bar charts – aligned / ordered

    • quantitative/ ordered: dot plot / line chart

    88

  • © Munzner/Möller

    Line charts

    • invented by William Playfair (1759-1823) – also invented bar charts, pie charts, etc.

    89

    http://www.math.yorku.ca/SCS/Gallery/images/playfair-wheat1.gif

    http://www.math.yorku.ca/SCS/Gallery/images/playfair-wheat1.gif

  • © Munzner/Möller

    Bar vs. line charts

    • line implies trend, not appropriate for categorical data

    90Zacks and Tversky. Bars and Lines: A Study of Graphic Communication. Memory and Cognition 27(6):1073-1079, 1999.

  • © Munzner/Möller

    2D keys - scatterplots

    • encode two input variables with spatial position – show positive/

    negative/
no correlation between variables

    – show clusters: clumpiness/density, shape, overlap

    91

    http://upload.wikimedia.org/wikipedia/commons/0/0f/Oldfaithful3.png

    http://upload.wikimedia.org/wikipedia/commons/0/0f/Oldfaithful3.png

  • © Munzner/Möller

    Scagnostics

    92

    Figu

    re3:

    Scaled

    graph-th

    eoreticm

    easures

    (blu

    e=low

    ,red

    =high

    )for

    elevenscatter

    pattern

    s

    pointsetstend

    toincrease

    computation

    time

    becauseof

    theneed

    forrebinning.Datasets

    with

    compact,nonuniform

    distributionsare

    considerablyfasterto

    compute.

    5E

    XA

    MPL

    ES

    Figure5

    shows

    ascagnostics

    SPLOM

    fortheA

    balonedataset.W

    ehave

    highlighteda

    pointinthe

    SPLOM

    thatrepresentsoneunusual

    scatterplot.Thelinked

    plotisshown

    inthe

    upperrightofthefigure.

    Fromw

    hatwe

    seein

    theSPLO

    M,w

    ecan

    characterizethis

    scatter-plotas

    relativelyhigh

    inoutliers,skew

    edin

    edgelengths,clum

    py,nonconvex,striated,and

    stringy.Figure

    6show

    sa

    scagnosticsSPLO

    Mof

    17variables

    froma

    datasetbased

    onstatistics

    forselected

    countriescom

    piledby

    theW

    orldH

    ealthO

    rganizationand

    theU

    nitedN

    ations[43].

    We

    havehighlighted

    apoint

    inthe

    graph-theoreticSPLO

    Mto

    givean

    ex-am

    pleof

    thetype

    ofanom

    aliesthatscagnostics

    canuncover.

    Thered

    pointisclearly

    anoutlierin

    mostofthe

    panels.Thescatterplot

    Figu

    re4:

    Bip

    lotof

    measu

    resan

    dscatters

    correspondingto

    thispointis

    shown

    inthe

    upperrightof

    thefig-

    ure.W

    ew

    eresurprised

    tofind

    thatwe

    hadincluded

    two

    versionsof

    acategoricalvariable

    measuring

    thetype

    ofgovernm

    ent–one

    recodedto

    havefew

    ercategories.B

    ecausethese

    two

    artifactually-related

    variablesare

    notperfectlycorrelated,they

    would

    havenot

    haveinduced

    asingularity

    ina

    statisticalanalysisand

    mighthave

    beenundetected

    ina

    thoughtlessautom

    ateddata

    mining.

    Figure7

    shows

    ascagnostics

    SPLOM

    of62

    variablesfrom

    am

    icroarraydataset

    [2].The

    SPLOM

    shows

    thehigh

    degreeof

    homogeneity

    inthe

    2Dm

    arginaldistributionsof

    the62

    celllinesin

    thearray.

    Thelinked

    scatterplotshow

    sa

    typical2D

    distribu-tion,

    evidentlynot

    bivariatenorm

    al.The

    authorsidentified

    clus-ters

    ofnon-cancerous

    andcancerous

    cellsin

    thesedata.

    We

    must

    remem

    berthat

    lackof

    evidencefor

    clustersin

    the2D

    scattersis

    notevidenceforlack

    ofclustersin

    higherdimensions.Instead,the

    scagnosticSPLO

    Mlends

    some

    supporttothe

    authors’findingsby

    downw

    eightingthe

    possibilitythatclusters

    mightbe

    dueto

    mea-

    surement

    artifacts(e.g.,

    mixing

    discreteand

    continuousvariables

    inthe

    analysis).This

    applicationilllustrates

    theappropriate

    focusofscagnostics

    asa

    preliminary

    screeningm

    ethod.Figure

    8show

    sa

    SPLOM

    ofw

    eatherdata.

    Thedata

    comprise

    hourlym

    eteorologicalmeasurem

    entsover

    ayear

    attheG

    reenlandH

    umboldtautom

    aticw

    eatherstationoperated

    byN

    ASA

    andN

    SF.These

    measurem

    entsare

    partof

    theG

    reenlandC

    limate

    Netw

    ork(G

    C-N

    et)sponsored

    bythese

    federalagencies.

    We

    havesorted

    thevariables

    inthe

    SPLOM

    usingthe

    sizeof

    theloadings

    onthe

    firstprincipalcomponentof

    thescagnostic

    measures.

    Thesorting

    clearlysegregatesthe

    discreteand

    continuousvariablesandclusters

    similarm

    arginal2Ddistributions.

    6C

    ON

    CL

    USIO

    N

    As

    we

    haveseen,

    scagnosticsoffers

    thepossibility

    ofdetecting

    anomalies

    inlarge

    scatterplotmatrices.

    Thereis

    more

    todo,how

    -ever.

    First,we

    canconstructm

    ultivariatem

    odelsfrom

    theseand

    othergraph-theoretic

    measures

    andapply

    themto

    them

    oregen-

    eralpattern

    detectionproblem

    inhigh-dim

    ensionalspace.

    Thisapproach

    follows

    thosetaken

    bythe

    manifold

    learningcom

    mu-

    nity[32],[4],[6].Second,w

    ecan

    usethese

    methodsto

    sortscatter-plotm

    atricesin

    ordertom

    akethem

    more

    accessibleto

    lensingand

    L. Wilkinson, A. Anand and R. Grossman, "Graph-theoretic scagnostics," IEEE Symposium on Information Visualization, 2005. INFOVIS 2005., 2005, pp. 157-164.doi: 10.1109/INFVIS.2005.1532142

  • © Munzner/Möller

    multiple keys - partitioning / subdivide

    • e.g. 2 keys – use two perpendicular axis OR – use alignment on one axis

    • separate by A first and then by B (left) • separate by B first and then by A (right)

    • also known as dimensional stacking

    93

  • © Munzner/Möller 94

    Overview• Spatial channel

    – quantitative vs. categorical attributes – Keys: the importance of ordering

    • list (1D) vs. matrix (2D) vs. partition / subdivide (multiple D) – Spatial layout

    • rectilinear • parallel • radial

    – Spacefilling – Dense

    • Linemarks – Connection – Containment

    • Using color

  • © Munzner/Möller

    Spatial layout

    • rectilinear: standard • parallel: parallel coordinates • radial: starplots, etc.

    95

  • © Munzner/Möller

    SPloMs

    • one scatter plot: choose two dimensions • SPloM: Scatter Plot Matrix

    – show all combinations

    96

  • © Munzner/Möller

    Scatterplot Matrices

    • raw, filter

    [Yang et al. InfoVis 2003] 97

  • © Munzner/Möller

    Parallel coordinates• only 2 orthogonal axes in the plane • instead, use parallel axes!

  • © Munzner/Möller

    PC: Axis Ordering

    • geometric interpretations – hyper plane, hypersphere – points do have intrinsic order

    • nominal / categorical data – no intrinsic order, what to do? – indeterminate/arbitrary order

    • weakness of many techniques • downside: human-powered search • upside: powerful interaction technique

    • most implementations – user can interactively swap axes

    99

  • © Munzner/Möller

    PC: Axis Ordering

    100

  • © Munzner/Möller

    PC vs. scatter plots

    • PC – shows only a subset of axis combinations – relatively compact – has a learning curve

    • SPloMs – show all combinations of 2 attributes – demanding on screen real-estate – intuitive / known to a broad audience

    101

  • © Munzner/Möller

    Radial layouts

    • use angular channel for dimensions • rectilinear bar chart vs. radial star plot vs.

    radial multipodes plot

    102Booshehrian et al, EuroVis 2012

  • © Munzner/Möller 103

    Overview• Spatial channel

    – quantitative vs. categorical attributes – Keys: the importance of ordering

    • list (1D) vs. matrix (2D) vs. partition / subdivide (multiple D) – Spatial layout

    • rectilinear • parallel • radial

    – Spacefilling – Dense

    • Linemarks – Connection – Containment

  • © Munzner/Möller

    Connection vs. Containment• relevant for drawing trees • containment -- essentially treemaps • connection -- traditional view of graphs • type of information is different

    104Auber: http://tulip.labri.fr/Documentation/3_7/userHandbook/html/ch06.html

    http://tulip.labri.fr/Documentation/3_7/userHandbook/html/ch06.html

  • © Munzner/Möller

    Node-link issues

    • avoid hairball effect

    105http://www2.research.att.com/~yifanhu/GALLERY/GRAPHS/index1.html

    http://www2.research.att.com/~yifanhu/GALLERY/GRAPHS/index1.html

  • © Munzner/Möller

    Tree-map

    106

  • © Munzner/Möller

    Hyperbolic View

    107

    3D vs. 2D Hyperbolic Scalability

    � information density: 10x better

    H3 PARC Tree

    fringe

    thousands

    hundreds

    center

    dozens

    dozens

    3D

    2D

  • © Munzner/Möller

    Call Matrices

    108

  • © Munzner/Möller

    Overview• Marks + channels • Channel effectiveness

    – Accuracy – Discriminability – Separability – Popout

    • Channel characteristics – Spatial position – Colour – Size – Tilt (angle) – Shape (glyph) – Stipple (texture) – Curvature – Motion 109

  • © Munzner/Möller 110

    Overview• Spatial channel

    – quantitative vs. categorical attributes – Keys: the importance of ordering

    • list (1D) vs. matrix (2D) vs. partition / subdivide (multiple D) – Spatial layout

    • rectilinear • parallel • radial

    – Spacefilling – Dense

    • Linemarks – Connection – Containment