marketing fragment 6 x 10.5 - cambridge university...

21
Index Abstract concepts activation, 156 vs. concrete concepts, 19 acquisition, 172 linguistic experience, 171 neural processing, 172 organisational principles, 171 verbal associative networks, 171 Abstract conditions task demands, 156 Abstractness, 213 Abstract nouns vs. concrete nouns, 150 perceptually-based representations, 165 Abstract verbs non-cognates, 108 Abstract words. See also Concrete and abstract words activation, 160, 162 category membership, 18 vs. concrete words, 155 ventral temporal lobe, 161 vs. concrete words activation, 170 fMRI, 158 IFG, 163 lexical decision, 165 non-cognates, 108 parietal lobe, 163 semantic effects, 18 semantic similarity and association, 20 temporal pole, 163 ACC. See Anterior cingulate cortex (ACC) Acceptation functional knowledge, 49 Access and storage deficits mixed pattern of, 23 Access cases vs. degenerative cases temporal factors, 5 Access deficits semantic distance effects, semantic relatedness, 7 vs. storage deficits, 3, 4 Acetylcholine, 21 Action basal ganglia direct loop, 239 vs. non-action features task manipulations, 185 nouns and verbs, 212 picture matching task, 213 prefrontal and parietal cortex, 214 Action and tool categorization multimodal integration, 198 semantics, 196–7 Action naming, 46 body parts, 47 Action-object distinction, 212 Action observation parietal cortex, 188 Action potentials down to up state, 229 Action-selective effects LPMT, 192 Action-selective left posterior middle temporal region sensory experience, 191 Action-selectivity, 187 motor area connections, 191 Action semantics neural systems, 183, 188–9 visuo-motor system, 186–8 Action type visual experience, 189–90 Action verbs, 284 faces, 37 leg related, 37 selective impairment, 10 Action words premotor cortex, 309 Activation, 268 abstract concepts, 156 abstract words, 160, 162 conjunction analysis, 185 inferior frontal region, 160 inferior parietal, 188 LPMT, 189, 190 posterior mid-temporal gyrus, 343 RT in lexical decision study, 163 semantic representation, 168 task performance, 331 temporal lobes, 343 361 www.cambridge.org © Cambridge University Press Cambridge University Press 978-0-521-84870-1 - Neural Basis of Semantic Memory Edited by John Hart and Michael A. Kraut Index More information

Upload: others

Post on 19-Mar-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Marketing Fragment 6 x 10.5 - Cambridge University Pressassets.cambridge.org/97805218/48701/index/9780521848701_index.pdf · Body movements parietal region, 212 prefrontal cortex,

Index

Abstract conceptsactivation, 156vs. concrete concepts, 19acquisition, 172linguistic experience, 171neural processing, 172organisational principles, 171verbal associative networks, 171

Abstract conditionstask demands, 156

Abstractness, 213Abstract nouns

vs. concrete nouns, 150perceptually-based representations, 165

Abstract verbsnon-cognates, 108

Abstract words. See also Concrete and abstractwords

activation, 160, 162category membership, 18vs. concrete words, 155ventral temporal lobe, 161vs. concrete words activation, 170fMRI, 158IFG, 163lexical decision, 165non-cognates, 108parietal lobe, 163semantic effects, 18semantic similarity and association, 20temporal pole, 163

ACC. See Anterior cingulate cortex (ACC)Acceptation

functional knowledge, 49Access and storage deficits

mixed pattern of, 23Access cases

vs. degenerative casestemporal factors, 5

Access deficitssemantic distance effects,semantic relatedness, 7vs. storage deficits, 3, 4

Acetylcholine, 21Action

basal ganglia direct loop, 239

vs. non-action featurestask manipulations, 185nouns and verbs, 212picture matching task, 213prefrontal and parietal cortex, 214

Action and toolcategorizationmultimodal integration, 198semantics, 196–7

Action naming, 46body parts, 47

Action-object distinction, 212Action observationparietal cortex, 188

Action potentialsdown to up state, 229

Action-selective effectsLPMT, 192

Action-selective left posterior middle temporalregion

sensory experience, 191Action-selectivity, 187motor area connections, 191

Action semanticsneural systems, 183, 188–9visuo-motor system, 186–8

Action typevisual experience, 189–90

Action verbs, 284faces, 37leg related, 37selective impairment, 10

Action wordspremotor cortex, 309

Activation, 268abstract concepts, 156abstract words, 160, 162conjunction analysis, 185inferior frontal region, 160inferior parietal, 188LPMT, 189, 190posterior mid-temporal gyrus, 343RT in lexical decision study, 163semantic representation, 168task performance, 331temporal lobes, 343

361

www.cambridge.org© Cambridge University Press

Cambridge University Press978-0-521-84870-1 - Neural Basis of Semantic MemoryEdited by John Hart and Michael A. KrautIndexMore information

Page 2: Marketing Fragment 6 x 10.5 - Cambridge University Pressassets.cambridge.org/97805218/48701/index/9780521848701_index.pdf · Body movements parietal region, 212 prefrontal cortex,

Activation (cont.)TPO junction, 343ventral visual pathway, 161visuo-motor system, 197

Acute cerebral bloodflow language symptoms, 223

Adaptation paradigmsprocessing characteristicsbrain regions, 315

Added phrase, 250Additive-amplitude method, 74–6, 86, 97, 99

future, 99–100modularity as revealed by, 81–2

Additive-factor method, 66, 76Additivity

electrodes, 81electrode sites, 85region, 81

Additivity-obscuring processor, 80, 97Agrammatic patients

non-fluent aphasics, 34Agrammatism

syntactic levelverb retrieval, 35

AIP. See Anterior intraparietal area (AIP)All-English experiments

full sentences, 115Allport’s model, 30, 31Alzheimer’s disease, 7, 23, 250, 255, 275

content, 255episodic memory, 255MTL, 50rule-based categorisation, 257semantic memory loss, 255

Ambiguous features, 286Ambiguous pattern, 87Amplitude additivity, 77–8, 94, 112Amplitudes

normalized, 74scalp potentials, 70

Amygdalasocial and affective processes, 321

Analogous dissociationssemantic system, 16

Anatomic findingsanimal-specific semantic knowledge, 334

Anatomic localizationspecific categories, 335

Animal(s)categorization, 343distributed representation, 309–11fusiform gyrus, 311fusiform gyrus bilateral activity, 310gender, 44lesion anatomical location, 44males, 44nouns, 284occipital lesion, 309vs. plantsgender-related familiarity factors, 45semantic detectors for stimuli, 338semantic memory, 333

STS, 311temporal lobe lesions, 44vs. toolsPET, 310words, 266

Animal categorysound stimuli, 340

Animal drawings, 268Animal object name

clusters of activity, 283Animal pictures

fusiform gyrus, 316naming, 315tool pictures, 185

Animal wordstools words, 185

Animate objects, 303lateral temporal cortices, 321

Animate stimuli, 10Anomic patients

fluent aphasics, 34Anterior cingulate cortex (ACC)

FTD, 136hypoperfusion, 136

Anterior intraparietal area (AIP), 187manipulable objects vs. non-manipulable

objects, 184manipulation,

Anteromedial regions, 288AoA

fMRI, 118–20grammatical judgment, 119modulations, 120semantic tasks, 118syntactic processing, 117

Aphasiabasal ganglia lesions, 223fluentanomic patients, 34MRI, 223nonfluentprimary progressive, 210non-fluentagrammatic patients, 34nouns and verbs, 34, 209optic, 47primary progressiveVST,

Architecturelearning speed, 68task generalization, 68

Artefactsability to identify, 37brain correlates of category-specific semantic

disorders, 44category-specific deficit, 302vs. category-specific disorders for biological

entities, 33functional properties, 49gender, 44identification, 37functional attributes, 39

362 Index

www.cambridge.org© Cambridge University Press

Cambridge University Press978-0-521-84870-1 - Neural Basis of Semantic MemoryEdited by John Hart and Michael A. KrautIndexMore information

Page 3: Marketing Fragment 6 x 10.5 - Cambridge University Pressassets.cambridge.org/97805218/48701/index/9780521848701_index.pdf · Body movements parietal region, 212 prefrontal cortex,

impairment, 37lateral temporal cortices, 321men, 44semantic system diffuse damage, 41of stimulus selectioncategory-specific semantic disorders for living

entities, 38Associated familiarity, 269Associatively close arrays, 19Associative processing

proficiency level, 113Associative strength

lexical ambiguity priming, 236Associative words

N400 priming effect, 113Asymmetrical model H, 109Asymmetry proposal, 109Asynchrony, 86Attractor network model, 278Auditory presentation

nouns, 91Autoassociated, 30Automatic semantic priming

neural activity, 318SOA, 109

Automatic tasks, 287

Basal gangliaactions, 224–5aphasia, 223circuits, 220closed circuits, 220–2core language, 222–3cortical function, 220direct loopactions, 239cognition, 239fMRI, 239functionssemantic priming, 239future research, 238–40intention, 223–4intentionally guided attentionsemantic priming studies, 232–3language semantics, 219–40lexical item retrievalword generation, 225–7linguistic and semantic processes, 219semantic and related language functions, 220semantic priming, 233–4SOA, 237suppression, 227word generation, 228

Basic-level namingfMRI, 289temporal lobe, 290

Behavioral perspectiveanatomic regions subserving semantic

processing, 342Bi-directional lexical-semantic connections

semantic model, 280Bilateral ventral occipitotemporal

objects, 304Bilingual(s)L2-concept connections, 111monolingualsemantic judgment, 118Russian-Germansemantic violation paradigm, 119

Bilingualismco-ordinativeL1-L2 interaction, 106language-tagged lexical forms, 107

Bilingual language processingERP, 105functional magnetic resonance imaging (fMRI),

105Bilingual recognition system, 116Bilingual semantic memoryERP, 111–13ERP and fMRI, 105–21

Bindingperirhinal cortex, 293

Binocular rivalrytool pictures, 192

Biological categoriescategory interactiongender, 44

Biological entitiesfunctional attributes, 41

Biological mechanisms, 22Block formattasks, 225

Blood-oxygenation-level-dependent (BOLD), 157Bodiesneural processing substrates, 335

Body movementsparietal region, 212prefrontal cortex, 212white matter tracts, 212

Body partsaction names, 47identification, 37impairment, 37naming, 46

BOLD. See Blood-oxygenation-level-dependent(BOLD)

Brain activationcorrelation map, 140semantic feature, 116task demands, 116

Brain conceptual knowledgesemantic refractory access deficits, 10

Brain correlates of category-specific semanticdisorders

artefacts, 44living beings, 44

Brain damage, 273category-specific deficit, 248disorders in identification of living beings and

artefacts, 37–46familiarity, 273naming animals vs. artefacts, 206SE, 267

363 Index

www.cambridge.org© Cambridge University Press

Cambridge University Press978-0-521-84870-1 - Neural Basis of Semantic MemoryEdited by John Hart and Michael A. KrautIndexMore information

Page 4: Marketing Fragment 6 x 10.5 - Cambridge University Pressassets.cambridge.org/97805218/48701/index/9780521848701_index.pdf · Body movements parietal region, 212 prefrontal cortex,

Brain mapsrecall, 141

Brain regionsadaptation paradigms processing

characteristics, 315Brainstem potentials

scalp, 69

Categorical organisationconcrete concepts, 19information stored inevolutionary significance, 341semantic relatedness, 13

Categorical pairsN400 priming effect, 113

Categorical processingcritical period, 113

Categorization, 247, 248, 250, 251rule-based, 248

Categorytask, 186

Category-based and feature-based frameworkobject memory, 342

Category interactionbiological categoriesgender, 44

Category judgment task, 137with word pairsfMRI, 336

Category member generation, 225Category membership

abstract words, 18semantic similarity, 18subjects determining, 338

Category-related neural systemstop-down activity, 321–3

Category-related patternsfusiform gyrus, 310

Category-selective activationssemantic level, 185

Category-specific deficitfor animals and plant-life, 43cerebral artery, 43temporal lobes, 43artefacts, 302for biological entitiesvs. artefacts, 33inanimate objects, 302for nouns and verbscognitive defects, 34, 35tools, 302for verbs, 35

Category-specific model, 182, 277Category-specific naming disorders

visuo-verbal disconnection, 46–8Category-specific semantic deficits, 275

anatomical locus, 28–51brain damage, 248HSE, 276living and non-living items, 183for living beings and artefacts

interpretation of, 39–41systematic review, 43for living entitiesartefact of stimulus selection, 38objections, 38–9living things, 266, 268neuroanatomical correlates, 46neuroanatomical lesions, 33

Category-specific vs. distributed neural systems,281–4

Central processes, 96Cerebral artery

category-specific disorders for animals andplant-life, 43

selective naming impairment for fruit andvegetables, 47

Cerebral cortexnouns and verbs, 208

Cholinergic activity, 222Cingulate cortex

concrete imageable concepts, 163Cingulate gyrus

increasing task difficulty, 165Cingulate region, 169Circuits

basal ganglia, 220Classical associationistic views, 30Close and distant within-category arrays, 7Closed circuits

basal ganglia impact, 220–2Clustered acquisition

scanning, 167Cognates

concrete words and nouns, 108vs. non-cognatesprocessing, 108

Cognitionbasal ganglia direct loop, 239vs. motionverbs, 37

Cognitive defectcategory-specific disorders for nouns and verbs,

34, 35grammatical category, 35lexical level, 35verbs, 35

Cognitive model, 30semantic memory, 265–94semantic organisation, 182–4

Cognitive operationstimulus, 186

Cognitive processing, 230mapping, 233

Cognitive sciencenaming, 205

Cognitive task studyneuropsychologists, 67

Collateral sulcusT1-weighted scan, 292

Coloroccipital lobes, 308PET, 307

364 Index

www.cambridge.org© Cambridge University Press

Cambridge University Press978-0-521-84870-1 - Neural Basis of Semantic MemoryEdited by John Hart and Michael A. KrautIndexMore information

Page 5: Marketing Fragment 6 x 10.5 - Cambridge University Pressassets.cambridge.org/97805218/48701/index/9780521848701_index.pdf · Body movements parietal region, 212 prefrontal cortex,

Color imagerydouble dissociation, 308ventral temporal lobe, 308

Color perceptiondouble dissociation, 308occipital sites, 308

Color word generation, 306fusiform gyrus, 308temporal lobe, 308

Common proper namesvs. famous proper namesrefractoriness, 9

Competing movementssuppressing, 224

Complex feature integration, 291Complex motion processing

lateral temporal cortex, 312Compound and sub-ordinative hypothesis,

107Comprehension, 11

mass nouns, 13nouns and verbs, 34proper nouns, 13vocabulary, 4

Computationalmodeling studyrefractory access/storage distinction, 21

Concept mediation modelscross-language semantic priming, 107

Conceptsdimension, 269

Conceptual activities, 28Conceptual functions, 29Conceptual knowledge

categorical organisation, 32–48cerebral organisation, 3functional brain imaging, 316organisation, 303perceptual experience, 149semantic relatedness, 13thesaurus, 3

Conceptual links, 111Conceptual processes

word imageability, 150Conceptual representations

format, 29–32functional brain imaging, 302–25neural foundations, 302–25sensory-motor hypothesis, 160underlying perceptual activities, 29–32

Conceptual semantic information, 210Conceptual space

organisation, 12Conceptual structure account (CSA), 183,

265–94behavioral evidence, 271–3category-specific semantic impairments, 273functional imaging techniques, 271–3future, 293healthy participants, 278–81living things, 277model, 266–71

network, 270neural instantiation, 281–4neuropsychological patient studies, 273–8property generation studies, 271–3

Conceptual system mapping, 105Concrete and abstract wordscontrast, 158judgments, 161lexical decision study, 170neuroimaging studies, 150–6nonwords, 157semantic decision task, 163similarity difference (SD) scores, 162temporal lobe, 160

Concrete concepts, 11vs. abstract concepts, 18, 19acquisition, 172categorical organisational principle, 19cingulate cortex, 163nouns and verbs, 206–8perceptual-motor systems, 150prefrontal cortex, 163sentence comprehension, 85–91task demands, 156

Concrete nounsvs. abstract nouns, 150

Concrete words, 85vs. abstract words, 155, 170ventral temporal lobe, 161cognates, 108comprehension, 19fMRI, 158knowledge base, 19vs. nonwords, 159semantic similarity and association, 20

Confoundingfunctional properties, 49

Conjunction analysisactivations, 185

Connectionist model, 22, 31, 42Connectionsacross and within systems, 348–51

ContentAlzheimer’s disease, 255

Content and processin semantic memory, 261

Content knowledgeSD, 258

Content words, 205Contextsentence comprehension, 85–91

Context-dependent fashion, 187Context informationL2 learners, 114

Contrastconcrete and abstract words, 158

Convergenceimages, 30sensory inputs, 291zones, 208

Co-ordinative bilingualismL1-L2 interaction, 106

365 Index

www.cambridge.org© Cambridge University Press

Cambridge University Press978-0-521-84870-1 - Neural Basis of Semantic MemoryEdited by John Hart and Michael A. KrautIndexMore information

Page 6: Marketing Fragment 6 x 10.5 - Cambridge University Pressassets.cambridge.org/97805218/48701/index/9780521848701_index.pdf · Body movements parietal region, 212 prefrontal cortex,

Co-registered structural magnetic resonanceimaging

with dense electrode arrays, 99Core language

basal ganglia, 222–3Core semantic structure

nouns and verbs, 213Corpus callosum, 47

electrophysiological experiments, 150Correlation map

brain activation, 140Cortex

basal ganglia, 220correlating with functions, 117dominant meaning, 237gamma rhythmmemory, 341motor systemword-word feature binding task, 348neuromodulators, 22overlapping patterns, 315–16stimulation mappingobject naming, 117word naming, 212

Cortical damagesemantic memory, 247–61

Critical periodcategorical processing, 113

Cross-language priming, 108concept mediation models, 107

CSA. See Conceptual structure account (CSA)Cue, 232

D1 activitydirect loop, 234–6

Damasio’s model, 32Decision tasks

LPMT, 189Decision times

semantic knowledge, 166Degenerative conditions, 274

vs. access casestemporal factors, 5semantic relatedness, 7serial position effects, 6

Dense electrode arraysco-registered structural MRI, 99

Diagnosticity, 259Differential weighting hypothesis, 33, 47Direct loop

D1 activity, 234–6Discordant condition, 234Discrete-stage architecture, 97Disorganisation

FTD, 142Display

tool-selectivity, 195Dissociation, 186

clinical data, 33verb production difficulties, 207

Distant arrays, 19

Distinctive propertiesliving things, 278

Distributed hypothesis, 260DLPFC. See Dorsolateral prefrontal cortex

(DLPFC)Domain-level naming, 288

fMRI, 289Domains, 269

of knowledge hypothesis, 42–4specific account, 323specific knowledge systems hypothesis, 40, 41

Dominant meaningcortical lesions, 237SOA, 237

Dominant pallidotomy, 219Donders’ method of subtraction, 99Dopaminergic modulation

Parkinson’s disease, 238Dopaminergic projections

substantia nigra pars compacta, 222Dorsal stream of visual processing, 46

spatial and action functions, 46Dorsolateral prefrontal cortex (DLPFC)

FTD, 136semantic processing, 345

Dorsomedial nucleus, 349Dorso-ventral dissociation

tool-selective activations, 194Double dissociation, 19, 36, 182, 190

color perception and imagery, 308between perceptual knowledge about verbs and

grammatical properties, 211Drawing performance, 267D1 receptor, 235Dual-coding theory, 85, 171Dutch-only word

N400 priming, 115Dynamic Causal Modeling, 195Dysgraphic, 11Dyslexic, 11Dysphasic, 11

Early learners, 112EEG. See Electroencephalogram (EEG)Effective Connectivity Analyses, 195Elderly

categorization, 250Electrical brain activity

ERP, 111recording, 83

Electrical cortical interference, 344Electrical evidence

spatially distributed brain activity, 352Electrical interference

fusiform gyrus, 345temporal gyrus, 345

Electrodes, 80, 81, 84additivity, 85factors interacting, 79feature binding, 349interaction, 79repetition and relatedness interaction effects, 92

366 Index

www.cambridge.org© Cambridge University Press

Cambridge University Press978-0-521-84870-1 - Neural Basis of Semantic MemoryEdited by John Hart and Michael A. KrautIndexMore information

Page 7: Marketing Fragment 6 x 10.5 - Cambridge University Pressassets.cambridge.org/97805218/48701/index/9780521848701_index.pdf · Body movements parietal region, 212 prefrontal cortex,

repetition and relatedness main effects, 92word and stem main effects, 88word X stem interaction effects, 88

Electroencephalogram (EEG), 68, 86ERP, 69

Encapsulated, 82Encoding process

object, 352Encyclopedic knowledge

vs. semantic primitives, 304English city name identification

geographical proximity, 14English-only word

N400 priming, 115Entorhinal cortex, 45Episodic memory, 252, 291

Alzheimer’s disease, 255Equipotential models, 67ERP. See Event-related potentials (ERP)ESFT, 206, 214Event-related potentials (ERP), 65, 68–70, 77, 86,

92, 113–6amplitude, 72–3, 88bilingual language processing, 105bilingual semantic memory, 111–3EEG signals, 69electrical brain activity, 111experimental conditions, 72fMRIbilingual semantic memory, 105–21latency, 84levels of analysis, 70–2L2 learners, 116MEG techniques, 99prerequisites, 69–70revealing independently functioning processing

modules, 68scalp topography, 78semantic memory functional modularity,

65–100semantic priming studies, 112single word vs. sentence processing, 114source localization, 99task performance, 331typical topography analysis, 73

Evolutionary essential itemsknowledge systems, 341

Evolutionary hypothesis, 260Evolutionary significance

information stored in categorical organisation,341

Evolutionary view, 249Exception word naming

lexical mechanism, 166Excitatory stimulation, 235Executive attention, 224Extrastriate, 281

Facesaction verbs, 37distributed representation, 309–11fusiform gyrus, 310

fusiform gyrus bilateral activity, 310neural processing substrates, 335

Factorial design, 71–2Factorially manipulatedsemantic category, 195

Factors interact at some sites, 79–81False localizationsemantic memory, 334

False positive responsesschizophrenia, 140

Familiarity, 11associated, 269brain damage, 273vs. imageability, 172

Famous proper namesvs. common proper namesrefractoriness, 9

Farnsworth-Munsell Color Perception Task, 308Far spreading activation theoryFTD, 135

Feature-based accountsemantic memory, 183

Feature-based modelsemantic memory, 196–7

Feature-based object retrievalsemantic memory, 142

Feature bindingelectrodes, 349thalamus, 348

Feature distinctiveness, 269Feedback, 252, 280Femalesfruit and vegetables, 44

Final-word concreteness main effectstopographies, 87

Fine graincategory specific deficits, 10, 13PET, 309semantic organisation within broad categories,

10–3Firing rateadaptation effects, 21presynaptic neuron, 22

Flow language symptomsacute cerebral blood, 223

Fluency, 110Fluent aphasicsanomic patients, 34

fMRI. See Functional magnetic resonance imaging(fMRI)

Fodorian central process, 97Fodor’s modules, 82Foodsemantic information, 338

Formal thought disorder (FTD), 133, 250, 255ACC, 136clinical assessment tool, 134disorganisation, 142DLPFC, 136far spreading activation theory, 135fMRI, 139inferior frontal gyrus, 136

367 Index

www.cambridge.org© Cambridge University Press

Cambridge University Press978-0-521-84870-1 - Neural Basis of Semantic MemoryEdited by John Hart and Michael A. KrautIndexMore information

Page 8: Marketing Fragment 6 x 10.5 - Cambridge University Pressassets.cambridge.org/97805218/48701/index/9780521848701_index.pdf · Body movements parietal region, 212 prefrontal cortex,

Formal thought disorder (cont.)negative vs. positive, 134neuroimaging studies, 135–6overbinding, 142PET, 136semantic memory, 134–5semantic network associational activation, 135semantic object recall neural correlates, 138–42semantic priming, 135STS, 136symptoms, 133–4, 138

Frontal lobeobject, 350verb activation, 37

Frontalvs. temporal activationL2 semantic tasks, 120

Fronto-parietal areas, 46Fruits and vegetables

females, 44temporal lobe lesions, 44visual attributes, 47

FTD. See Formal thought disorder (FTD)Full sentences

all-English experiments, 115Function

vs. manipulation, 190Functional attributes

biological entities, 41results, 87

Functional brain imaging, 46, 184conceptual knowledge, 316conceptual structure account, 265object properties and categories, 304–6tool and action processingfuture directions, 196

Functional independence, 82Functional information

vs. visual information, 39Functional knowledge

acceptation, 49vs. manipulation, 190–1

Functional magnetic resonance imaging (fMRI),294

abstract words, 158AoA, 118–20basal ganglia, 239basic-level naming, 289bilingual language processing, 105category judgment task with word pairs, 336concrete words, 158domain-level naming, 289FTD, 139imageability, 156moving geometric forms, 322multimodal integration, 198naming pictures of animals, 305nonsense syllables, 225nonwords, 158object categories, 315picture naming, 334regional brain activity, 251semantic decisions, 282

semantic object memory, 346SORT, 138subtraction, 66task performance, 331visual lexical decision task, 158word generation, 225words and nonwords, 155

Functional modules, 66multiple comparisons, 83–5

Functional propertiesconfounding, 49

Functional similaritysemantic memory revealedstatistical considerations, 82–5

Fusiform gyrusanimal and tools pictures, 316animals, 311bilateral activityfaces, 310category-related patterns, 310color word generation, 308conceptual processing, 316–8electrical interference, 345faces, 310mental imagery, 155nouns, 210object, 306, 314object color, 308repetition-related reductions in hemodynamic

responses, 317tools, 313top-down vs. bottom-up processes, 321visual object images, 317word imageability, 164

Fusiform tool region, 194

GABA, 221, 222Gamma rhythm

cortexmemory, 341

Genderanimals, plant life, artefacts, 44category interaction biological

categories, 44familiarity factorsanimals vs. plants, 45living categories identification, 43living vs. non-living things, 44non-living categories identification, 43

Gender-related familiarity effects, 38Generalized brain/behavioral organisation

principlesobject memory, 332

Generation tasksLPMT, 189

Geographical domainknowledge base, 15

Geographical informationexperiments, 15

Geographical knowledgeglobal comprehension deficit, 14organisation, 14–6

368 Index

www.cambridge.org© Cambridge University Press

Cambridge University Press978-0-521-84870-1 - Neural Basis of Semantic MemoryEdited by John Hart and Michael A. KrautIndexMore information

Page 9: Marketing Fragment 6 x 10.5 - Cambridge University Pressassets.cambridge.org/97805218/48701/index/9780521848701_index.pdf · Body movements parietal region, 212 prefrontal cortex,

spoken word-written word matching task, 14Geographical proximity, 14

English city name identification, 14Geometric forms

fMRI, 322German

PETverbs and pseudo-verbs, 214

Geschwind’s model, 47Global analysis, 87Global comprehension deficit

geographical knowledge, 14Global level

language context, 115Globus pallidus

operative procedures, 219Glutamate, 220, 222Grammatical category

cognitive defect, 35hypothesis, 36

Grammatical judgmentAoA, 119

Grasping objectspremotor and intraparietal regionstools, 314

Gratingshemodynamic responses, 311

Group averaged hemodynamic responsesmoving humans and tools, 313

Gyrus, 284semantic judgment, 345

Hand manipulationsvs. whole body movements, 189perceptual level,

Hemisphereword-generation tasks, 227

Hemisphere X Anterior-Posterior, 94Hemodynamic responses

moving gratings, 311repetition-related reductions infusiform gyrus, 317

Herpes Simplex Encephalitis (HSE), 37, 49, 275,277, 333

category-specific semantic impairments,276

Hierarchical object processing system, 286–93High property target word, 280Houses

distributed representation, 309–11neural processing substrates, 335

HSE. See Herpes Simplex Encephalitis (HSE)Human figures

vs. toolslateral temporal cortex, 314

Human motionvs. toolsMTG, 312

Humans and toolsgroup averaged hemodynamic responses, 313

Huntington’s disease, 240Hybrid semi-connectionist networks, 67

Hyperdirect loop, 221semantic priming suppression, 236–8

HypoperfusionACC, 136VLPFC, 136

Identificationartefacts, 37body parts, 37

IFG. See Inferior frontal gyrus (IFG)Imageability, 150Imagesvs. familiarity, 172fMRI, 156lexical and semantic decisions, 167, 169lexical decision, 156–7low-frequency exception word naming, 166nouns and verbs, 206–8positive effects, 155semantic decision, 160–1static vs. movingSTS and MTG, 312vs. task difficulty, 165word naming, 166–8

Imaging studiessemantic processing tasks, 159

Inanimate objectscategory-specific deficit, 302

Inanimate stimuli, 10Indirect loopsemantic priming suppression, 236–8

Indirect priming, 135Inferior frontal gyrus (IFG)abstract words, 163FTD, 136increasing task difficulty, 165L1 phonological processing, 119

Inferior frontal regionactivation, 160

Inferior parietalactivation, 188

Inferior temporal cortex (IT), 187Inferotemporal lobe (ITL), 45, 293Information processingarchitecture, 67neural processors, 71separate parallel stream, 80

Insulaincreasing task difficulty, 165

Integrated object conceptsemantic memory, 351

Integration, 91, 96–7implications, 96

Intentionbasal ganglia, 223–4

Interactionismvs. modularity, 66–8

Interaction-yielding processor, 97Internal structure, 273Intracranial potentials, 71Invariant, 76IT. See Inferior temporal cortex (IT)

369 Index

www.cambridge.org© Cambridge University Press

Cambridge University Press978-0-521-84870-1 - Neural Basis of Semantic MemoryEdited by John Hart and Michael A. KrautIndexMore information

Page 10: Marketing Fragment 6 x 10.5 - Cambridge University Pressassets.cambridge.org/97805218/48701/index/9780521848701_index.pdf · Body movements parietal region, 212 prefrontal cortex,

Italian-speaking patientmirror deficit, 211

Item frequency, 11ITL. See Inferotemporal lobe (ITL)

Judgments, 253concrete and abstract nouns triads, 161

Knowledgedomains, 15, 266, 268, 303explicitly expressed, 304expression and representation, 303–4neural substrates, 28systemsevolutionary essential items, 341

L1 activation during L2 processingprimes, 115

Languageclinical and neurosurgical research, 117global level, 115lexical formsbilingualism, 107selectivity, 115semanticsbasal ganglia, 219–40switching, 115systemexpression, 303

Late learners, 112Latency

ERP, 84Late positive complex (LPC), 86Lateral occipitotemporal sulcus (LOTS)

T1-weighted scan, 292Lateral temporal cortex

animate objects and artefacts, 321complex motion processing, 312human figures vs. tools, 314motion properties, 311–4object, 305, 306verb generation and activation, 306

L2-concept connectionsbilinguals, 111

LDT. See Lexical decision tasks (LDT)Leaky modularity, 84Learners

late, 112Learning

dependent modulationobject category-related activity, 315–6neural circuitry, 320related changesrepetition suppression, 317speedarchitecture, 68

Left posterior middle temporal region (LPMT),188

action-selectivesensory experience, 191action-selective effects, 192activation, 189, 190

decision or generation tasks, 189manipulationsemantic tasks or written words, 189stimulus, 191tool category and action retrieval, 193

Lemma level, 110Lexical access, 335

vs. semantic knowledge, 336Lexical ambiguity priming

associative strength, 236Lexical concepts, 108, 109Lexical decision tasks (LDT), 32, 109, 162, 165

abstract words, 165concrete and abstract words, 170imageability, 167effects, 156–7normal semantic priming, 134primed, 115semantic knowledge, 156visual-perceptual knowledge, 164

Lexical formslanguagebilingualism, 107

Lexical impairmentliving beings, 43

Lexical item retrievalbasal gangliaword generation, 225–7

Lexical levelcognitive defect, 35RHM, 114word generation, 233–4

Lexical links, 111Lexical mechanism

exception word naming, 166Lexical-semantic memory, 205, 333

for objectsperceptual featural organisation, 336

Lexiconorthographic and phonological, 166whole-word phonological representations, 166

Linear superposition, 75Linguistic processes

abstract concepts, 171basal ganglia injury, 219

Living things, 289, 303vs. artefacts, 33brain correlates of category-specific semantic

disorders, 44category-specific semantic deficits, 183, 266,

268CSA, 277dissociation with non-living things, 9distinctive properties, 278functional properties, 49identificationgender, 43visual properties, 39identification impairment, 37vs. man-made artefact domain, 33lexical impairment, 43naming or recognizing, 38

370 Index

www.cambridge.org© Cambridge University Press

Cambridge University Press978-0-521-84870-1 - Neural Basis of Semantic MemoryEdited by John Hart and Michael A. KrautIndexMore information

Page 11: Marketing Fragment 6 x 10.5 - Cambridge University Pressassets.cambridge.org/97805218/48701/index/9780521848701_index.pdf · Body movements parietal region, 212 prefrontal cortex,

vs. non-living, 11gender, 44refractoriness, 9RT, 278priming experiment, 278semantic dementia, 48visual attributes, 47weakly correlated distinctive features, 279women, 44word-picture matching, 277

L1�L2 asymmetryin processing, 109–10

L2 learnerscontext information, 114ERP, 116

L1�L2 interactionco-ordinative bilingualism, 106

Localizing regionssemantic processing, 343

Locus of interferenceN200, 114

LOTS. See Lateral occipitotemporal sulcus(LOTS)

Low-frequency exception word namingimageability, 166

LPC. See Late positive complex (LPC)L1 phonological processing

inferior frontal gyrus, 119L2 phonological processing

phonological processing, 119LPMT. See Left posterior middle temporal region

(LPMT)L2 semantic tasks, 111

frontal vs. temporal activation, 120L2 STG activation

phonological processing, 119

Magnetic resonance imaging (MRI)aphasia, 223co-registered structuralwith dense electrode arrays, 99

Magnetoencephalography (MEG), 65ERP, 99

Males. See also Menanimals, 44

Manipulable objects, 38vs. non-manipulable objects, 191AIP, 184

Manipulation, 338AIPvs. function, 190vs. functional knowledge, 190–1LPMTventral premotor

Man-made artefact domain, 13vs. living beings impairment, 33

Man-made objectssensory-motor mechanisms, 46

Mappingcognitive processing, 233isolated preservation, 10

Masked vs. unmasked priming, 109

Massive structural interconnectivity, 67Mass nounscomprehension, 13

Master binder, 293Medial globus pallidus, 230Medial temporal lobe (MTL), 45, 50Alzheimer’s disease, 50

Mediating processingsynchronizing rhythms, 346

MEG. See Magnetoencephalography (MEG)Menartefacts, 44

Mental imageryfusiform gyrus, 155

Mentally visualized, 150Methylmalonic enzyme, 259Midbrain reticular activating systemincreasing task difficulty, 165

Middle cerebral arteryblockage, 223stroke, 11

Middle cortex lesionsnoun production deficits, 208

Middle temporal gyrus (MTG)motion, 312object-associated motion, 312tools, 311, 313tool vs. human motion, 312

Mid-fusiform gyrusword imageability, 161

Minimal syntactic framenoun or verb phrase, 211

Mirror deficit, 211Italian-speaking patient, 211

Misclassificationsemantic memory impairment, 249

Modalspecificity, 16–8

Modalityspecific deficitsVST, 209specific higher visual association cortex, 164specific refractory deficits, 17specific semantic storage deficits, 18specific sensory-motor systems, 149tool-selectivity, 195

Modularityvs. interactionism, 66–8sentence comprehension, 85–91

Modular organisationsemantic knowledge, 281

Moduledefinition, 66

Monkeyvs. humanneuron areas, 188

Monolingualvs. bilingualssemantic judgment, 118

Motionvs. cognitionverbs, 37

371 Index

www.cambridge.org© Cambridge University Press

Cambridge University Press978-0-521-84870-1 - Neural Basis of Semantic MemoryEdited by John Hart and Michael A. KrautIndexMore information

Page 12: Marketing Fragment 6 x 10.5 - Cambridge University Pressassets.cambridge.org/97805218/48701/index/9780521848701_index.pdf · Body movements parietal region, 212 prefrontal cortex,

Motion (cont.)MTG, 312propertieslateral temporal cortex, 311–4related information, 284temporal sulcus, 311STS, 312

Motor area connectionsaction-selectivity, 191

Motor memories, 338Motor schemata, 208Motor system

signal change patterns, 338MRI. See Magnetic resonance imaging (MRI)MTG. See Middle temporal gyrus (MTG)MTL. See Medial temporal lobe (MTL)Multifocal cerebral tumours

refractoriness, 23Multimodal integration

action and tool categorization, 198fMRI, 198

Multimodal network model, 31Multimodal semantic processing, 341Multimodal semantic relationship

between semantic entities, 343Multiple modality-specific semantic systems

hypothesis, 31parsimony principle, 31

Multiple selective impairments, 10

N200locus of interference, 114single word and sentences, 114

Naminganimal and tools pictures, 315animalsfMRI, 305ventral premotor cortex, 316cognitive science, 205compromised, 16living things, 38performance, 275toolsventral premotor cortex, 316visuo-verbal disconnection, 46

Natural categoriessemantic information, 338

Natural complex human movements, 190Naturally-formed categories, 252Natural response pace, 5N400 component, 87, 91, 112

semantic priming, 112Network

CSA, 270Neural activity, 69

automatic semantic priming, 318Neural and cognitive information processing

questions, 99Neural basis of bilingual semantic memory,

116–18Neural circuits

learning, 320

object property information, 318–20property-basedobject categories, 309

Neural foundationsconceptual representations, 302–25

Neural hybrid modelof semantic memory, 331–53

Neural instantiationCSA, 281–4

Neural mechanismscomposite figure, 351tool and action processing, 197–8

Neural processing, 71abstract concepts, 172bodies, 335faces, 335information processing, 71

Neural regionsknowledge domains, 266

Neural semantic detector modelnonverbal sound of objects and animals, 339

Neural substratesknowledge, 28

Neural systemsaction semantic features, 183action semantics, 188–9processing tools and action semantics, 182–98sensory deprivation, 191speech production, 210

Neuroanatomical correlatescategory-specific semantic disorders, 46disorders selectively affecting nouns and verbs,

35–6disorders specifically affecting living and

non-living things, 42–3Neuroanatomical substrates, 28Neurodegenerative diseases, 275

semantic memory impairments, 248Neuroimaging studies

concrete and abstract word processing, 150–6FTD, 135–6

Neuromodulators, 22cortex, 22refractory access deficits, 21

Neuron areasmonkey vs. human, 188

Neurophysiological basissemantic refractory access disorders, 21–3

Neurophysiological studiesnon-human primates

Neuropsychological patient studiesCSA, 273–8

Neuropsychologistscognitive task study, 67

Neuroscientific investigationssemantic memory, 343

Neurosurgerybilingual, 117

Neurotransmitters, 22, 220, 222Non-cognates

abstracts words and verbs, 108Non-distinctive information, 267

372 Index

www.cambridge.org© Cambridge University Press

Cambridge University Press978-0-521-84870-1 - Neural Basis of Semantic MemoryEdited by John Hart and Michael A. KrautIndexMore information

Page 13: Marketing Fragment 6 x 10.5 - Cambridge University Pressassets.cambridge.org/97805218/48701/index/9780521848701_index.pdf · Body movements parietal region, 212 prefrontal cortex,

Non-fluent aphasicsagrammatic patients, 34

Non-fluent primary progressive aphasics, 210Non-human primates

neurophysiological studiesNon-linguistic concepts

semantic forms, 108Non-living categories identification

gender, 43Non-living concepts

vs. living concepts, 11Nonliving domains, 266, 272Non-living things

category-specific semantic deficits, 183deficit, 39dissociation, 9vs. living thingsdissociation with, 9refractoriness, 9RT, 278

Non-manipulable objectsvs. manipulable objects, 191

Non-member foils, 256Nonsense syllables, 226

fMRI, 225Non-sound stimuli, 340Nonstructural design, 72–3Nonthreatening stimuli, 340Nonverbal sound

of objects and animalsneural semantic detector model, 339targets, 339

Nonwordsconcrete and abstract words, 157vs. concrete words, 159fMRI, 158letter string, 232, 234

Noradrenaline, 21Normal semantic priming

lexical decision task, 134Nouns

auditory presentation, 91fusiform gyrus, 214minimal syntactic frame, 211namingselective deficits, 211production deficitsmiddle cortex lesions, 208representing animals and tools, 284vs. verbs, 206concrete knowledge, 207

Nouns and verbs, 212aphasia, 209aphasic patients, 34cerebral cortex, 208comprehension, 34concreteness or imageability, 207core semantic structure, 213disorders in production and comprehension,

34–7distinction, 212imageability and concreteness, 206–8

objects and actions, 212semantic core approach, 213–14semantic dementia, 209semantic representation, 205–14sensory/functional approaches, 205–6visual and sensorimotor features, 208–11

Novel animal study, 258Novel category, 251Novel objectsleft lateral view, 319

N400 primingassociative words, 113categorical pairs, 113Dutch-only word, 115English-only word, 115

NT400 priming modulations, 114Null hypothesis, 82–3Number producedwords, 136

Objectsassociated color, 306–8associated motion, 306–8MTG, 312STS, 312categories, 304fMRI, 315learning-dependent modulation, 315–16color, 307fusiform gyrus, 308ventral temporal cortex, 307decisions taskssemantic degradation, 32form, 307memory, 291category-based and feature-based framework,

342neural processing substrates, 335nouns and verbs, 212phase-scrambled images, 319processing, 287propertiesneural circuits, 318–20retrieving information, 306–8recall, 139feature binding, 348semantic memory, 137thalamus, 348ventrolateral occipito-temporal cortex, 214word pairs, 317

Occipital lobesanimals, 309color, 308color perception, 308stimuli, 334

Occipitotemporal cortexbilateral ventralobjects, 304PET, 309processing stream, 287visual imagery, 316

373 Index

www.cambridge.org© Cambridge University Press

Cambridge University Press978-0-521-84870-1 - Neural Basis of Semantic MemoryEdited by John Hart and Michael A. KrautIndexMore information

Page 14: Marketing Fragment 6 x 10.5 - Cambridge University Pressassets.cambridge.org/97805218/48701/index/9780521848701_index.pdf · Body movements parietal region, 212 prefrontal cortex,

Old agebreaking down, 100processing ossified, 100

On-lineidentification of objects/items producing

sounds, 340language processing, 279priming, 280

Operative proceduresglobus pallidus, 219

Optic aphasia, 47Organisation

conceptual knowledge, 303conceptual space, 12geographical knowledge, 14–16principlesabstract concepts, 171

Organized Unitary Content Hypothesis (OUCH),29

OUCH. See Organized Unitary ContentHypothesis (OUCH)

OverbindingFTD, 142

Pallidum, 230PANSS. See Positive and Negative Symptom Scale

(PANSS)Pantomime understanding, 36Parahippocampal region, 45Parallel distributed processing (PDP) models, 67,

97Parietal cortex

actions, 214Parietal lobe

abstract words, 163action observation, 188body movements, 212

Parieto-occipital cortex, 169Parkinson’s disease, 227, 235, 239

dopaminergic modulation, 238impairment site, 238

Parsimony principlemultiple modality-specific semantic systems

hypothesis, 31unitary abstract model, 31

PDP. See Parallel distributed processing (PDP)models

Perception, 28, 29conceptual knowledge, 149hand manipulations vs. whole body movementslexical-semantic memory for objects, 336moving stimuli, 186reading motion words, 186

Perceptual-motor systemsconcrete concepts, 150

Perceptual primingtool-selectivity, 195

Perfect learner, 253Perirhinal cortex, 45, 291

binding, 293multimodal features, 293

PET. See Positron emission tomography (PET)

Phase-scrambled imagesobjects, 319

Phonological processingL2 phonological processing, 119L2 STG activation, 119

Picture matching taskaction, 213

Picture namingfMRI, 334PET, 334verbs, 211

Picture stimulus arraysword-picture matching, 12

Picture-word stimuli, 348Pizza-versus-quarter, 251Plants

vs. animalsgender-related familiarity factors, 45gender, 44

Position effectsrefractoriness, 8

Position X Anterior-Posterior, 94Position X Relatedness, 94Positive and Negative Symptom Scale (PANSS),

139Positron emission tomography (PET)

color, 307fine-grained category-related differences, 309FTD, 136Germanverbs and pseudo-verbs, 214occipitotemporal cortex, 309picture naming, 334subtraction, 66task performance, 331tools vs. animals, 310

Posterior mid-temporal gyrusactivation, 343

Post-lexical integration, 112Prefrontal cortex, 169, 212, 251

actions, 214body movements, 212concrete imageable concepts, 163objects, 304verb production deficits, 208

Premotor cortexaction word generation, 309grasping objectstools, 314increasing task difficulty, 165signal changes, 336stimulus, 191

Pre-SMA basal ganglia circuit, 220, 221word generation, 226, 350

Pre-SMA-dorsal caudate nucleus-ventral anteriorthalamic loop, 226

Presynaptic neuronfiring rate, 22

Primary progressive aphasiaVST

Primed lexical decision tasks, 115Prime-target relationships

374 Index

www.cambridge.org© Cambridge University Press

Cambridge University Press978-0-521-84870-1 - Neural Basis of Semantic MemoryEdited by John Hart and Michael A. KrautIndexMore information

Page 15: Marketing Fragment 6 x 10.5 - Cambridge University Pressassets.cambridge.org/97805218/48701/index/9780521848701_index.pdf · Body movements parietal region, 212 prefrontal cortex,

Priming, 95controversial, 236L1 activation during L2 processing, 115living and nonliving concepts, 278masked vs. unmasked, 109semantic decision, 280SOA, 237

Probesword picture matching task, 10

Processing, 71, 77cognates vs. non-cognates, 108L1-L2 asymmetry, 109–10patterns, 256training, 256word-class effects, 108

Proficiency effects, 110–11Progressive cerebral atrophy, 23Proper names

famous vs. commonrefractoriness, 9

Proper nounscomprehension, 13

Property-based neural circuitsobject categories, 309

Property generation studies, 271Pseudowords, 156Psycholinguistic experimental methodologies, 105Psycholinguistic stimuli, 282Pulvinar connect

signal changes, 350visual cortex, 350

Reading motion wordsperception, 186

Recallbrain maps, 141

Refractoriness, 8experiments, 17multifocal cerebral tumours, 23position effects, 8response inconsistency, 8semantic relatedness, 8

Refractory access deficitsfrequency, 6–7neuromodulatory systems, 21response consistency, 6selective, 16serials position curves, 6vs. storage deficitsresponse consistency, 6storage distinctioncomputational modeling study, 21temporal factors, 5word-picture matching, 5, 8

Regional brain activityfMRI, 251

Relatedness, 94, 95semantic satiation, 91–6

Relative theoretical ambiguity, 84Relay station role, 348Repetition, 92–5

electrode site, 92

object perception, 320semantic satiation, 91–6suppression, 317learning-related changes, 317object, 320verbs, 211

Repetition X Anterior-Posterior, 93Responseaccuracysemantic relatedness, 11consistencyfrequency effects, 22inconsistencyrefractoriness, 8timevisual lexical decision task, 159

Response-stimulus interval (RSI), 4, 5Retrieving informationobject properties, 306–8

Revised Hierarchical Model, 109RHMlexical-level translation links, 114

RSI. See Response-stimulus interval (RSI)RT, 113–16in lexical decision studyactivation, 163sensitivity, 160

RulesAD, 258categorisation, 259Alzheimer’s disease, 257SD, 257semantic dementia, 257

Russian-German bilingualssemantic violation paradigm, 119

SANS. See Scale for the Assessment of NegativeSymptoms (SANS)

SAPS. See Scale for the Assessment of PositiveSymptoms (SAPS)

Scale for the Assessment of Negative Symptoms(SANS), 138

Scale for the Assessment of Positive Symptoms(SAPS), 138

Scalp, 79potentials, 69–71amplitudes, 70measurable, 69topographic distribution, 70topographies, 77weak interaction, 81

Scanningclustered acquisition, 167objects, 320

Scenesneural processing substrates, 335

Schizophreniafalse positive responses, 140semantic memory, 133–42semantic memory network over activation, 141semantic object, 136–8symptoms, 133

375 Index

www.cambridge.org© Cambridge University Press

Cambridge University Press978-0-521-84870-1 - Neural Basis of Semantic MemoryEdited by John Hart and Michael A. KrautIndexMore information

Page 16: Marketing Fragment 6 x 10.5 - Cambridge University Pressassets.cambridge.org/97805218/48701/index/9780521848701_index.pdf · Body movements parietal region, 212 prefrontal cortex,

Scrambled images, 287Selective deficits

noun and verb naming, 211Selective impairment

action verbs, 10naming fruit and vegetables, 47

Selective influence, 76Semantic access

vs. semantic processes, 342word imageability, 149–72methods, 157, 162, 167results, 157–9, 162–3, 167word naming, 166

Semantically related itemsarrays, 4

Semantic and episodic memory retrieval, 307Semantic association, 19Semantic category

factorially manipulated, 195signal change patterns, 341

Semantic Category Decision task, 256, 258Semantic content

knowledge, 247stimuli, 184

Semantic core approachnouns and verbs, 213–14

Semantic decision tasksconcrete and abstract words, 163fMRI, 282imageability, 160–1, 167priming, 280task difficulty, 164temporal gyrus, 170word imageability, 164word level, 119

Semantic degradationobject decisions tasks, 32

Semantic dementia, 23, 50, 255content knowledge, 258living things, 48nouns and verbs, 209rule-based categorisation, 257temporal lobes, 50

Semantic disorder for artefactslesions, 43

Semantic distance effects, 10, 14Semantic effects

abstract word domain, 18Semantic features hypothesis, 292

brain activation complexity, 116intercorrelations among, 40–2, 51

Semantic formsnon-linguistic concepts, 108

Semantic impairment for living thingstemporal lobe, 43

Semantic information, 96food, 338neuronsstorage deficits, 21word naming task, 167

Semantic judgmentgyrus, 345

monolingual vs. bilinguals, 118Semantic knowledge, 233. See also Sensory-motor

modeldecision times, 166vs. lexical access, 336lexical decision task, 156modular organisation, 281SFT, 206

Semantic levelcategory-selective activations, 185

Semantic memoryAlzheimer’s disease, 255bilingualERP and fMRI, 105–21cognitive model, 265–94content and process, 261cortical damage, 249feature-based account, 183feature-based model, 184, 196–7feature-based object retrieval, 142FTD, 134–5functional modularityevent-related brain potentials,

65–100functional similaritystatistical considerations, 82–5impairmentmisclassification, 249neurodegenerative disease, 248original studies, 3integrated object concept, 351network over activationschizophrenia, 141neuroscientific investigations, 343objects, 137, 331, 347, 352process and content, 247–61schizophrenia, 133–42semantic network dysfunction, 138semantic representation, 352shared, 107–9subsystems, 332–42taskbottom-up approach, 137theories, 261two-level theories of, 108

Semantic modelbi-directional lexical-semantic

connections, 280Semantic network associational activation

FTD, 135Semantic network dysfunction

semantic memory operations, 138Semantic object

memoryfMRI, 346recall, 346, 349neural correlatesFTD, 138–42

schizophrenia, 136–8Semantic Object Recall from Features input Task

(SORT), 136–8fMRI, 138

376 Index

www.cambridge.org© Cambridge University Press

Cambridge University Press978-0-521-84870-1 - Neural Basis of Semantic MemoryEdited by John Hart and Michael A. KrautIndexMore information

Page 17: Marketing Fragment 6 x 10.5 - Cambridge University Pressassets.cambridge.org/97805218/48701/index/9780521848701_index.pdf · Body movements parietal region, 212 prefrontal cortex,

Semantic organisationcognitive models, 182–4principles, 18–21semantic refractory dysphasia, 13

Semantic priming, 112, 231, 232basal ganglia, 233–4basal ganglia functions, 239basal ganglia in intentionally guided attention,

232–3ERP, 112FTD, 135N400 component, 112normallexical decision task, 134suppression, 236–8hyperdirect loop, 236–8indirect loop, 236–8

Semantic primitivesvs. encyclopedic knowledge, 304

Semantic processes, 141, 233basal ganglia injury, 219DLPFC, 345encoded by anatomic regions, 346imaging studies, 159irrespective of stimulus type, 342–8localizing regions, 343vs. semantic access, 342tool and biological actions, 285

Semantic refractory access, 3–24brain conceptual knowledge, 10category dissociations, 8–10description, 4–8neurophysiological basis, 21–3recognise, 16semantic organisation, 13synaptic depression, 21verbal-visual and visual-visual matching

performance, 17Semantic regions, 183Semantic relatedness, 7–8, 11, 19

access deficits, 7within array, 10categorical organisation, 13conceptual knowledge base, 13function, 12gradient, 13refractoriness, 8response accuracy, 11

Semantic representationactivation, 168nouns and verbs, 205–14semantic memory, 352

Semantic satiationrelatedness, 91–6repetition, 91–6

Semantic segregation, 197Semantic similarity, 11, 13

abstract and concrete words, 20Semantic space, 9Semantic system

analogous dissociations, 16diffuse damage

artefacts, 41Semantic tasksAoA, 118LPMT, 189

Semantic violation paradigmRussian-German bilinguals, 119

Senile dementiatarget’s resemblance to humans, 260

SensitivityRT, 160

Sensorimotor cognitive systemsobjects, 332

Sensory association cortex, 259Sensory deprivationneural systems, 191

Sensory experienceaction-selective LPMT, 191

Sensory features, 293Sensory/functional theory (SFT), 39, 42, 84implementation, 40nouns and verbs, 205–6semantic knowledge, 206visual-perceptual properties, 41

Sensory inputsconvergence, 291

Sensory-motor channels, 48semantic categories, 48

Sensory-motor image codes, 150Sensory-motor mechanismsman-made objects, 46objections, 48–51

Sensory-motor model, 183, 248, 260, 282conceptual representation, 160object, 304semantic knowledge, 51of semantic knowledge, 34, 36–7, 45, 50

Sensory-Motor-Property Model for RepresentingDomain-Specific Information, 303

Sensory-motor regions, 183, 184Sentencebilingual semantic access in, 113–16completion tasksverbs, 211comprehensionconcreteness, context, modularity, 85–91ending positivity, 95

Sentencesvs. single wordERP, 114NW00, 114

Sequentially organized modules, 97Serial position curvesrefractory access patient, 6

Serial position effectsdegenerative conditions, 6

SFT. See Sensory/functional theory (SFT)Shared semantic memory, 107–9Short stimulus onset asynchronies (SOA), 234, 235automatic semantic priming, 109basal ganglia, 237dominant meaning, 237priming paradigms, 237

377 Index

www.cambridge.org© Cambridge University Press

Cambridge University Press978-0-521-84870-1 - Neural Basis of Semantic MemoryEdited by John Hart and Michael A. KrautIndexMore information

Page 18: Marketing Fragment 6 x 10.5 - Cambridge University Pressassets.cambridge.org/97805218/48701/index/9780521848701_index.pdf · Body movements parietal region, 212 prefrontal cortex,

Signal changesmotor system, 338premotor region, 336pulvinar exhibit, 350semantic categorical or featural properties, 341word pairs, 336, 337

Signal-to-noise ratio, 230Similarity difference scores

concrete and abstract words, 162word triads, 162

Simple motion trajectoriestools, 312

Single wordvs. sentencesERP, 114N200, 114

SOA. See Short stimulus onset asynchronies (SOA)Social and affective processes

amygdala, 321ventromedial prefrontal cortex, 321

Social interactions, 321SORT. See Semantic Object Recall from Features

input Task (SORT)Sound stimuli

animal category, 340Sparse imaging scanning, 167Spatial and action functions

dorsal stream of visual processing, 46Spatial distinctiveness, 75Spatially distributed brain activity

electrical evidence, 352Spatial representation

temporal lobe, 335Speech production

neural systems, 210Spoken word

picture matching, 9, 11written word matching task, 9English cities, 15geographical knowledge, 14

Stem and Word factors, 89, 91Stem-concreteness

topographies, 87Stem X Word interactions, 89, 90STG, 290Stimuli

category, 288characteristic dimensions, 184cognitive operation, 186features, 286frequency, 6LPMT, 191mapping cortical areasobject naming, 117neural processing substrates, 335perception, 186premotor cortex, 191samples, 253selectioncategory-specific semantic disorders for living

entities, 38semantic content, 184

semantic memory, 352typesemantic process, 342–8verb generation, 345

Storage deficitsvs. access deficits, 3, 4physiological account, 22vs. refractory accessresponse consistency, 6semantic information neurons, 21

Striatal neurons, 229Stroke

lateral projections, 344middle cerebral artery, 11transient deficits, 210

Structural design, 72Structured Clinical Interview for DSM-IV Axis I

Disorders, 139STS. See Superior temporal sulcus (STS)Subcortical motor system

word-word feature binding task, 348Substantia nigra pars compacta

dopaminergic projections, 222Subtraction

functional magnetic resonance imaging (fMRI),66

positron emission tomography (PET), 66pure insertion, 66

Sulcusincreasing task difficulty, 165

Superior temporal sulcus (STS), 187, 283, 290animals, 311FTD, 136motion, 312object-associated motion, 312static vs. moving images, 312

Suppression-enhancement-suppression cycleword generation, 231

Synaptic depression, 21semantic refractory access, 21

Synchronizing rhythmsmediating processing, 346

Synchronous co-activationthalamus, 353

Synonym Judgment Task, 137Syntactic level

agrammatismverb retrieval, 35

Syntactic processingAoA, 117

Systematic reviewcategory-specific semantic disorders for living

beings and artefacts, 43

Task difficultyvs. imageability, 165

Tasksblock format, 225category, 186demands, 185brain activation, 116concrete and abstract conditions, 156

378 Index

www.cambridge.org© Cambridge University Press

Cambridge University Press978-0-521-84870-1 - Neural Basis of Semantic MemoryEdited by John Hart and Michael A. KrautIndexMore information

Page 19: Marketing Fragment 6 x 10.5 - Cambridge University Pressassets.cambridge.org/97805218/48701/index/9780521848701_index.pdf · Body movements parietal region, 212 prefrontal cortex,

difficultycingulate gyrus, 165IFG, 165insula, 165midbrain reticular activating system, 165premotor cortex, 165semantic decision task, 164sulcus, 165generalizationarchitecture, 68instructions, 168manipulations, 185action vs. non-action features, 185performanceactivation studies, 331ERP, 331fMRI, 331PET, 331temporal foci, 165

Temporal cortexobjects, 304top-down vs. bottom-up processes, 321

Temporal delay, 340Temporal factors, 22

access cases vs. degenerative cases, 5Temporal foci

tasks, 165Temporal gyrus, 282

electrical interference, 345semantic decision study, 170tools, 334

Temporal lobes, 289activation, 343animals, 44basic-level naming, 290category-specific disorders for animals and

plant-life, 43color word generation, 308concrete and abstract words, 160fruits and vegetables, 44functions, 45semantic dementia (SD), 50semantic impairment for living things, 43spatial representation, 335

Temporal phenomena, 233Temporal pole, 46

abstract words, 163Temporal sulcus

motion-related information, 311Temporal summation requirement, 69Temporo-parietal-occipital (TPO) junction

activation, 343Test endorsements, 257Thalamocortical and corticothalamic connections,

348Thalamus

feature binding, 348increasing task difficulty, 165object recall, 348signal change, 349synchronous co-activation, 353word-word feature binding task, 348

Thesaurusconceptual knowledge, 3

Thought, Language and Communication Scale(TLC), 134

Thought Disorder Index, 139TLC. See Thought, Language and Communication

Scale (TLC)TMS. See Transcranial magnetic stimulation

(TMS)Tool picturesanimal pictures, 185binocular rivalry, 192fusiform gyrus, 316

Toolsand action processing, 285functional imaging, 196neural mechanisms, 197–8vs. animalsPET, 310and animal-selective activations, 195category and action retrievalLPMT, 193category-specific deficit, 302distributed representation, 309–11fusiform gyrus, 313grasping objects premotor and intraparietal

regions, 314group averaged hemodynamic responses, 313vs. human figureslateral temporal cortex, 314vs. human motionMTG, 312MTG, 311, 313nouns, 284object nameclusters of activity, 283representations, 84selective activationsdorso-ventral dissociation, 194selective responses, 192–4selectivity, 195display, 195modality, 195perceptual priming, 195semantic content, 196visuo-motor action system, 192–4semantic information, 338semantic memory, 333simple motion trajectories, 312temporal gyrus, 334wordsanimal words, 185

TopographiesERP, 73final-word concreteness main effects, 87scalp potentials, 70stem-concreteness, 87Word X Stem interaction effect, 89

TPO. See Temporo-parietal-occipital (TPO)junction

Training pairs, 252Training trial displays, 254

379 Index

www.cambridge.org© Cambridge University Press

Cambridge University Press978-0-521-84870-1 - Neural Basis of Semantic MemoryEdited by John Hart and Michael A. KrautIndexMore information

Page 20: Marketing Fragment 6 x 10.5 - Cambridge University Pressassets.cambridge.org/97805218/48701/index/9780521848701_index.pdf · Body movements parietal region, 212 prefrontal cortex,

Transcranial magnetic stimulation (TMS), 194,213

Transient deficitsstroke, 210

Tripartite dimensional structure, 280T1-weighted scan

collateral sulcus, 292lateral occipitotemporal sulcus (LOTS), 292

Unintegrated multimodal network, 31Unitary abstract model, 31

parsimony principle, 31Unitary distributed conceptual system, 183Up state, 228Upstream input systems, 82

Vegetables. See Fruits and vegetablesVentral activation

visual properties, 161Ventral-medial temporal cortex, 169Ventral occipitotemporal cortex, 286Ventral premotor cortex, 187

manipulationnaming animals, 316naming tools, 316object, 306objects, 304

Ventral temporal cortexcolor imagery, 308concrete vs. abstract words, 161object color, 307word imageability, 161

Ventral visual pathwayactivation, 161

Ventrolateral occipito-temporal cortexobjects, 214

Ventrolateral prefrontal cortex (VLPFC)hypoperfusion, 136social and affective processes, 321

Verbal-visual and visual-visual matchingperformance

semantic refractory access deficit, 17Verbs, 284. See also Nouns and verbs

associative networksabstract concepts, 171leftward lateralization, 171category-specific deficit, 35cognitive defect, 35conceptual system, 165frontal lobe, 37lateral temporal cortex, 306minimal syntactic frame, 211motion vs. cognition, 37namingselective deficits, 211vs. nouns, 206picture naming, 211production, 207production deficitsprefrontal cortex lesions, 208production difficultiesdissociation, 207

repetition, 211sentence completion tasks, 211stimulation studies, 345

Visual complexity, 11Visual cortex

pulvinar connect, 350Visual experience

action type, 189–90Visual features, 149

fruits and vegetables, 47living things, 47nouns and verbs, 208–11

Visual imageryoccipitotemporal cortex, 316

Visual informationvs. functional information, 39

Visual lexical decision taskfMRI, 158response time, 159

Visual living stimuli, 281Visually-based semantic knowledge, 344Visual nonsemantic judgment, 118Visual object images

conceptual processing, 318fusiform gyrus, 317

Visual object representation, 45Visual-perceptual knowledge

lexical decision task, 164Visual-perceptual properties, 48

sensory-functional theory, 41Visual properties

living categories identification, 39ventral activation, 161

Visual/sensorimotor theory (VST), 209, 212modality-specific deficits, 209primary progressive aphasia

Visual similarity, 286Visual systems

data acquisition, 333Visual-visual condition, 17Visual-visual matching tests, 16Visuo-motor system, 187

action semantics, 186–8activation, 197tool-selectivity, 192–4

Visuo-verbal disconnection, 34, 47category-specific naming disorders, 46–8naming abilities, 46

VLPFC. See Ventrolateral prefrontal cortex(VLPFC)

V5/MT, 198VST. See Visual/sensorimotor theory (VST)

Weak interactionscalp topographies, 81

Weinreich, Uriel, 105Wernicke sites, 89White matter tracts

body movements, 212Whole body movements

vs. hand manipulations, 189perceptual level

380 Index

www.cambridge.org© Cambridge University Press

Cambridge University Press978-0-521-84870-1 - Neural Basis of Semantic MemoryEdited by John Hart and Michael A. KrautIndexMore information

Page 21: Marketing Fragment 6 x 10.5 - Cambridge University Pressassets.cambridge.org/97805218/48701/index/9780521848701_index.pdf · Body movements parietal region, 212 prefrontal cortex,

Whole objects, 286Whole-word phonological representations

lexicon, 166Women

living things, 44Word and stem, 89, 90

electrode site, 88Word and Stem interaction effects

topography, 89Word-class effects

processing, 108Word factor, 90Word form level, 110Word generation

basal ganglia, 228fMRI, 225frontal activity, 227hemisphere, 227lexical item retrieval basal ganglia, 225–7lexical level of processing, 233–4pre-SMA basal ganglia circuit, 226pre-SMA region, 350suppression-enhancement-suppression cycle,

231Word imageability

conceptual processes, 150fusiform gyrus, 164mid-fusiform gyrus, 161semantic access, 149–72methods, 157, 162, 167results, 157–9, 162–3, 167semantic decision task, 164ventral temporal lobe, 161

Word levelsemantic decision task, 119

Word-like nonwords, 156Word naming

cortical distribution, 212

imageability, 166–8semantic access, 166semantic information, 167

Word-nonword contrasts, 159Word pairsobjects, 317signal changes, 336, 337

Word-picture matching, 4, 9, 275living things, 277picture stimulus arrays, 12probes, 10refractory access disorders, 5refractory access patient, 8

WordsfMRI, 155number produced, 136orthographic and phonological characteristics,

156production data, 110written and oral forms, 209

Word triadsSD scores, 162

Word-word feature binding taskcortical motor system, 348subcortical motor system, 348thalamus, 348

Word X Anteior-Posterior interaction, 88Word X Stem interaction effectstopography, 89

Word X stem interaction effectselectrode site, 88

Written verb production, 209

X Anterior-Posterior yield, 90X Electrode-Site interaction, 87X Hemisphere X Anterior-Posterioranalysis, 93test, 88

381 Index

www.cambridge.org© Cambridge University Press

Cambridge University Press978-0-521-84870-1 - Neural Basis of Semantic MemoryEdited by John Hart and Michael A. KrautIndexMore information