manuscript version: author’s accepted...

27
warwick.ac.uk/lib-publications Manuscript version: Author’s Accepted Manuscript The version presented in WRAP is the author’s accepted manuscript and may differ from the published version or Version of Record. Persistent WRAP URL: http://wrap.warwick.ac.uk/108042 How to cite: Please refer to published version for the most recent bibliographic citation information. If a published version is known of, the repository item page linked to above, will contain details on accessing it. Copyright and reuse: The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions. Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available. Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. Publisher’s statement: Please refer to the repository item page, publisher’s statement section, for further information. For more information, please contact the WRAP Team at: [email protected].

Upload: others

Post on 01-Jun-2020

11 views

Category:

Documents


0 download

TRANSCRIPT

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript The version presented in WRAP is the author’s accepted manuscript and may differ from the published version or Version of Record. Persistent WRAP URL: http://wrap.warwick.ac.uk/108042 How to cite: Please refer to published version for the most recent bibliographic citation information. If a published version is known of, the repository item page linked to above, will contain details on accessing it. Copyright and reuse: The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions. Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available. Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. Publisher’s statement: Please refer to the repository item page, publisher’s statement section, for further information. For more information, please contact the WRAP Team at: [email protected].

MNRAS 000, 1–13 (2017) Preprint 4 September 2018 Compiled using MNRAS LATEX style file v3.0

A survey for variable young stars with small telescopes: First resultsfrom HOYS-CAPS

D. Froebrich1?, J. Campbell-White1, A. Scholz2, J. Eislöffel3, T. Zegmott1†,S.J. Billington1†, J. Donohoe1†, S.V. Makin1†, R. Hibbert1†, R.J. Newport4†,R. Pickard5‡, N. Quinn5‡, T. Rodda5‡, G. Piehler6‡, M. Shelley7‡, S. Parkinson5‡,K. Wiersema8,9‡, I. Walton5,10‡1 Centre for Astrophysics and Planetary Science, School of Physical Sciences, University of Kent, Canterbury, CT2 7NH, UK2 SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS, UK3 Thüringer Landessternwarte, Sternwarte 5, 07778 Tautenburg, Germany4 Functional Materials Group, School of Physical Sciences, University of Kent, Canterbury, CT2 7NH, UK5 The British Astronomical Association, Variable Star Section, Burlington House Piccadilly, London W1J 0DU, UK6 Selztal Observatory, D-55278 Friesenheim, Bechtolsheimer Weg 26, Germany7 Ashford Astronomical Society, Woodchurch Memorial Hall, Woodchurch, TN26 3QB, UK8 Department of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH, UK9 Department of Physics, University of Warwick, Coventry, CV4 7AL, UK10 Cranbrook and District Science and Astronomy Society, Cranbrook School, Waterloo Road, Cranbrook, TN17 3JD, UK

Received sooner; accepted later

ABSTRACT

Variability in Young Stellar Objects (YSOs) is one of their primary characteristics. Long-term, multi-filter, high-cadence monitoring of large YSO samples is the key to understand thepartly unusual light-curves that many of these objects show. Here we introduce and presentthe first results of the HOYS-CAPS citizen science project which aims to perform such mon-itoring for nearby (d< 1 kpc) and young (age< 10 Myr) clusters and star forming regions,visible from the northern hemisphere, with small telescopes. We have identified and charac-terised 466 variable (413 confirmed young) stars in 8 young, nearby clusters. All sources varyby at least 0.2 mag in V, have been observed at least 15 times in V, R and I in the same nightover a period of about 2 yrs and have a Stetson index of larger than 1. This is one of the largestsamples of variable YSOs observed over such a time-span and cadence in multiple filters.About two thirds of our sample are classical T-Tauri stars, while the rest are objects with de-pleted or transition disks. Objects characterised as bursters show by far the highest variability.Dippers and objects whose variability is dominated by occultations from normal interstellardust or dust with larger grains (or opaque material) have smaller amplitudes. We have estab-lished a hierarchical clustering algorithm based on the light-curve properties which allows theidentification of the YSOs with the most unusual behaviour, and to group sources with similarproperties. We discuss in detail the light-curves of the unusual objects V2492 Cyg, V350 Cepand 2MASS J21383981+5708470.

Key words: stars: formation, pre-main-sequence; stars: variables: general, T-Tauri, HerbigAe/Be;

? E-mail: [email protected]† Observer Beacon Observatory‡ HOYS-CAPS Observer

1 INTRODUCTION

Time-domain observations of star forming regions are a reliablesource of information about the formation and early evolution ofstars. Historically, young stars were first discovered based on theirirregular and large-amplitude optical variability (Joy 1945). Start-ing in the late 1980s, the prevalent rotational flux modulation ob-

c© 2017 The Authors

2 Froebrich et al.

served in young stars has been used to measure thousands of ro-tation periods ranging from hours to weeks, a great foundationfor studies of angular momentum evolution during the protostellarstages and beyond (see Protostars and Planets reviews by Herbstet al. (2007), Bouvier et al. (2014)). In addition to rotation, opticalfluxes of young stars are affected by variable excess emission fromaccretion shocks, variable emission from the inner disk, and vari-able extinction along the line of sight (Carpenter et al. 2001), andcan therefore give insights into the structure and evolution of theenvironment of young stellar objects (YSOs).

While the interplay of these variability causes can lead tovery complicated light-curves and render the interpretation diffi-cult, several prototypical phenomena have been successfully at-tributed to a physical cause. AA Tau is now the prototype for a cat-egory of ’dippers’, a contingent of young stars temporarily eclipsedby portions of the inner disks which are warped by the star’s mag-netic field (Bouvier et al. 2014; McGinnis et al. 2015). FU Ori andEX Lupi are prototypes for stars which experience sharp increasesin their mass accretion rates (Audard et al. 2014), a phenomenonthat is now known to occur on a wide range of timescales (Stauf-fer et al. 2016), including objects with continuous accretion ratechanges and consequently stochastic light-curves (Stauffer et al.2014, 2016). While the detailed physics behind the variety of ac-cretion bursts is still under debate, the episodic and unstable natureof accretion is now established as a primary characteristic of theearly stellar evolution. Many variable young stars still defy classifi-cation and are complicated to understand (e.g., the recent dimmingsof RW Aur, see Bozhinova et al. (2016)).

The ’gold standard’ for optical studies of YSO variability arespace-based observing campaigns with COROT and Kepler/K2.The combined COROT/Spitzer monitoring of NGC2264 is un-precedented in cadence, multi-wavelength coverage, and photomet-ric precision. Complemented by ground-based observations, it hasled to a new comprehensive overview about the phenomenology ofyoung variable stars and the underlying causes (Cody et al. 2014).Kepler/K2 has observed large numbers of young stars continuouslyover campaigns of 70 d; its archive is a treasure trove for detailedstudies of rotation periods, dippers, bursters, and related phenom-ena (Ansdell et al. 2016).

So far, these studies have been mostly limited to individualregions, to baselines of weeks to months, or to one optical band.While the astrometry mission Gaia will add time-domain informa-tion over 5 yr for thousands of young stars, it will only providesparse cadence. The same is true for the LSST coverage. Thereis a definite need for long-term monitoring, quasi-simultaneous inmultiple bands, similar to the pioneering studies by Grankin et al.(2007), but extending to a large and unbiased sample of young stars,to capture the full range of YSO variability and to put the knownphenomena in context. This can be done from the ground and withmodestly sized telescopes.

This is the goal of the HOYS-CAPS1 project, presented forthe first time in this paper. Primarily we publish a large catalogof variable young stars in regions across the northern hemisphere,including many clusters previously unstudied on long timescales.For all variable stars, we derive a range of metrics that are usedto classify the stars and to provide clues about the origin of thevariability. So far, the survey covers baselines up to 2 years. Thisproject will continue to extend the time window and will provide afoundation for detailed studies of specific phenomena.

1 http://astro.kent.ac.uk/∼df/hoyscaps/index.html

This paper is organised as follows. In Sect. 2 we introduce theHOYS-CAPS project and present details of the utilised observato-ries and data calibration. Section 3 presents the selection of youngclusters and YSOs and discusses the data analysis procedures ap-plied to their light-curves. Finally, in Sect. 4 we discuss the resultsof our analysis.

2 DATA

2.1 The HOYS-CAPS Project

HOYS-CAPS stands for Hunting Outbursting Young Stars with theCentre of Astrophysics and Planetary Science. This citizen scienceproject has been run by the University of Kent since October 2014.It currently involves amateur astronomers from the UK, as well asfrom Europe. It is also supported by additional professional obser-vatories (see Sect. 2.3 for observatory details). The participants takeimages of objects on our target list, perform a basic data reduction(dark/bias and flat-field correction) and submit these reduced im-ages for inclusion into our database via our web-interface2.

The aim of HOYS-CAPS is the long term, multi-filter opticalphotometric monitoring of young (age less than 10 Myr), nearby(distances typically within 1 kpc) star clusters or star forming re-gions visible from the northern hemisphere with small telescopes.There are no restrictions given to the participants in terms of ob-serving cadence, target priority, field of view, integration times orfilter selection.

At the time of writing, the HOYS-CAPS target list contains 17young clusters/regions as well as several additional targets selectedfrom the Gaia Photometric Alerts3, some of which are within theHOYS-CAPS target regions. In total almost 3200 images have beentaken for the project, with a total of almost 970 hrs of observingtime. About 80 % of the HOYS-CAPS images (corresponding to90 % of the observing time) have been obtained with the BeaconObservatory.

2.2 The Beacon Observatory

The majority of the data presented in this paper has been taken bypost-graduate student observers at the University of Kent’s BeaconObservatory. The Beacon Observatory consists of a 17′′ PlanewaveCorrected Dall-Kirkham (CDK) Astrograph telescope situated atthe University of Kent (51.296633◦ North, 1.053267◦ East, 69 melevation). The telescope is equipped with a 4k× 4k Peltier-cooledCCD camera and a B, V, R, I, Hα filter set. The pixel scale ofthe detector is 0.956′′, giving the camera a field of view of about1◦× 1◦. Due to the optical system of the telescope the corners ofthe detector are heavily vignetted. Hence the usable field of view ofthe detector is a circular area with a diameter of approximately 1◦.

The observatory has, despite its location, a good record forobservations. Over the first two years of operations an average of10 nights per month were used for science observations, with anaverage of 50 hrs per month usable, i.e. just above 50 % of the timeis used in each night with clear skies. The typical seeing in theimages is about 3′′ – 4′′.

Images taken by the observatory for the HOYS-CAPS projectare typically taken in the following sequence: 120 s integrations are

2 http://astro.kent.ac.uk/HOYS-CAPS/3 http://gsaweb.ast.cam.ac.uk/alerts/alertsindex

MNRAS 000, 1–13 (2017)

HOYS-CAPS 3

done in V, R, and I and this sequence is repeated 8 times. Includ-ing filter changes and CCD readout, this sequence takes one hour.All individual images are dark and bias subtracted and flat-fieldedusing sky-flats. All images taken of a particular target during a se-quence are median averaged using the Montage software package4.

2.3 Details on additional Observatories used

Here we give a brief description of the other observatories and tele-scopes used to obtain data for the HOYS-CAPS project.

Selztal-Observatory: The observatory is located in Friesen-heim, approximately 20 km South of Mainz in Germany. The tele-scope is a 20′′ Newton, with f = 2030 mm and an ASA correctorand an ASA DDM 85 Pro mount. The CCD used is a STL 11000Mwith anti-blooming gate and a set of RGB filters is available. Twi-light flats are taken to correct for variations in pixel sensitivity andimage processing is performed with the Maxim DL software. Typi-cal exposure times are 120 – 300 s and observations are guided withan accuracy of less than one pixel and seeing of about 3′′. Due tosurrounding street lights, there are some gradients left in the im-ages not corrected for by the flat- field, but they do not influencethe photometry.

Ponteland Observatory: The observatory is based in Pon-teland (about 10 km North-West of Newcastle upon Tyne, UK) at55.0525◦ North, 1.73889◦ West. The telescope used is a 235 mmSCT (f/6.3) with an Atik460 mono camera and Bessel B, V, R, I, Cfilters. This provided a plate scale of approx 0.63′′/pixel and a fieldof view of 29′× 23′. Typical seeing in the images is around 3′′ andexposures times range from 30 s to 120 s depending on target andfilter.

Steyning Observatory: The observatory is situated in Steyn-ing, West Sussex, UK. The telescope is an 8′′(200 mm) RitcheyChretien (f/8.0) operating at a focal length of 1600 mm with aSanta Barbara Instrument Group (SBIG) STF-8300M mono cam-era, and a ’green’ filter from a tri-colour imaging set made by As-tronomik. Using 2 x 2 binned pixels, this provides a plate scale ofabout 1.4′′/pixel with a field of view of 39′× 29′. Integration timesfor the images range from 60 s to 240 s. Image calibration (darks,flat-fields and stacking) is carried out with the AstroArt software.

Piers Sellers Observatory: The observatory is run by theCranbrook and District Science and Astronomy Society (CAD-SAS) situated in Cranbrook in Kent – about 20 km East of RoyalTunbridge Wells. The telescope is the 0.57 m ’Alan Young’ f/4.7Newtonian reflector which uses a ZWO ASI 174 MM (mono-cooled) camera at prime focus. Typically images are taken as10× 10 s integrations and are co-added. Calibration is performedusing the Deep Sky Stacker5 or AIP4WIN software (Berry & Bur-nell 2005).

Astcote Observatory: The observatory is situated about15 km South-West of Northampton. The telescope is a C9.25′′

(f/6.3) with a Starlight Xpress MX916 CCD and EQ6 mount. Typ-ically images are taken with a V-Band filter with 35 s integrationtime. Basic calibrations with darks and sky flats are performed us-ing the AIP4Win image processing software.

High Halden Observatory: This observatory situated 15 kmSouth-West of Ashford, Kent. The telescope is a Takahashi Ep-silon 180ED 8′′ (f/2.8) hyperbolic Newtonian. The camera usedis a Canon 350D digital single-lens reflex camera (DSLR) with all

4 http://montage.ipac.caltech.edu/5 http://deepskystacker.free.fr/english/index.html

internal filters removed and a Baader IR/UV cut filter is used inconjunction. Integration times for the images range from 80 minto 180 min in 5 min sub-exposures. Image calibration (flats, darks,bias and stacking) is performed with Christian Buil’s IRIS soft-ware.

Shobdon Observatory: The observatory is situated in Here-fordshire about 8 km from the UK/Wales Border. It houses a MeadeLX200 35 cm SCT (f/7.7) operating at a focal length of 2500 mmwith a Starlight XPress SXV-H9 CCD and a set of Johnson-CousinsB, V, R and I filters. Integration times are typically 60 s and darksand flats are applied using AIP4WIN software.

University of Leicester Observatory: The University of Le-icester runs a 0.5 m telescope (the University of Leicester 50cm,or UL50). This is a 20′′ Planewave CDK telescope with a SBIGST2000XM camera. It is equipped with a Johnson-Cousins B, V, R,I filter-set. Data were reduced using dark, bias and flat-frames takenthe same night as science observations, using an IRAF pipeline.

Thuringian State Observatory: The Thüringer Landesstern-warte is operating its Alfred-Jensch 2-m telescope6 near Taut-enburg (50.980111◦ North, 11.711167◦ East, 341 m elevation).For HOYS-CAPS the telescope is used in its Schmidt configura-tion (clear aperture 1.34 m, mirror diameter 2.00 m, focal length4.00 m). It is equipped with a 2k× 2k liquid nitrogen-cooled CCDcamera and with a B, V, R, I, Hα filter set. The employed SITe CCDhas 24µm× 24µm pixels, leading to a field of view of 42′× 42′.Single exposures of 20 to 120 s integration time – depending onthe filter – are obtained, and several consecutive frames may be co-added. Dark frames and dome-flats are used for image calibration.

LCO telescopes: In addition, some of the amateur as-tronomers used access to the range of telescopes from the LasCumbres Observatory (LCO). LCO provides a range of 2 m, 1 mand 0.4 m telescopes located at various sites around the Earth to al-low complete longitudinal coverage. The two 2 m telescopes are theFaulkes telescopes built by Telescope Technologies Ltd. which aref/10 Ritchey-Cretien optical systems. The 1 m telescopes are alsoRitchey-Cretien systems with f/7.95, while the 0.4 m telescopes areMeade 16′′ RCX telescopes. Data included in this work has beentaken on Haleakala Observatory (0.4 m, 2 m), Siding Spring Obser-vatory (0.4 m, 1 m) and Tenerife (0.4 m). All data from LCO arereturned reduced with dark and flat-field corrections applied. Inte-gration times are typically 60 s but depend on the target and tele-scope size.

2.4 General data calibration

The astrometric solutions for all images obtained for the HOYS-CAPS project are determined using the astrometry.net soft-ware (Hogg et al. 2008). Photometry for all images is performedusing the Source Extractor (Bertin & Arnouts 1996).

As indicated above, the data included in the analysis for thispaper comes mostly from the Beacon Observatory but is supportedby a variety of other telescopes. Hence, a mix of CCD camerasand DSLRs was used to capture these supporting images. All dataincluded in the analysis of this paper has either been taken in astandard Johnson or Cousins optical or I-band filter or as part of atri-colour RGB filter from a DSLR.

All photometry obtained from each image has been calibratedrelative to one of the Beacon Observatory datasets. Hence, for each

6 http://www.tls-tautenburg.de/TLS/index.php?id=25&L=1

MNRAS 000, 1–13 (2017)

4 Froebrich et al.

target (see Sect. 3.1) and filter (VRI) we identified a deep imagetaken under photometric conditions as instrumental magnitude ref-erence frame. All other magnitudes from all other images havebeen calibrated relative to these references. This has been done bymatching all stars in the images to the respective reference frame.Only stars detected with a flag of ’0’ from the Source Extractor (seeBertin & Arnouts (1996) for details), indicating no problems withthe photometry, have been used to obtain the calibration equation.To convert the instrumental magnitudes (mi) of each image intothe calibrated instrumental magnitudes (m) of the reference framethe following steps are performed: i) For all stars determine themagnitude difference (∆m = mi −mr) between the instrumentalmagnitudes and the magnitudes in the reference frame (mr) andplot against mi (see top panel in Fig. 1); ii) Using a least-squareoptimization find the best fitting eight parameters for the functionf(mi) that minimize mr − f(mi). Equation 1 shows the parame-terisation of f(mi), where P4(mi) denotes a 4th order polynomialand the other term is a photocurve function proposed by Bacheret al. (2005) and Moffat (1969); iii) Determine the calibrated mag-nitudes for all stars using m = f(mi); iv) Plot the differencem −mr against the calibrated magnitudes to check if the calibra-tion has been successful (see bottom panel in Fig. 1).

f(mi) = A · log(

10B·(mi−C) + 1

)+ P4(mi) (1)

Typically the calibration has an accuracy of a few percent forstars brighter than 14th or 15th magnitude, which rises to 0.2 magfor the faintest detected stars. See Fig. 1 for an example of howthe calibration works for data from IC 348 taken in a green (TG)filter at the Seltztal-Observatory when calibrated into the V-Bandreference data. When the calibration has not resulted in these typ-ical uncertainties (less than 0.2 mag scatter for the faintest objectsand less than 0.05 mag for the brighter stars), the images have beenremoved from the analysis in this paper. The reasons for these ex-clusions are usually strongly non-photometric observing conditionswhich alter the observed colour of stars or the use of filters whichare too different for an accurate calibration without the inclusion ofcolour terms.

The absence of colour terms in the calibration will not influ-ence the results obtained in this work. As indicated in Sect. 2.1,the vast majority of data has been taken with a single instrument -the Beacon Observatory. All images with a large scatter in the cali-bration where removed from the analysis. For the investigation weonly select stars with more than 0.2 mag variability (see Sect. 3.1).To further ensure that no variability in the sources is induced bycolour effects, all parameters determined for individual sources inthe paper are based on observations in the standard V, R and I-Bandfilters only. We demonstrate in Fig. 2 that there are no significantsystematic trends of the calibrated instrumental V-band magnitudesand V-I colours between different telescope and filter combinations.

3 DATA ANALYSIS

3.1 Selection of Young Clusters and their variable YSOs

For the analysis presented in this paper we selected the eight clus-ters/regions from the HOYS-CAPS target list which had the mostobservations available as of May 2017. These are: NGC 7129,IC 5070, NGC 2264, IC 1396 A, IC 348, NGC 1333, IC 5146 and

Figure 1. Example of the calibration of an image of IC 348 in a green (TG)filter into the V filter. Top panel: Difference (mi−mr) of the instrumentalmagnitudes between the TG image and the V-Band reference dataset. Theblue line indicates the running median of the data-points and the two verti-cal lines indicate the range of instrumental magnitudes considered. Bottompanel: Difference (m − mr) between the calibrated TG data and the V-Band reference frame. The larger (red) dots indicate stars with no problemsin the photometry, while the remaining stars are shown as smaller (black)dots. The dotted (green) data points indicate the one sigma scatter for starswithin 0.5 mag and the two vertical lines the range of magnitudes in whichstars are included in the calibration.

NGC 2244. We present the basic data for these clusters (positions,distances, ages, number variable stars selected etc.) in Table 1.

In this paper we aim to generally characterise all variableYSOs in the above selected eight clusters. To achieve this wefirst cross-matched the optical photometry catalogues for our ob-served fields with catalogues of known and suspected members foreach of the regions. In particular we used the following lists: Luh-man et al. (2016) for NGC 1333 and IC 348; Dahm & Hillenbrand(2015) and Stelzer & Scholz (2009) for NGC 7129; Sicilia-Aguilaret al. (2005) for IC 1396 A; Dahm & Simon (2005) and Cody et al.(2014) for NGC 2264; Balog et al. (2007) for NGC 2244; Rebullet al. (2011) for IC 5070; and Harvey et al. (2008) for IC 5146.These catalogues are inhomogeneous in completeness, depth andselection criteria. In this work, they are only used to select variableyoung stars in these clusters which are detected in our optical data.

We then investigated the light-curves of all these YSO candi-date members in each region. As we are trying to analyse the sta-tistical behaviour of variable young stars, only objects which ful-filled the following criteria where selected for further analysis: i)There are more than 15 nights of data with photometry in V, R andI (or equivalent filter) taken in the same night; ii) The differencein magnitude between the brightest and faintest V-band measure-ment has to be larger than 0.2 mag (corresponding to about 5σ forthe brighter stars); iii) The Stetson index (Stetson 1996) has to be

MNRAS 000, 1–13 (2017)

HOYS-CAPS 5

0.5 1.0 1.5 2.0 2.5V1-I1 [mag]

0.4

0.2

0.0

0.2

0.4

V 1-V

2 [m

ag]

0.5 1.0 1.5 2.0 2.5V1-I1 [mag]

0.4

0.2

0.0

0.2

0.4

(V1-I

1)-(V

2-I2)

[mag

]

Figure 2. Differences of calibrated instrumental V-Band magnitudes and V-I colours for one of our targets. An index of 1 indicates data taken with the BeaconObservatory, while an index of 2 indicates data taken with the LCO. There are no significant and systematic trends of these differences with the V-I colour ofthe stars. Note that the V and I data for each telescope has been taken on the same night, but there is an observing time difference of several weeks betweenthe two datasets, thus the outlier data-points represent variable stars.

Table 1. Properties of star forming regions and clusters investigated in this work. In the Table we list the following: name; position in RA/DEC (J2000) asused in the HOYS-CAPS project; total number of potential YSOs detected in at least 15 images; number of variable stars selected (total number, number ofYSO candidates and number of other variable stars with high Stetson index); fraction of YSO candidates that are variable; fraction of variable objects thatare classified as CTTSs (fvarCTTS) or transition/depletion disk objects (fvarWTTS); distance in [pc]; age in [Myr]; The references for distances and ages for thedifferent regions are indicated in the name column and are from: (1) Sicilia-Aguilar et al. (2005); (2) Contreras et al. (2002); (3) Bally et al. (2008); (4)

Reipurth & Schneider (2008); (5) Guieu et al. (2009); (6) Harvey et al. (2008); (7) Scholz et al. (2013); (8) Román-Zúñiga & Lada (2008); (9) Dahm (2008);(10) Straižys et al. (2014). Typically the distance uncertainties are 10 – 20 %, but they are probably much higher for IC 5146.

Name RA DEC Ntot Nvar fYSOvar fvarCTTS fvarWTTS d age

(J2000) YSO tot YSO var [%] [%] [%] [pc] [Myr]IC 1396 A(1,2) 21 36 35 +57 30 36 68 56 42 14 62 34 66 900 1 – 5

IC 348(3) 03 44 34 +32 09 48 88 37 36 1 41 49 51 300 2 – 4IC 5070(4,5) 20 51 00 +44 22 00 152 107 105 2 69 87 13 600 3IC 5146(6) 21 53 29 +47 16 01 166 67 58 9 35 57 43 950 1 – 5

NGC 1333(7) 03 29 02 +31 20 54 30 19 17 2 57 74 26 300 1 – 3NGC2244(8) 06 31 55 +04 56 30 544 65 54 11 10 34 66 1400 – 1700 2 – 3NGC2264(9) 06 40 58 +09 53 42 124 79 73 6 59 67 33 760 1 – 5

NGC 7129(10) 21 42 56 +66 06 12 35 36 28 8 80 39 61 1150 3

larger than one. These criteria ensure that our sample is not signif-icantly contaminated by non-variable stars with large photometricerrors. The numbers of targets selected by our criteria in each re-gion are listed in Table 1. In each cluster/region we analysed someadditional objects which are not in one of the catalogues but ful-fill the above criteria for variability. Their numbers are indicatedseparately in Table 1.

3.2 Determination of light-curve properties

For each selected individual star we determined a number of light-curve properties from the available data. An example of some setsof light-curves can be found in Figs. 7, 8, and 9. These propertiesare the following:

• We fit a linear function (see Eq. 2) to the N data-points in theV-I vs. V colour-magnitude diagram to determine the slope (α) –indicated as green lines in the right hand side panels of Figs. 7, 8,and 9. This has been done by minimising the sum over all perpen-dicular distances of the data-points to the line of best fit (see Eq. 3)to ensure that for all extreme cases (colour independent magnitude

changes and magnitude independent colour changes), the correctslope is determined. We determine the rms value of all perpendic-ular distances to the line of best fit. We remove any outliers furtherthan three times the rms away from the line of best fit iteratively.These rms values are almost exclusively larger than the photomet-ric uncertainties of the individual data-points on both axes and thusonly real outliers, such as in the case of V 350 Cep (Fig. 8) are re-moved. To ensure the procedure has worked for all objects, wemanually inspected the graphs for all targets. For ease of presen-tation of the α-values, we have converted them into degrees as oth-erwise some of the slopes have very large numerical values. Notethat the photometric uncertainties of the data-points on both axesare correlated. This, however, has the effect of shifting data-pointsparallel to the α = 45◦ directions, and has thus no significant in-fluence on the determined values.

V = V0 + α(V − I) (2)

MNRAS 000, 1–13 (2017)

6 Froebrich et al.

010

2030

4050

Hei

ght

1 2 3 4 5 6 7

Figure 3. Resulting dendrogram of our hierarchical clustering analysis of the YSOs light-curves in our sample. The groups of YSOs identified are labeled atthe bottom. All outliers on the right hand side of the dendrogram are combined into group 7. The main Table A1 in the Appendix lists the group number foreach individual YSO.

N∑i=1

|V0(V − I) + α− V |√V 20 + 1

(3)

• After the calculation of the line of best fit and removal of out-lying data-points, we determine the scatter (rms) of the data-pointsin the V-I vs V colour-magnitude diagram perpendicular to the lineof best fit.• Following Cody et al. (2014) we determine the asym-

metry metric (M ) for the V-Band light-curve using M =(〈d10%〉 − dmed) /σd, where 〈d10%〉 is the mean of all magnitudesin the top and bottom ten percent of the V-Band light-curve, dmed

the median of all magnitudes and σd the overall rms of the V-Banddata-points from the mean.• Following Stetson (1996) we determine the Stetson index for

the V-Band light-curve.• We determine a cumulative distribution function (CDF) for the

V-Band magnitudes after subtracting the median magnitude fromeach data-point.

We then use a two-sided, two sample Kolmogorov-Smirnov(KS) test to compare the CDFs of all objects against each otherpairwise and record the KS statistics (DKS) and resulting p-value.This value indicates the probability that the two samples (V-BandCDFs) are drawn from the same parent distribution. Hence, largep-values indicate pairs of stars with very similar distribution of V-Band magnitudes and vice versa.

3.3 YSO near and mid-IR SEDs

We have cross matched the objects investigated here with the WISEAll-sky catalogue (Cutri & et al. 2013) and the 2MASS catalogue(Skrutskie et al. 2006). For some of our target regions there areSpitzer observations which are deeper than the WISE data. How-ever, they are not available for all fields to a homogeneous depth,which we have for our optical data. Since more than 90 % of ourobjects have a WISE match in all four filters, we do not include theSpitzer data in our analysis. The WISE data has been used to deter-

mine the slope of the spectral energy distribution (αSED) between3.4µm and 22µm. Following Majaess (2013) we use:

αSED = 0.36·(w1−w2)+0.58·(w2−w3)+0.41·(w3−w4)−2.90(4)

Traditionally, objects with positive slopes αSED are classifiedas protostars, while negative slopes between −2 and zero indicateclassical T-Tauri stars (CTTSs). Koenig & Leisawitz (2014) havepresented a colour selection scheme in WISE to differentiate Class Iprotostars and Class II CTTSs based not just on αSED but con-sidering all WISE colours (excluding the W4 magnitudes). Thereis no specific WISE colour selection for Weak-Line T-Tauri Stars(WTTS) as their colours overlap too much with normal stars as wellas other objects such as AGB stars.

3.4 Hierarchical clustering of YSO light-curve properties

We aim to identify objects with similar light-curve properties au-tomatically via a hierarchical clustering method. Here we brieflydescribe the methods involved. A more detailed discussion of themcan be found in Campbell-White et al. (2018, subm.).

As a first step we establish a dissimilarity matrix which con-tains the pairwise distances (d(i,j)) between each pair of YSOs (i,j)for each of the properties. From the KS-test we already have dKS

(i,j)

which is identical to the KS statistic DKS. We also determine thesedistances for each of the other properties, i.e. dα(i,j) = |αi − αj|for the slopes in the V-I vs V colour magnitude diagram; drms(i,j) =|rmsi − rmsj| for the scatter of the data-points from the line ofbest fit in the same diagram, and dM(i,j) = |Mi −Mj| for the asym-metry metric of the V-Band light-curves.

To account for the different ranges in these four parameters, allthe individual distances are normalised by the mean of all pairwisedistances for the respective parameter. The final pairwise dissimi-larity between two stars, considering all of the parameters is thencalculated as:

d(i,j) =

√√√√(dKS(i,j)

dKS

)2

+

(dα(i,j)

)2

+

(drms(i,j)

drms

)2

+

(dM(i,j)

dM

)2

(5)

MNRAS 000, 1–13 (2017)

HOYS-CAPS 7

An Euclidean distance matrix is then calculated from thed(i,j)-values (see Campbell-White et al. (2018, subm.) for details)and hierarchical clustering is performed on it to identify groupsof YSOs with similar properties. Note that we will use ’groups’throughout the paper when referring to these statistical associa-tions, rather than ’cluster/region’ which refers to the investigatedyoung clusters from which the YSOs are selected.

Groups are created from hierarchical clustering by consider-ing, in the first instance, the distance between pairs of objects. Pairswith the smallest distances are joined, forming the first groups. Re-cursive merging then takes place, where at each stage, new inter-group distances are determined. The manner in which this hap-pens depends on which hierarchical method is used. We have usedWard’s agglomerative method to form groups (Murtagh & Leg-endre 2014), which seeks to minimise the distance between thecentres of groups in Euclidean space, and has been shown to out-perform other hierarchical methods (Ferreira & Hitchcock 2009).Groups are iteratively formed until the final two groups merge. Thisprocess is represented by a dendrogram. Figure 3 shows all individ-ual YSOs along the bottom, and groups are seen as the horizontalmerges. The height on the dendrogram corresponds to the distanceat which a merge was made, for pairs of YSOs, this was the Eu-clidean distance we have described, for all higher level groups, theheight was taken from the value obtained with Ward’s method.

4 RESULTS AND DISCUSSION

4.1 Selection of variable YSOs

Our selection criteria for variable YSOs in the eight investigatedregions have identified 466 objects which are included in the anal-ysis in this paper. Of these, 413 (89 %) are included in one of thecatalogues of potential cluster members, the remaining 53 objects(11 %) are included solely due to their variability. Hence, the sam-ple of variables investigated will only contain a very small fractionof potentially non-YSO variables such as background giant stars. InTable 1 we detail the number of investigated variable stars in eachof the clusters, split by their mode of selection. This table can beused as a compendium of variable YSOs in future studies, togetherwith the main Table A1 in the Appendix where all individual starsand their properties are listed.

We estimate the fraction of variable stars (fYSOvar ) amongst the

detected YSOs. These fractions are also listed in Table 1. The meanfraction of variable stars is 52 % with a rms variation of 22 % be-tween the individual regions. The highest fraction of variables (with80 %) occurs in NGC 7129. In NGC 2244 the fraction is the lowestwith only 10 % of the detected stars classified as variable. Thesenumbers are only included here for completeness reasons, since (asindicated above) the strong variations in them are most likely a re-flection of the our selection method and biases than that they areintrinsic to the properties of the regions (such as the age). Variabil-ity is expected to decline with the age of the region, and our abilityto detect it will depend on the distance and extinction.

The colour-colour diagrams shown in Fig. 4 reveal that thereare two distinct groups of objects in our sample of variable YSOs.The left panel of Fig. 4 shows the W1-W2 vs H-K diagram. It indi-cates the typical colours of CTTS from Koenig & Leisawitz (2014)and a large number of objects fall in or near the CTTS region. Notethat protostars would be situated towards redder colours along bothaxes. A second group of objects with almost zero W1-W2 colouris also evident. The same two groups of objects can be identified

in the right panel of Fig. 4 which shows the W3-W4 vs W1-W2colour-colour diagram. One finds that the objects with low W1-W2 colours, falling below the marked box, show in part large W3-W4 values, thus indicating the presence of some cold disk material.These objects are thus most likely either transition disks with innergaps or depleted disks.

Thus, for the purpose of this paper we characterise all sourceswith W1-W2> 0.3 mag as CTTS and all other sources as transi-tion/depleted disks (referred to as WTTS, hereafter). Note that thiscriterion is only applicable as the vast majority of our sources areselected as known YSOs which are also variable, hence there is al-most no contamination of non-YSOs in the sample. The fractionof CTTSs amongst the variables has been listed as fvarCTTS in Ta-ble 1. The mean CTTS fraction in the full sample is 64 % (271 ob-jects). The highest value in an individual region (87 %) is found inIC 5070 and the lowest (34 %) in IC 1396 A and NGC 2244. Thereare no apparent trends between these fractions and the age of thecluster/region they are in.

4.2 YSO groups from the Hierarchical Clustering

The hierarchical clustering results are presented in the dendrogramin Fig. 3. Usually the dendrogram is cut at a specific, albeit arbi-trary, height to select groups of objects. We have chosen a value of10 as the height at which the cut is made. This results in 6 cleargroups (referred to as G hereafter) and some outliers. In Table A1we list for each individual YSO which group it belongs to. One wayof justifying the choice of the cut value is to read the dendrogramfrom the top down and to investigate if the identified groups shareany physical properties.

The first branch that separates from the majority of objectsis seen on the right hand side and contains 8 objects. These ob-jects have basically no common properties with all of the remainingsources and are hence placed in G 7 (labeled in Fig. 3 together withall the other groups). The next separation in the dendrogram splitsGs 1, 2, 3 from Gs 4, 5, 6. As will be discussed later and indicatedin Fig. 5, this splits the light-curves with dips from the light-curveswhich are symmetric or have outbursts.

The next split in the objects with dipper light-curve separatesG 1 from the rest. According to Fig. 5, G 1 contains the most ex-treme dippers. The final split into G 2 and G 3 separates the objectswith almost colour-independent dips (G 3) from the remaining dip-pers (G 2). Similarly, the first split of the burster light-curves sep-arates the most extreme bursters (G 4) from the rest, which is thensplit into less extreme burster and symmetric light-curves (Gs 6, 5).

4.3 α-values and M -values

In Fig. 5 we have plotted the positions of all variable objects (ex-cept the outliers in G 7) in the α –M plane of the parameter space.Objects from the different groups are indicated by different coloursand symbols. We also indicate the average values and rms of allobjects in each group. As one can see from this diagram and the dis-cussion above, the hierarchical clustering seems to have separatedthe groups most clearly in this part of the parameter space. Thereis only minimal overlap between the groups with the exception ofsome scattered objects in G 4. The groups are (with the exceptionof G 2), separated by the asymmetry parameter M . Furthermore,the parameter space is not filled homogeneously. There are almost

MNRAS 000, 1–13 (2017)

8 Froebrich et al.

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4W1-W2 [mag]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

H-K

[mag

]

0 1 2 3 4 5 6W3-W4 [mag]

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

W1-

W2

[mag

]Figure 4. NIR/MIR colour-colour diagrams of the variable objects investigated. Left: WISE W1-W2 vs H-K 2MASS colour-colour plot. The dashed blacklines enclose the region of CTTSs from Koenig & Leisawitz (2014). Class I protostars would be situated towards the top-right part of the diagram. Right:WISE W3-W4 vs W1-W2 diagram. The dashed black lines enclose the region for transition disks from Koenig & Leisawitz (2014). The two distinct groupsof sources, separated by W1-W2 = 0.3 mag, can be clearly seen in both panels. The colours and symbols indicate membership in each of the groups identifiedwith the hierarchical clustering: G 1 – black circles; G 2 – dark blue squares; G 3 – light blue triangles up; G 4 – green triangles down; G 5 – brown stars; G 6– pink x’s; All outliers in G 7 are not shown.

Table 2. Table with data of number/fraction of YSOs per region/cluster and group in dendrogram. We list the number (N ) of objects in each of the groupsfrom each young region/cluster. The first number in the brackets indicates what fraction N represents in the region/cluster expressed in percent. The secondnumber indicates what fraction N represents in the group. For example for IC 5070 in G2 we find 13 (12,31), which means there are 13 objects in the regionIC 5070 which are part of G 2 and these sources represent 12 % of all the objects in IC 5070 and 31 % of all the objects in G 2. The numbers in brackets in the’Total’ row and column indicate the fraction of the total number of source in the sample. Note that due to rounding errors the fractions do not necessarily addup to 100 %.

Cluster G1 G2 G3 G4 G5 G6 G7 TotalIC 1396 A 4 ( 7,12) 7 (13,17) 17 (30,16) 4 ( 7,10) 11 (20,10) 12 (21,10) 1 ( 2,13) 56 (12)

IC 348 0 ( 0, 0) 2 ( 5, 5) 6 (16, 6) 7 (19,18) 6 (16, 5) 14 (38,12) 2 ( 5,25) 37 ( 8)IC 5070 4 ( 4,12) 13 (12,31) 20 (19,19) 5 ( 5,13) 40 (37,35) 25 (23,21) 0 ( 0, 0) 107 (23)IC 5146 10 (15,29) 5 ( 7,12) 16 (24,15) 1 ( 1, 3) 18 (27,16) 17 (25,14) 0 ( 0, 0) 67 (14)

NGC 1333 3 (16, 9) 2 (11, 5) 4 (21, 4) 0 ( 0, 0) 2 (11, 2) 7 (37, 6) 1 ( 5,13) 19 ( 4)NGC 2244 5 ( 8,15) 4 ( 6,10) 18 (28,17) 6 ( 9,15) 15 (23,13) 17 (26,14) 0 ( 0, 0) 65 (14)NGC 2264 8 (10,24) 9 (11,21) 20 (25,19) 8 (10,20) 14 (18,12) 20 (25,17) 0 ( 0, 0) 79 (17)NGC 7129 0 ( 0, 0) 0 ( 0, 0) 7 (19, 6) 9 (25,23) 7 (19, 6) 9 (25, 7) 4 (11,50) 36 ( 8)

Total 34 ( 7) 42 ( 9) 108 (23) 40 ( 9) 113 (24) 121 (26) 8 ( 2) 466

no sources with α-values lower than 40◦ and objects with negativeM -values and high α-values are extremely rare.

The value of the α parameter indicates the amount of colourchange during brightness change. Objects with large values (closeto 90◦) basically do not change their colour at all. These objects canfor example be eclipsing binaries where both components have sim-ilar colours. Changes in brightness due to variability in the amountof absorbing and scattering material along the line of sight (e.g.from the accretion disk) generally changes the colour in a deter-minable way. If the disk material is made from normal ISM dustthen the α-value should be between 60◦ (RV = 3.1) and 66◦

(RV = 5.0) if one uses a standard reddening law (Mathis 1990).Higher values of α are possible if the obscuring material consistsof larger dust grains than in the normal ISM or the objects undergoeclipse events by optically thick material.

Light-curves with α < 55◦ are thus not consistent withvariability due to changes in extinction alone. Objects that showα ≈ 45◦ change their brightness in the V-Band but not at a de-tectable level in the I-Band. This can in principle be caused by non-variable red sources which are at the detection limit in V but de-

tected at high signal-to-noise in the I-Band. However, our selectioncriteria for the variable sources will have removed these reliably.Alternatively, these objects can be interpreted as sources with largefluctuations at visual wavelengths and small, undetected variationsin the infrared. Hence, the most likely cause for the variability inobjects with α < 55◦ is changes in the accretion rate or the prop-erties of large hot/cold spots. Thus, based on the α-value we canclassify the sources in the following three categories:

• 65◦≤ α ≤ 90◦: Light-curves consistent with variable extinc-tion due to larger grains or eclipses by optically thick material• 55◦≤ α ≤ 65◦: Light-curves consistent with variable extinc-

tion due to normal ISM dust grains• 35◦≤ α ≤ 55◦: Light-curves not consistent with variable ex-

tinction, thus most likely caused by changes in accretion rates orhot/cold surface spots

Naturally there will be sources whose properties are a mix ofmore than one of these physical reasons for variability. Hence thesecategories will only be indicative of what the main reason for thevariability in a group of objects might be if it falls within one of

MNRAS 000, 1–13 (2017)

HOYS-CAPS 9

30 40 50 60 70 80 90Slope ( ) in V vs V-I diagram [deg]

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Asym

etry

Inde

x (M

) of V

-Ban

d Lig

htcu

rve 1

2

3

4

5

6

Figure 5. Figure showing the slope α in the V vs V-I diagram and theasymmetry index M for the YSOs in our sample. The larger symbols anderror bars indicate the mean and rms of all stars in the different groups.The group number is also indicated. All outliers (summarised in G 7) arenot shown as they are partly outside the parameter space of the plot (e.g. atnegative slope values). The colours and symbols are the same as in Fig. 4.The dashed horizontal lines separate the dippers (top) from the symmetriclight-curves (middle) and the bursters (bottom). The thin dashed horizontallines separate the most extreme bursters and dippers. The dashed verticallines indicate the three regions for α discussed in the text.

the specified regions for the α-values. In total there are 252 objectswhose α-value is in agreement of their variability being dominatedby accretion rate changes or spots. In the group that is dominatedby variable ISM extinction there are 94 sources, and in the groupof objects which are most likely due to variable extinction by largergrains or eclipses we have 108 sources. The remaining objects falloutside this part of the parameter space.

We can also split the sample of sources according to the asym-metry metric M . As detailed in Cody et al. (2014) objects withnegative values are bursters, i.e. objects that show short durationincreases in brightness compared to their normal magnitudes. Onthe other hand, objects with positive values for M are dippers,which have short duration decreases in brightness compared to nor-mal. Cody et al. (2014) use ±0.25 as thresholds for M to identifybursters and dippers. Here we employ a slightly more conservativevalue and will identify an object as burster if M < −0.5, whileobjects with M > 0.5 are considered dippers. Objects with M -values in-between these borders are considered to have a symmet-ric behaviour. In total our sample contains 41 bursters, 101 dippersand 324 symmetric variables. If we use an even more conservativethreshold of M ± 0.75 to select the most extreme bursters and dip-pers we find 10 and 51, respectively.

From this discussion and from Fig. 5 it is clear that our objectsdo not fill the parameter space homogeneously. In particular thereis not a single object whose properties are in agreement with vari-ability due to eclipse events (α near 90◦), which at the same timebelongs into the burster group. This is understandable, since almostall eclipsing binary objects spend most of their time outside theeclipse state and eclipsing binaries that also show outbursts mightbe characterised as having a ’symmetric’ light-curve.

As already briefly discussed in Sect. 4.2 the groups of YSOsgenerated by the hierarchical clustering, do not have a simple one-to-one matching with any one of the physical characteristics, but

30 40 50 60 70 80 90Slope ( ) in V vs V-I diagram [deg]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

75%

Var

iabi

lity

(75

) [m

ag]

1

1

22

3

3

4

4

5

5

6

6

Figure 6. Figures showing the 75 % variability (σ75) in V and R for thegroups identified with the hierarchical clustering. The green symbols indi-cate σ75

V and the red symbols σ75R . The symbol types, numbers and colour

of the lines are the same as in Fig. 4.

there are clear trends. Most of the objects in G 4 fall into the burstercategory and most of them also are in agreement with having vari-able accretion rates or spots. Indeed more than 50 % of the G 4members are in the accretion burst/spot category. Similarly, mem-bers in G 1 are almost exclusively in agreement with dipper light-curves, most of them in the extreme category. Most of the light-curves in G 1 are either in agreement with variable extinction oreclipses, only four sources fall into the variable accretion rate/spotcategory. All the sources in G 2 fall into the eclipse category, andall of the light-curves are symmetric. The objects sorted into theother groups (G 3, 5, 6) are all a mix of accretion/spot and extinc-tion variability, where G 3 contains objects with slightly dippinglight-curves. G 5/G 6 contain symmetric light-curves with slightlypositive M -values in G 5 and negative ones in G 6.

4.4 Variability

We determine the typical variability in the V-Band and R-Bandfor groups of YSOs identified in the hierarchical clustering. Thisutilises the total CDF for all magnitudes determined as the averageof all individual CDFs of all stars in each group. We then determinethe magnitude range around the median value within which 75 %of the brightness measurements are situated and refer to this fromhere on as 75 % variability or σ75.

In Fig. 6 we show σ75 of all groups in the V and R-Band plot-ted against the average α-value. In all cases, σ75

V is larger than σ75R

by at least about 0.1 mag. The lowest variability (about 0.5 mag inV and 0.4 mag in R) is measured for Gs 3, 5, 6 which represent thesymmetric light-curves. Slightly higher variability (0.7 mag in Vand 0.6 mag in R) is found for Gs 1, 2. These are all objects whoselight-curves can be characterised as dippers and all of them are alsoin agreement with variable extinction or eclipse behaviour.

The most variable sources (about 1.1 mag in V and 0.7 mag inR) are the objects in G 4, i.e. the objects most likely in agreementwith outbursts due to variable accretion rates (the magnitudes of thevariability in this group exclude spots as causes in most cases). Ob-jects in this group also show the largest difference σ75

V −σ75R . While

for all other groups there is only a 0.1 mag difference between the

MNRAS 000, 1–13 (2017)

10 Froebrich et al.

V and R filters, for G 4 the difference is 0.4 mag. This can only inpart be explained by the low α-values of the sources, as especiallyGs 5, 6 have similar values, but the difference in variability from Rand V is much smaller, both in absolute and relative terms.

4.5 YSO properties in Clusters/SF Regions

In Table 2 we have indicated for each group from the hierarchi-cal clustering the number of members and how they are distributedamongst the investigated young clusters and SF regions. We findthat there are three groups (Gs 2, 5, 6) which roughly contain onequarter of all the sources each. The remaining three groups (Gs 1,2, 4) each roughly contain 10 % of all the objects. The fraction ofsources considered outliers (summarised in G 7) is extremely smallwith less than 2 % but this group naturally contains the most un-usual objects in the sample.

We have checked if any cluster or SF region has an abnormallyhigh/low representation of objects in a particular group. There are atwo notable cases: i) A quarter of all objects from NGC 7129 are inG 4, while this group only contains 9 % of all objects; ii) Half of allobjects in G 7 are from NGC 7129, while this region/cluster onlyrepresents 8 % of all objects. Thus, NGC 7129 seems to be unusualin that it contains a larger fraction of YSOs whose light-curves canbe characterised as bursters caused by accretion rate variations. Thecluster also seems to contain a high fraction of objects with unusuallight-curves. However, small number statistics as well as selectionbiases could be responsible for these abnormalities.

An investigation into potential differences in the light-curveproperties of CTTSs and WTTSs in our sample has not led to anysignificant results. There are hints that the fraction of objects whoselight-curves can be interpreted as being caused by occultations bymaterial made up of larger dust grains is increased amongst theWTTS population. This is not statistically significant, however itdoes warrant a more detailed investigation in future.

4.6 Discussion of selected individual Sources

In this section we discuss three selected objects – V 2492 Cyg,V 350 Cep, 2MASS J21383981+5708470 in more detail. The de-termined properties for all individual sources are listed in Table A1in the Appendix.

4.6.1 V 2492 Cyg in IC 5070

The light-curve of V 2492 Cyg is shown in Fig. 7. The source isalso known as IRAS 20496+4354, WISE J205126.22+440523.8or PTF 10 nvg. On 2016-02-22 it was also published as Gaia 16 aft.In Table A1 the source is called R11 T1 205126.22+440523.7, asthis is the designation in the YSO list from Rebull et al. (2011),which we used to select objects in IC 5070.

The object has been studied by numerous authors in the past,e.g. Kun et al. (2011); Aspin (2011); Covey et al. (2011); Kóspálet al. (2011); Hillenbrand et al. (2013); Kóspál et al. (2013); Scholzet al. (2013); Giannini et al. (2017). It also was subject of manyAstronomer’s Telegrams, e.g. Arkharov et al. (2015); Munari et al.(2017); Ibryamov & Semkov (2017); Froebrich et al. (2017). Theobject is considered an embedded Class I protostar that showsstochastic high amplitude variations in brightness. This variabilityis driven by changes in accretion rate as well as extinction (up to∆AV = 30 mag), i.e. restructuring of the inner disk. Near infraredspectra are similar to McNeil’s Nebula (V 1647 Ori) and the source

Figure 7. Light-curve of the star V 2492 Cyg. In the top left panel we showthe instrumental magnitudes (shifted to approximately correspond to theapparent magnitude) for the V, R and I filters. Note that images taken in adifferent filter have been calibrated into the VRI system. The two panels inthe bottom left show the evolution of V-R and V-I colour of the source. Thecolour of the data-points represents the V-Band magnitude. Black symbolscorrespond to the faintest magnitudes and light-gray symbols to brightermagnitudes. The right panel shows the position of all observations in theV-I vs V colour-magnitude diagram. Here the colour of the symbols corre-sponds to the time of the observations. The darkest points correspond to themost recent data. The green line is the line of the best linear fit to the dataafter removing outliers. The red and blue line indicate extinction vectors forAV = 1mag for RV = 3.1 (blue) and RV = 5.0 (red).

might be considered as a young, embedded analogue to UX Oritype stars. Typical variations in brightness occur over timescales ofmonths to years, with a ∼220 day quasi-periodic signal reported inHillenbrand et al. (2013).

All of the data in our light-curve has been included in Froe-brich et al. (2017). There is no indication of the 220 day quasi-periodic signal identified in Hillenbrand et al. (2013). Instead, aftera minimum brightness between April and July 2016, the object hassteadily increased its brightness to a maximum at the end of Jan-uary 2017. The object then declined in brightness and the total vari-ations observed in our data are ∆V≈ 4 mag. The colour-magnitudediagram indicates that the variations are consistent with changingextinction from larger dust grains. However, there are large andsystematic deviations from this simplistic picture, which indicatechanges in accretion rate as well as changes in the properties of theocculting material.

4.6.2 V 350 Cep in NGC 7129

We show the light-curve of V 350 Cep in Fig. 8. The source isalso known as 2MASS J21430000+6611279, NGC 7129 IRS 1 orNGC 7129 FIR 3. In Table A1 the source is called HBC_732, as thisis the designation in the YSO list from Stelzer & Scholz (2009),which we used to select objects in NGC 7129.

The long term light-curve of this object (Ibryamov et al. 2014)shows an about 5 mag increase in the Blue/pg magnitude between1965 and 1975, and the source has remained at this level since withtypical variations of about 0.5 mag. The data presented in Ibryamovet al. (2014) suggest a ’dip’ of up to 1 mag in V for several monthsduring 2009. The source has been interpreted as both FU-Ori and

MNRAS 000, 1–13 (2017)

HOYS-CAPS 11

Figure 8. As Fig. 7 but for the object V 350 Cep

EX-Lup (EX-Or) candidate by several authors (Dahm & Hillen-brand 2015; Magakian et al. 1999; Miranda et al. 1994). Typi-cal FU-Ori spectral features are missing while EX-Or features arepresent, however the duration of the burst of now approximately45 yrs seems atypical for an EX-Or.

On 2016-04-23 the object was reported as Gaia 16 alt. Itshowed two Gaia data-points clearly below its usual brightness.This event was also reported by Semkov et al. (2017) who cov-ered the occultation event with 7 BVRI data-points. Our light-curvein Fig. 8 shows the event at an even higher time resolution. In to-tal 13 VRI measurements are taken during the occultation event.When combining our data with Semkov et al. (2017) we find thatthe object has been detected in occultation between 2016-04-12 and2016-05-25. Considering the closest data-points outside the occul-tation we estimate a duration of 51 – 83 days for the event. Thelight-curve shows that there are at least two ’dips’ with an inter-mittent maximum on 2016-04-17.

After the occultation the object returned to maximum bright-ness, just to drop again by about 0.5 mag in V, from which ithas then recovered steadily. We find the depth of the minimum tobe ∆V = 2.05 mag, ∆R = 1.80 mag and ∆I = 1.90 mag. These areslightly deeper than reported in Semkov et al. (2017). The colour-magnitude plot shows that the first magnitude of decrease duringthe occultation, as well as the steady recovery of the flux after it,are in good agreement with a variation caused by changes in ex-tinction due to normal ISM dust grains. During the deeper part ofthe occultation, the change in brightness turns completely free ofcolour change. Hence, the denser part of the occulting material re-sponsible for this seems to have consisted of larger dust grains orthe obscuring material was optically thick.

4.6.3 2MASS J21383981+5708470 in IC 1396 A

The light-curve of the source 2MASS J21383981+5708470, alsoknown as [NSW2012] 284 is shown in Fig. 9. This star islisted as Emission Line star in SIMBAD and has been identi-fied in Nakano et al. (2012). In Table A1 the source is calledVariable_V_324.665863_57.146301, as it was added as a variablesource due to its large Stetson index in the V-Band and was not in-cluded in the YSO candidate list from Sicilia-Aguilar et al. (2005),which we used to select objects in IC 1396 A.

Figure 9. As Fig. 7 but for the object 2MASS J21383981+5708470

The object shows a smooth brightness increase over about 150days in all three filters. At the peak the brightness increase in Vis about 0.4 mag, while in the I-Band the star got about 0.6 magbrighter. The Stetson index of the source is 1.36 and the asymme-try index -0.74, i.e. the object is classified as burster. What is highlyunusual about this source is the change in colour towards red dur-ing the outburst. The angle in the V vs. V-I diagram is -59◦. This isthe only source in the entire sample with such a behaviour and con-sequently the object has been made part of the outlier group G 7by the hierarchical clustering algorithm. The older I-Band (only)data suggests that there might have been another such burst about600 days prior to the one covered by our survey. But only a smallpart of this potential burst is covered. If this is a periodic behaviour,then the next burst should occur at about MJD = 58300 d – whichis early 2018. The nature of this source is unclear. Usually objectsin outburst are bluer in the bright state. Hence, the object has eitheran unusual burst, or we see only scattered light from this source.

5 CONCLUSIONS

We are describing and presenting the first results of our optical sur-vey of nearby clusters and star forming regions with small tele-scopes. All observations are obtained with the University of Kent’s17′′ Beacon Observatory or as part of the HOYS-CAPS citizen sci-ence project. In this paper we present the analysis of variable starsin eight target fields for which V, R and I-Band data has been takenover a period of about two years.

In our dataset we have identified 466 variable stars, 413 ofwhich are confirmed YSOs, based on the Stetson index of theirlight-curves. For all objects light-curve properties such as the theasymmetry metric and slope (α) in the V-I vs. V colour-magnitudediagram are determined. This sample is one of the largest samplesof variable YSOs in the northern hemisphere with multi colour ob-servations of such a time span and cadence, with additional archivalmulti-wavelength data and which is well suited for follow up ob-servations. We find that the number of protostars in our sample isnegligible, while about 65 % of the objects are CTTSs and about35 % are sources with transition or depleted disks.

A detailed investigation of the asymmetry index M and theα-values of the light-curves has been performed. We can use the α-value to characterise the most likely mechanism responsible for the

MNRAS 000, 1–13 (2017)

12 Froebrich et al.

variability in the stars. These range from occultations by materialcomposed of large dust grains or optically thick material (includingeclipses) to occultations by material consistent with normal ISMdust to changes in mass accretion rates or dark/bright spots. Dip-per light-curves consistent with changes in accretion rates or spotsare rare, there are virtually no burster objects that are consistentwith occultations or eclipses. Burster light-curves also show by farthe highest variability (of the order of 1.1 mag in V), followed bydippers and eclipsing objects (0.7 mag), and the symmetric light-curves have the lowest variations (0.5 mag).

We used a hierarchical clustering algorithm to identify groupsof YSOs with similar light-curve properties. This clustering algo-rithm allows us to identify the most unusual objects in our sample.We further find that clustering results in groups of YSOs that corre-spond to dippers, bursters or symmetric light-curves and they alsohave different α-values. Thus, grouping variable YSOs via hierar-chical clustering using their light-curve properties is a promisingapproach for future studies of larger samples of YSOs that will be-come available e.g. from GAIA or the LSST.

ACKNOWLEDGEMENTS

J. Campbell-White acknowledges the studentship provided by theUniversity of Kent. S.V. Makin acknowledges an SFTC scholar-ship (1482158). KW acknowledges funding by STFC. K. Wiersemathanks Ray Mc Erlean and Dipali Thanki for technical sup-port of the UL50 operations. This research made use of Mon-tage. It is funded by the National Science Foundation underGrant Number ACI-1440620, and was previously funded bythe National Aeronautics and Space Administration’s Earth Sci-ence Technology Office, Computation Technologies Project, un-der Cooperative Agreement Number NCC5-626 between NASAand the California Institute of Technology. We acknowledgeESA Gaia, DPAC and the Photometric Science Alerts Team(http://gsaweb.ast.cam.ac.uk/alerts).

REFERENCES

Ansdell M., Gaidos E., Rappaport S. A., Jacobs T. L., LaCourse D. M., JekK. J., Mann A. W., Wyatt M. C., Kennedy G., Williams J. P., BoyajianT. S., 2016, ApJ, 816, 69

Arkharov A. A., Lorenzetti D., Giannini T., Antoniucci S., Di Paola A.,Vitali F., Larionov V. M., 2015, The Astronomer’s Telegram, 7436

Aspin C., 2011, AJ, 141, 196Audard M., Ábrahám P., Dunham M. M., Green J. D., Grosso N., Ham-

aguchi K., Kastner J. H., Kóspál Á., Lodato G., Romanova M. M.,Skinner S. L., Vorobyov E. I., Zhu Z., 2014, Protostars and Planets VI,pp 387–410

Bacher A., Kimeswenger S., Teutsch P., 2005, MNRAS, 362, 542Bally J., Walawender J., Johnstone D., Kirk H., Goodman A., 2008, The

Perseus Cloud. p. 308Balog Z., Muzerolle J., Rieke G. H., Su K. Y. L., Young E. T., Megeath

S. T., 2007, ApJ, 660, 1532Berry R., Burnell J., 2005, The handbook of astronomical image processingBertin E., Arnouts S., 1996, A&AS, 117, 393Bouvier J., Matt S. P., Mohanty S., Scholz A., Stassun K. G., Zanni C.,

2014, Protostars and Planets VI, pp 433–450Bozhinova I., Scholz A., Costigan G., Lux O., Davis C. J., Ray T., Board-

man N. F., Hay K. L., Hewlett T., Hodosán G., Morton B., 2016, MN-RAS, 463, 4459

Carpenter J. M., Hillenbrand L. A., Skrutskie M. F., 2001, AJ, 121, 3160Cody A. M., Stauffer J., Baglin A., Micela G., Rebull L. M., Flaccomio E.,

et al. 2014, AJ, 147, 82

Contreras M. E., Sicilia-Aguilar A., Muzerolle J., Calvet N., Berlind P.,Hartmann L., 2002, AJ, 124, 1585

Covey K. R., Hillenbrand L. A., Miller A. A., Poznanski D., Cenko S. B.,Silverman J. M., Bloom J. S., Kasliwal M. M., Fischer W., et al. 2011,AJ, 141, 40

Cutri R. M., et al. 2013, VizieR Online Data Catalog, 2328Dahm S. E., 2008, The Young Cluster and Star Forming Region NGC 2264.

p. 966Dahm S. E., Hillenbrand L. A., 2015, AJ, 149, 200Dahm S. E., Simon T., 2005, AJ, 129, 829Ferreira L., Hitchcock D. B., 2009, Communications in Statistics-

Simulation and Computation, 38, 1925Froebrich D., Campbell-White J., Zegmott T., Billington S. J., Makin S. V.,

Donohoe J., 2017, The Astronomer’s Telegram, 10259Giannini T., Munari U., Antoniucci S., Lorenzetti D., Arkharov A. A., Dal-

laporta S., Rossi A., Traven G., 2017, ArXiv e-printsGrankin K. N., Melnikov S. Y., Bouvier J., Herbst W., Shevchenko V. S.,

2007, A&A, 461, 183Guieu S., Rebull L. M., Stauffer J. R., Hillenbrand L. A., Carpenter J. M.,

Noriega-Crespo A., Padgett D. L., et al. 2009, ApJ, 697, 787Harvey P. M., Huard T. L., Jørgensen J. K., Gutermuth R. A., Mamajek

E. E., Bourke T. L., Merín B., et al. 2008, ApJ, 680, 495Herbst W., Eislöffel J., Mundt R., Scholz A., 2007, Protostars and Planets

V, pp 297–311Hillenbrand L. A., Miller A. A., Covey K. R., Carpenter J. M., Cenko S. B.,

Silverman J. M., Muirhead P. S., et al. 2013, AJ, 145, 59Hogg D. W., Blanton M., Lang D., Mierle K., Roweis S., 2008, in Argyle

R. W., Bunclark P. S., Lewis J. R., eds, Astronomical Data AnalysisSoftware and Systems XVII Vol. 394 of Astronomical Society of thePacific Conference Series, Automated Astrometry (Invited). p. 27

Ibryamov S., Semkov E., 2017, The Astronomer’s Telegram, 10170Ibryamov S., Semkov E., Peneva S., 2014, Research in Astronomy and As-

trophysics, 14, 1264Joy A. H., 1945, ApJ, 102, 168Koenig X. P., Leisawitz D. T., 2014, ApJ, 791, 131Kóspál Á., Ábrahám P., Acosta-Pulido J. A., Arévalo Morales M. J., Balog

Z., Carnerero M. I., Szegedi-Elek E., et al. 2013, A&A, 551, A62Kóspál Á., Ábrahám P., Acosta-Pulido J. A., Arévalo Morales M. J.,

Carnerero M. I., Elek E., Kelemen J., et al. 2011, A&A, 527, A133Kun M., Szegedi-Elek E., Moór A., Ábrahám P., Acosta-Pulido J. A., Apai

D., Kelemen J., et al. 2011, ApJ, 733, L8Luhman K. L., Esplin T. L., Loutrel N. P., 2016, ApJ, 827, 52Magakian T. Y., Movsesian T. A., Hovhannesian E. R., 1999, Astrophysics,

42, 121Majaess D., 2013, Ap&SS, 344, 175Mathis J. S., 1990, ARA&A, 28, 37McGinnis P. T., Alencar S. H. P., Guimarães M. M., Sousa A. P., Stauffer

J., Bouvier J., Rebull L., et al. 2015, A&A, 577, A11Miranda L. F., Eiroa C., Fernandez M., Gomez de Castro A. I., 1994, A&A,

281, 864Moffat A. F. J., 1969, A&A, 3, 455Munari U., Traven G., Dallaporta S., Lorenzetti D., Giannini T., Antoniucci

S., 2017, The Astronomer’s Telegram, 10183Murtagh F., Legendre P., 2014, Journal of Classification, 31, 274Nakano M., Sugitani K., Watanabe M., Fukuda N., Ishihara D., Ueno M.,

2012, AJ, 143, 61Rebull L. M., Guieu S., Stauffer J. R., Hillenbrand L. A., Noriega-Crespo

A., Stapelfeldt K. R., Carey S. J., et al. 2011, ApJS, 193, 25Reipurth B., Schneider N., 2008, Star Formation and Young Clusters in

Cygnus. p. 36Román-Zúñiga C. G., Lada E. A., 2008, Star Formation in the Rosette Com-

plex. p. 928Scholz A., Froebrich D., Wood K., 2013, MNRAS, 430, 2910Scholz A., Geers V., Clark P., Jayawardhana R., Muzic K., 2013, ApJ, 775,

138Semkov E. H., Ibryamov S. I., Peneva S. P., 2017, Bulgarian Astronomical

Journal, 27, 75Sicilia-Aguilar A., Hartmann L. W., Hernández J., Briceño C., Calvet N.,

MNRAS 000, 1–13 (2017)

HOYS-CAPS 13

2005, AJ, 130, 188Skrutskie M. F., Cutri R. M., Stiening R., Weinberg M. D., Schneider S.,

Carpenter J. M., et al. 2006, AJ, 131, 1163Stauffer J., Cody A. M., Baglin A., Alencar S., Rebull L., Hillenbrand L. A.,

Venuti L., et al. 2014, AJ, 147, 83Stauffer J., Cody A. M., Rebull L., Hillenbrand L. A., Turner N. J., Carpen-

ter J., Carey S., et al. 2016, AJ, 151, 60Stelzer B., Scholz A., 2009, A&A, 507, 227Stetson P. B., 1996, PASP, 108, 851Straižys V., Maskoliunas M., Boyle R. P., Prada Moroni P. G., Tognelli E.,

Zdanavicius K., Zdanavicius J., et al. 2014, MNRAS, 438, 1848

MNRAS 000, 1–13 (2017)

14 Froebrich et al.

APPENDIX A: DATA OF INDIVIDUAL SOURCES

MNRAS 000, 1–13 (2017)

HOYS-CAPS 15

Tabl

eA

1:T

his

tabl

elis

tsth

ein

divi

dual

prop

ertie

sof

alls

tars

inve

stig

ated

inth

epa

pers

.We

listt

heca

talo

gue

nam

eof

the

sour

ce,t

hena

me

ofth

ecl

uste

r/re

gion

itis

in,t

heR

ight

Asc

entio

nan

dD

eclin

atio

n(J

2000

),th

enu

mbe

rofp

oint

sin

the

light

curv

eus

edto

dete

rmin

eth

esl

ope

αin

the

Vvs

V-I

diag

ram

,the

slop

ofa

linea

rfit

inth

eV

vsV

-I;t

herm

sof

the

data

poin

tsfr

omth

efit

,the

Asy

mm

etry

inde

xM

,the

Stet

son

inde

xS

,the

grou

pin

the

dend

rogr

amth

eso

urce

isas

soci

ated

with

,the

rang

eof

mag

nitu

des

and

therm

sof

the

V,R

and

I-B

and

light

curv

e.

Sour

ceN

ame

Reg

ion

RA

DE

CN

var

αrm

sM

SG

∆V

σV

∆R

σR

∆I

σI

(J20

00)[

deg]

[deg

][m

ag]

[mag

][m

ag]

[mag

][m

ag]

[mag

][m

ag]

2MA

SS_J

0328

1101

+31

1729

2N

GC

1333

52.0

4591

731

.291

4719

44.0

0.01

3-0

.24

1.72

60.

800.

190.

140.

040.

050.

022M

ASS

_J03

2836

92+

3117

353

NG

C13

3352

.153

833

31.2

9317

1845

.40.

047

0.04

2.09

60.

960.

240.

310.

080.

240.

062M

ASS

_J03

2836

92+

3117

353

NG

C13

3352

.153

833

31.2

9317

1946

.00.

046

0.28

1.66

50.

600.

180.

320.

070.

240.

062M

ASS

_J03

2851

01+

3118

184

NG

C13

3352

.212

542

31.3

0514

2372

.10.

101

0.90

2.33

11.

210.

261.

060.

231.

280.

262M

ASS

_J03

2852

16+

3122

453

NG

C13

3352

.217

333

31.3

7925

2471

.30.

048

0.91

2.37

10.

790.

220.

730.

200.

570.

162M

ASS

_J03

2857

41+

3119

505

NG

C13

3352

.239

208

31.3

3072

1746

.60.

021

0.87

1.02

30.

710.

150.

230.

060.

130.

032M

ASS

_J03

2859

54+

3121

467

NG

C13

3352

.248

125

31.3

6300

2378

.50.

107

-0.0

66.

626

3.09

0.75

2.74

0.66

2.49

0.62

2MA

SS_J

0329

0386

+31

2148

7N

GC

1333

52.2

6608

331

.363

5325

50.7

0.08

50.

391.

233

0.55

0.14

0.53

0.15

0.44

0.12

2MA

SS_J

0329

1037

+31

2159

1N

GC

1333

52.2

9325

031

.366

4425

58.7

0.13

90.

324.

283

1.41

0.42

0.99

0.30

1.04

0.28

2MA

SS_J

0329

2187

+31

1536

3N

GC

1333

52.3

4112

531

.260

0823

77.1

0.06

20.

417.

482

3.34

0.84

2.72

0.66

2.86

0.68

2MA

SS_J

0329

2204

+31

2415

3N

GC

1333

52.3

4183

331

.404

2824

51.2

0.14

9-0

.07

6.41

62.

660.

711.

790.

520.

950.

232M

ASS

_J03

2925

91+

3126

401

NG

C13

3352

.358

000

31.4

4447

24-8

9.9

0.04

10.

502.

637

1.33

0.30

1.40

0.32

1.39

0.31

2MA

SS_J

0329

2889

+30

5841

8N

GC

1333

52.3

7037

530

.978

2820

51.7

0.08

9-0

.15

1.63

60.

660.

170.

400.

110.

390.

122M

ASS

_J03

2929

25+

3118

347

NG

C13

3352

.371

917

31.3

0967

1945

.80.

025

0.48

1.12

30.

610.

140.

140.

050.

120.

032M

ASS

_J03

2945

92+

3104

406N

NG

C13

3352

.441

208

31.0

7811

1648

.90.

018

-0.5

31.

066

0.50

0.13

0.19

0.05

0.10

0.03

2MA

SS_J

0329

4592

+31

0440

6SN

GC

1333

52.4

4175

031

.077

5019

49.1

0.02

2-0

.55

1.31

60.

500.

130.

220.

060.

120.

032M

ASS

_J03

2954

03+

3120

529

NG

C13

3352

.475

125

31.3

4806

2356

.40.

049

0.03

2.37

50.

800.

210.

540.

160.

270.

08V

aria

ble_

R_5

2.55

7724

_31.

2804

81N

GC

1333

52.5

5772

131

.280

4824

83.1

0.03

71.

361.

071

0.59

0.14

0.45

0.13

0.48

0.13

Var

iabl

e_R

_52.

6478

58_3

1.26

6247

NG

C13

3352

.647

854

31.2

6624

1779

.70.

090

0.35

2.66

20.

960.

270.

930.

210.

810.

24C

l_N

GC

_712

9_E

GM

_8N

GC

7129

325.

6350

0066

.083

0841

35.7

0.10

00.

321.

713

0.73

0.18

0.49

0.12

0.48

0.11

SS20

09_N

GC

_712

9−S3−

X41

NG

C71

2932

5.66

2125

66.1

1908

7648

.10.

101

-0.0

45.

226

2.15

0.54

3.41

0.70

0.89

0.15

2MA

SS_J

2142

4023

+66

1328

7N

GC

7129

325.

6676

2566

.224

6418

69.4

0.18

2-0

.19

3.02

61.

020.

291.

100.

311.

250.

332M

ASS

_J21

4246

08+

6605

562

NG

C71

2932

5.69

2000

66.0

9894

2943

.70.

064

-0.1

52.

086

1.59

0.29

0.92

0.17

0.60

0.10

2MA

SS_J

2142

4613

+66

1346

0N

GC

7129

325.

6921

6766

.229

3922

43.3

0.07

10.

121.

705

0.59

0.17

0.47

0.13

0.34

0.08

2MA

SS_J

2142

4687

+66

0657

4N

GC

7129

325.

6952

9266

.115

9426

47.9

0.36

70.

4310

.94

44.

441.

214.

261.

152.

270.

512M

ASS

_J21

4247

05+

6604

578

NG

C71

2932

5.69

6042

66.0

8272

108

56.3

0.05

40.

091.

435

1.01

0.16

0.72

0.11

0.58

0.09

2MA

SS_J

2142

4790

+66

0653

0N

GC

7129

325.

6995

8366

.114

7263

42.3

0.34

20.

0112

.11

44.

081.

222.

820.

891.

760.

432M

ASS

_J21

4250

92+

6606

036

NG

C71

2932

5.71

2167

66.1

0100

6844

.20.

218

-0.6

85.

944

4.10

0.72

4.16

0.60

1.31

0.28

2MA

SS_J

2142

5234

+66

0535

0N

GC

7129

325.

7179

1766

.093

1439

44.9

0.34

3-0

.43

12.9

24

3.99

1.28

4.65

1.39

1.87

0.44

MM

N20

04b_

_6N

GC

7129

325.

7192

0866

.115

8940

34.6

0.96

40.

2511

.56

75.

371.

273.

010.

743.

241.

052M

ASS

_J21

4253

21+

6607

207

NG

C71

2932

5.72

1708

66.1

2244

6716

.62.

392

0.86

8.86

74.

130.

982.

730.

554.

881.

42M

MN

2004

b__9

NG

C71

2932

5.72

2875

66.1

3481

8847

.90.

128

-0.6

54.

514

3.55

0.51

2.58

0.56

0.95

0.19

MM

N20

04b_

11N

GC

7129

325.

7343

7566

.100

5898

45.1

0.09

20.

203.

715

2.51

0.41

0.95

0.17

0.72

0.12

2MA

SS_J

2142

5719

+66

0634

6N

GC

7129

325.

7381

2566

.109

6910

048

.70.

178

-0.5

85.

894

3.83

0.70

2.25

0.44

1.37

0.26

2MA

SS_J

2142

5836

+66

0527

3N

GC

7129

325.

7431

6766

.090

9231

23.1

0.63

60.

794.

587

1.98

0.50

1.50

0.44

2.33

0.55

SS20

09_N

GC

_712

9−S3−

X17

NG

C71

2932

5.74

4875

66.1

1022

6643

.40.

390

-0.5

78.

724

4.18

0.97

3.01

0.57

2.36

0.48

Con

tinue

don

next

page

MNRAS 000, 1–13 (2017)

16 Froebrich et al.

Tabl

eA

1–

cont

inue

dfr

ompr

evio

uspa

geSo

urce

Nam

eR

egio

nR

AD

EC

Nvar

αrm

sM

SG

∆V

σV

∆R

σR

∆I

σI

(J20

00)[

deg]

[deg

][m

ag]

[mag

][m

ag]

[mag

][m

ag]

[mag

][m

ag]

HB

C_7

31N

GC

7129

325.

7483

7566

.076

0629

48.0

0.11

5-0

.50

3.93

62.

090.

453.

060.

800.

740.

162M

ASS

_J21

4259

97+

6601

010

NG

C71

2932

5.74

9875

66.0

1694

1842

.70.

062

-0.3

51.

576

0.62

0.16

0.34

0.09

0.36

0.08

HB

C_7

32N

GC

7129

325.

7500

0066

.191

0893

67.4

0.06

50.

884.

213

2.43

0.54

2.25

0.49

2.13

0.45

2MA

SS_J

2143

0188

+66

0644

7N

GC

7129

325.

7578

3366

.112

4295

50.8

0.26

7-0

.65

4.92

43.

520.

612.

910.

511.

920.

362M

ASS

_J21

4303

43+

6605

264

NG

C71

2932

5.76

4292

66.0

9067

8347

.70.

636

0.92

10.6

07

4.33

1.14

2.79

0.58

3.11

0.76

EM

_LkH

A__

234

NG

C71

2932

5.77

8417

66.1

1506

6963

.10.

052

0.76

1.23

30.

900.

170.

840.

140.

690.

132M

ASS

_J21

4311

41+

6612

555

NG

C71

2932

5.79

7542

66.2

1542

6252

.00.

073

0.07

2.17

51.

060.

230.

790.

160.

620.

12M

MN

2004

b_19

NG

C71

2932

5.82

0125

66.0

9683

5643

.70.

069

0.28

2.01

51.

070.

210.

690.

120.

420.

09M

MN

2004

b_20

NG

C71

2932

5.88

2583

66.1

4739

6450

.70.

077

0.57

2.20

30.

920.

211.

050.

150.

930.

14M

MN

2004

b_22

NG

C71

2932

5.93

1000

66.1

2522

5744

.90.

051

0.14

1.53

50.

780.

170.

440.

100.

260.

062M

ASS

_J21

4406

34+

6604

231

NG

C71

2932

6.02

6417

66.0

7308

2972

.10.

104

-0.2

84.

356

1.56

0.42

1.22

0.37

1.02

0.32

Var

iabl

e_V

_325

.765

320_

65.9

1445

2N

GC

7129

325.

7652

9265

.914

4487

49.2

0.06

9-0

.40

1.33

60.

800.

150.

450.

100.

470.

10V

aria

ble_

V_3

26.0

9289

6_65

.714

478

NG

C71

2932

6.09

2875

65.7

1447

7525

.70.

146

-0.3

11.

014

2.55

0.25

0.39

0.07

0.62

0.12

Var

iabl

e_R

_325

.348

419_

65.9

2715

5N

GC

7129

325.

3484

1765

.927

1411

565

.70.

036

0.29

3.46

31.

520.

361.

280.

300.

830.

20V

aria

ble_

R_3

26.3

9141

8_66

.144

142

NG

C71

2932

6.39

1417

66.1

4414

9964

.70.

049

-0.0

51.

755

0.82

0.17

0.64

0.14

0.48

0.11

Var

iabl

e_R

_325

.269

501_

65.9

1642

0N

GC

7129

325.

2695

0065

.916

4272

43.8

0.10

1-0

.19

1.65

60.

780.

180.

710.

150.

750.

13V

aria

ble_

R_3

24.8

6529

5_65

.864

845

NG

C71

2932

4.86

5292

65.8

6483

6238

.10.

132

-0.3

51.

396

0.93

0.16

0.85

0.19

0.82

0.16

Var

iabl

e_I_

325.

3879

39_6

6.37

2276

NG

C71

2932

5.38

7917

66.3

7225

101

74.1

0.02

60.

572.

303

1.22

0.25

1.01

0.21

0.84

0.17

Var

iabl

e_I_

325.

0593

57_6

6.45

7283

NG

C71

2932

5.05

9333

66.4

5728

9866

.00.

059

0.72

1.92

31.

360.

211.

230.

181.

110.

172M

ASS

_J21

3517

45+

5748

223

IC13

96A

323.

8227

0857

.806

1917

44.9

0.04

6-0

.10

1.23

60.

500.

140.

340.

080.

220.

062M

ASS

_J21

3518

61+

5734

092

IC13

96A

323.

8275

4257

.569

2222

65.5

0.03

50.

561.

343

0.60

0.15

0.39

0.12

0.36

0.10

2MA

SS_J

2135

3021

+57

3116

4IC

1396

A32

3.87

5875

57.5

2122

2346

.90.

052

0.01

1.32

50.

500.

140.

290.

090.

260.

072M

ASS

_J21

3649

41+

5731

220

IC13

96A

324.

2058

7557

.522

7826

52.7

0.06

7-0

.39

1.69

60.

620.

171.

100.

330.

350.

092M

ASS

_J21

3655

79+

5736

533

IC13

96A

324.

2324

5857

.614

8119

46.1

0.04

50.

511.

113

0.43

0.13

0.17

0.05

0.26

0.06

2MA

SS_J

2136

5767

+57

2733

1IC

1396

A32

4.24

0292

57.4

5919

2372

.50.

062

-0.2

83.

256

1.51

0.34

1.15

0.30

0.91

0.23

2MA

SS_J

2137

0088

+57

2522

4IC

1396

A32

4.25

3667

57.4

2289

1950

.80.

092

0.50

1.70

30.

770.

170.

640.

150.

770.

152M

ASS

_J21

3710

31+

5730

189

IC13

96A

324.

2929

5857

.505

2516

51.0

0.04

9-0

.63

1.07

40.

430.

120.

400.

110.

240.

062M

ASS

_J21

3710

54+

5731

124

IC13

96A

324.

2939

1757

.520

1125

56.6

0.06

70.

271.

245

0.46

0.13

0.31

0.09

0.41

0.10

2MA

SS_J

2137

1183

+57

2448

6IC

1396

A32

4.29

9292

57.4

1350

2052

.70.

048

0.09

1.05

50.

460.

120.

290.

080.

260.

072M

ASS

_J21

3712

15+

5727

262

IC13

96A

324.

3006

2557

.457

2819

62.0

0.05

81.

081.

401

0.63

0.17

0.40

0.10

0.42

0.11

2MA

SS_J

2137

1591

+57

2659

1IC

1396

A32

4.31

6292

57.4

4975

2566

.40.

045

1.12

2.44

11.

420.

331.

070.

250.

960.

212M

ASS

_J21

3734

20+

5726

154

IC13

96A

324.

3925

0057

.437

6118

46.8

0.06

00.

621.

333

0.47

0.13

0.24

0.07

0.35

0.09

2MA

SS_J

2137

4486

+57

2413

5IC

1396

A32

4.43

6917

57.4

0375

2271

.40.

071

0.20

2.04

20.

700.

190.

560.

170.

580.

152M

ASS

_J21

3745

14+

5719

423

IC13

96A

324.

4380

8357

.328

4219

62.0

0.08

6-0

.33

2.07

60.

820.

210.

600.

180.

700.

172M

ASS

_J21

3750

18+

5733

404

IC13

96A

324.

4590

8357

.561

2223

69.3

0.05

00.

471.

533

0.63

0.15

0.48

0.13

0.46

0.11

2MA

SS_J

2137

5022

+57

2548

7IC

1396

A32

4.45

9250

57.4

3019

2354

.00.

074

-0.1

71.

236

0.55

0.14

0.47

0.11

0.42

0.10

2MA

SS_J

2137

5107

+57

2750

2IC

1396

A32

4.46

2792

57.4

6394

2052

.50.

065

0.50

1.08

30.

690.

140.

390.

100.

420.

102M

ASS

_J21

3758

12+

5731

199

IC13

96A

324.

4921

6757

.522

1924

62.6

0.03

9-0

.21

2.04

60.

570.

180.

390.

140.

290.

102M

ASS

_J21

3758

41+

5718

046

IC13

96A

324.

4933

7557

.301

2819

48.8

0.08

80.

311.

225

0.64

0.14

0.57

0.12

0.51

0.13

2MA

SS_J

2138

0350

+57

4134

9IC

1396

A32

4.51

4583

57.6

9303

2578

.20.

045

0.50

3.77

21.

520.

391.

270.

341.

180.

302M

ASS

_J21

3817

31+

5731

220

IC13

96A

324.

5721

2557

.522

7824

69.5

0.02

90.

332.

902

1.14

0.28

0.92

0.23

0.77

0.19

Con

tinue

don

next

page

MNRAS 000, 1–13 (2017)

HOYS-CAPS 17

Tabl

eA

1–

cont

inue

dfr

ompr

evio

uspa

geSo

urce

Nam

eR

egio

nR

AD

EC

Nvar

αrm

sM

SG

∆V

σV

∆R

σR

∆I

σI

(J20

00)[

deg]

[deg

][m

ag]

[mag

][m

ag]

[mag

][m

ag]

[mag

][m

ag]

2MA

SS_J

2138

1749

+57

4101

9IC

1396

A32

4.57

2875

57.6

8386

1650

.90.

087

-0.1

81.

676

0.72

0.18

0.48

0.12

0.51

0.12

2MA

SS_J

2138

2596

+57

3409

3IC

1396

A32

4.60

8167

57.5

6925

2272

.10.

038

0.49

2.16

30.

650.

190.

640.

180.

530.

152M

ASS

_J21

3827

42+

5731

081

IC13

96A

324.

6142

5057

.518

9221

60.9

0.09

5-0

.05

1.56

50.

450.

140.

540.

160.

560.

172M

ASS

_J21

3827

43+

5727

207

IC13

96A

324.

6142

9257

.455

7523

58.5

0.10

10.

792.

553

0.91

0.27

0.87

0.21

0.63

0.17

2MA

SS_J

2138

4038

+57

3837

4IC

1396

A32

4.66

8250

57.6

4372

2350

.30.

061

0.52

1.26

30.

690.

150.

300.

080.

360.

092M

ASS

_J21

3844

46+

5718

091

IC13

96A

324.

6852

5057

.302

5324

63.5

0.07

80.

501.

563

0.83

0.18

0.78

0.18

0.78

0.16

2MA

SS_J

2138

4544

+57

2823

0IC

1396

A32

4.68

9333

57.4

7306

1947

.40.

039

-0.6

31.

836

1.12

0.23

0.25

0.06

0.22

0.06

2MA

SS_J

2138

5542

+57

3529

9IC

1396

A32

4.73

0917

57.5

9164

2557

.90.

040

0.29

1.36

50.

560.

130.

470.

110.

280.

082M

ASS

_J21

3903

46+

5730

527

IC13

96A

324.

7644

1757

.514

6420

36.2

0.14

5-0

.11

2.33

60.

870.

240.

650.

160.

750.

182M

ASS

_J21

3903

90+

5731

037

IC13

96A

324.

7662

5057

.517

6919

54.7

0.11

00.

111.

965

0.65

0.19

0.58

0.18

0.73

0.18

2MA

SS_J

2139

1213

+57

3616

4IC

1396

A32

4.80

0542

57.6

0456

2567

.50.

029

0.60

2.06

31.

000.

230.

800.

180.

660.

152M

ASS

_J21

3914

24+

5722

129

IC13

96A

324.

8093

3357

.370

2521

57.9

0.05

20.

791.

033

0.66

0.14

0.35

0.10

0.31

0.07

2MA

SS_J

2139

2957

+57

3341

7IC

1396

A32

4.87

3208

57.5

6158

2467

.50.

043

0.50

1.56

30.

450.

140.

400.

120.

300.

092M

ASS

_J21

3934

80+

5723

277

IC13

96A

324.

8950

0057

.391

0316

72.5

0.08

80.

464.

612

1.59

0.46

1.15

0.34

1.17

0.34

2MA

SS_J

2139

3612

+57

3128

9IC

1396

A32

4.90

0500

57.5

2469

1659

.30.

064

-0.6

01.

686

0.84

0.21

0.57

0.15

0.67

0.14

2MA

SS_J

2139

4643

+57

0507

2IC

1396

A32

4.94

3458

57.0

8533

2335

.80.

095

0.54

1.26

30.

730.

150.

410.

090.

500.

112M

ASS

_J21

3958

61+

5728

404

IC13

96A

324.

9942

0857

.477

8917

56.9

0.06

70.

852.

723

1.11

0.29

0.53

0.12

0.50

0.14

2MA

SS_J

2140

0273

+57

3505

0IC

1396

A32

5.01

1375

57.5

8472

1853

.90.

055

0.21

1.97

50.

680.

180.

430.

120.

410.

102M

ASS

_J21

4011

82+

5740

121

IC13

96A

325.

0492

5057

.670

0319

48.3

0.09

20.

002.

186

0.87

0.23

0.86

0.18

0.53

0.13

2MA

SS_J

2140

2274

+57

4624

0IC

1396

A32

5.09

4750

57.7

7333

1954

.90.

193

0.21

1.97

51.

290.

251.

390.

271.

950.

36V

aria

ble_

V_3

23.8

2998

7_57

.610

565

IC13

96A

323.

8299

5857

.610

5627

76.0

0.01

50.

972.

301

1.09

0.26

0.92

0.23

0.81

0.20

Var

iabl

e_V

_324

.665

863_

57.1

4630

1IC

1396

A32

4.66

5833

57.1

4628

27-5

9.2

0.03

5-0

.74

1.36

70.

430.

140.

540.

170.

600.

22V

aria

ble_

V_3

24.9

2038

0_57

.615

208

IC13

96A

324.

9203

7557

.615

1922

78.8

0.07

00.

051.

332

0.47

0.13

0.50

0.14

0.69

0.16

Var

iabl

e_V

_324

.962

250_

57.6

0466

4IC

1396

A32

4.96

2250

57.6

0464

2449

.20.

051

0.24

1.49

50.

640.

160.

340.

100.

250.

07V

aria

ble_

V_3

23.4

2294

3_57

.563

210

IC13

96A

323.

4229

1757

.563

1919

45.9

0.14

00.

132.

165

0.92

0.22

0.73

0.20

0.84

0.19

Var

iabl

e_V

_324

.702

820_

57.5

0326

2IC

1396

A32

4.70

2792

57.5

0325

1744

.80.

091

-0.6

33.

514

1.56

0.39

0.80

0.20

0.49

0.12

Var

iabl

e_V

_324

.572

449_

57.7

6504

9IC

1396

A32

4.57

2417

57.7

6503

1876

.00.

147

-0.0

42.

182

0.74

0.22

0.92

0.23

1.01

0.27

Var

iabl

e_R

_324

.174

927_

57.1

8004

6IC

1396

A32

4.17

4917

57.1

8003

2559

.70.

017

-0.2

71.

606

0.75

0.18

0.52

0.11

0.32

0.07

Var

iabl

e_R

_324

.676

453_

57.5

0771

7IC

1396

A32

4.67

6417

57.5

0769

2367

.90.

078

-0.8

27.

044

2.47

0.75

1.70

0.54

1.48

0.46

Var

iabl

e_R

_324

.920

410_

57.6

1520

8IC

1396

A32

4.92

0375

57.6

1519

2278

.80.

070

0.05

1.33

20.

470.

130.

500.

140.

690.

16V

aria

ble_

R_3

23.5

3561

4_57

.405

205

IC13

96A

323.

5355

8357

.405

1922

67.8

0.05

70.

341.

133

0.40

0.12

0.42

0.12

0.44

0.11

Var

iabl

e_I_

324.

5491

33_5

7.35

3069

IC13

96A

324.

5491

2557

.353

0625

84.5

0.03

60.

782.

241

0.75

0.22

0.75

0.21

0.75

0.20

Var

iabl

e_I_

324.

8540

65_5

7.75

7702

IC13

96A

324.

8540

4257

.757

6916

28.5

0.16

8-0

.22

1.02

40.

420.

120.

550.

160.

560.

15V

aria

ble_

I_32

4.87

3871

_57.

7578

66IC

1396

A32

4.87

3833

57.7

5786

1836

.50.

082

0.39

1.10

30.

460.

120.

200.

060.

390.

092M

ASS

_J03

4328

20+

3201

591

IC34

855

.867

583

32.0

3311

2559

.20.

072

-0.3

32.

496

1.06

0.24

0.87

0.19

0.70

0.15

2MA

SS_J

0343

4939

+32

1039

8IC

348

55.9

5579

232

.177

7819

51.7

0.03

2-0

.11

1.07

60.

370.

110.

250.

070.

260.

062M

ASS

_J03

4358

56+

3217

275

IC34

855

.993

958

32.2

9103

2148

.10.

031

-0.0

52.

026

0.77

0.19

0.85

0.17

0.21

0.05

2MA

SS_J

0343

5890

+32

1127

0IC

348

55.9

9545

832

.190

8622

59.7

0.07

30.

172.

425

0.94

0.25

0.65

0.16

0.54

0.13

2MA

SS_J

0344

0410

+32

0717

0IC

348

56.0

1712

532

.121

4219

44.2

0.03

20.

151.

705

0.65

0.18

0.39

0.10

0.18

0.04

2MA

SS_J

0344

1143

+32

1940

1IC

348

56.0

4766

732

.327

8121

48.8

0.04

4-0

.83

2.96

42.

780.

501.

100.

180.

480.

092M

ASS

_J03

4421

29+

3211

563

IC34

856

.088

708

32.1

9900

1747

.40.

033

-0.7

31.

694

0.87

0.20

0.44

0.11

0.15

0.04

Con

tinue

don

next

page

MNRAS 000, 1–13 (2017)

18 Froebrich et al.

Tabl

eA

1–

cont

inue

dfr

ompr

evio

uspa

geSo

urce

Nam

eR

egio

nR

AD

EC

Nvar

αrm

sM

SG

∆V

σV

∆R

σR

∆I

σI

(J20

00)[

deg]

[deg

][m

ag]

[mag

][m

ag]

[mag

][m

ag]

[mag

][m

ag]

2MA

SS_J

0344

2155

+32

1017

4IC

348

56.0

8983

332

.171

5019

49.4

0.04

4-0

.33

1.85

60.

880.

210.

490.

130.

250.

062M

ASS

_J03

4421

91+

3212

115

IC34

856

.091

292

32.2

0322

1746

.50.

028

-0.5

21.

996

0.88

0.24

0.24

0.07

0.24

0.05

2MA

SS_J

0344

2228

+32

0542

7IC

348

56.0

9287

532

.095

1918

54.5

0.17

80.

032.

385

0.92

0.25

0.86

0.23

0.95

0.26

2MA

SS_J

0344

2232

+32

1200

7IC

348

56.0

9300

032

.200

2221

49.8

0.03

80.

501.

833

0.67

0.18

0.32

0.10

0.22

0.06

2MA

SS_J

0344

2257

+32

0153

6IC

348

56.0

9404

232

.031

5820

46.6

0.02

40.

691.

113

0.61

0.13

0.20

0.04

0.13

0.03

2MA

SS_J

0344

2557

+32

1229

9IC

348

56.1

0654

232

.208

3326

67.6

0.03

8-0

.26

1.43

60.

520.

140.

480.

130.

370.

102M

ASS

_J03

4428

12+

3216

002

IC34

856

.117

167

32.2

6675

2247

.80.

122

-1.2

65.

524

5.03

0.97

0.72

0.16

1.36

0.24

2MA

SS_J

0344

2972

+32

1039

8IC

348

56.1

2383

332

.177

7221

46.5

0.15

20.

3111

.51

33.

111.

122.

260.

801.

080.

282M

ASS

_J03

4432

57+

3208

558

IC34

856

.135

750

32.1

4883

1846

.60.

097

-0.1

510

.12

63.

451.

071.

270.

350.

880.

182M

ASS

_J03

4432

76+

3209

157

IC34

856

.136

542

32.1

5439

1945

.90.

546

0.63

10.1

97

3.79

1.07

2.90

0.62

1.63

0.60

2MA

SS_J

0344

3398

+32

0854

1IC

348

56.1

4158

332

.148

3624

49.7

0.09

8-0

.05

8.06

62.

600.

781.

210.

300.

630.

162M

ASS

_J03

4434

26+

3210

497

IC34

856

.142

792

32.1

8047

1751

.20.

171

-0.6

811

.54

44.

541.

392.

741.

010.

990.

322M

ASS

_J03

4435

88+

3215

533

IC34

856

.149

542

32.2

6483

1745

.80.

019

0.55

1.14

30.

400.

120.

430.

090.

090.

022M

ASS

_J03

4437

19+

3209

161

IC34

856

.154

958

32.1

5447

2541

.70.

650

1.05

8.00

73.

090.

882.

350.

582.

360.

682M

ASS

_J03

4437

41+

3209

009

IC34

856

.155

875

32.1

5025

2253

.60.

332

0.61

7.72

43.

400.

891.

990.

522.

530.

552M

ASS

_J03

4437

88+

3208

041

IC34

856

.157

875

32.1

3450

2348

.40.

075

-0.5

63.

026

1.25

0.32

0.81

0.18

0.60

0.12

2MA

SS_J

0344

3798

+32

0329

6IC

348

56.1

5829

232

.058

2825

77.2

0.06

50.

464.

102

1.45

0.40

1.36

0.37

1.30

0.33

2MA

SS_J

0344

3838

+32

1259

7IC

348

56.1

5995

832

.216

6124

49.4

0.03

10.

171.

075

0.47

0.12

0.22

0.05

0.19

0.04

2MA

SS_J

0344

3845

+32

0735

6IC

348

56.1

6029

232

.126

5825

68.5

0.03

70.

581.

133

0.74

0.15

0.37

0.10

0.27

0.07

2MA

SS_J

0344

3854

+32

0800

6IC

348

56.1

6062

532

.133

5323

44.4

0.07

00.

271.

635

0.82

0.19

0.71

0.14

0.54

0.11

2MA

SS_J

0344

3869

+32

0856

7IC

348

56.1

6125

032

.149

0821

46.2

0.10

40.

087.

786

2.77

0.82

1.56

0.37

0.76

0.16

2MA

SS_J

0344

3871

+32

0842

0IC

348

56.1

6133

332

.145

0023

46.3

0.06

20.

0311

.57

63.

161.

131.

610.

510.

380.

092M

ASS

_J03

4439

16+

3209

182

IC34

856

.163

250

32.1

5511

2645

.80.

025

-0.8

44.

914

1.75

0.46

0.49

0.11

0.14

0.03

2MA

SS_J

0344

3924

+32

0735

5IC

348

56.1

6354

232

.126

5322

72.3

0.03

50.

241.

582

0.53

0.14

0.47

0.13

0.49

0.12

2MA

SS_J

0344

4472

+32

0402

4IC

348

56.1

8633

332

.067

4223

57.5

0.02

5-0

.45

1.32

60.

740.

160.

440.

110.

250.

062M

ASS

_J03

4448

81+

3213

218

IC34

856

.203

458

32.2

2281

1742

.10.

043

-0.5

81.

064

0.51

0.13

0.27

0.07

0.32

0.07

2MA

SS_J

0344

5096

+32

1609

3IC

348

56.2

1237

532

.269

3320

50.2

0.02

90.

301.

145

0.73

0.15

0.24

0.07

0.16

0.05

2MA

SS_J

0345

1634

+32

0619

9IC

348

56.3

1812

532

.105

5324

60.8

0.05

20.

552.

733

1.26

0.32

0.78

0.21

0.63

0.17

2MA

SS_J

0345

2514

+32

0930

1IC

348

56.3

5479

232

.158

3917

49.9

0.02

2-0

.42

2.59

60.

760.

250.

390.

120.

220.

05V

aria

ble_

V_5

5.79

6165

_32.

2962

07IC

348

55.7

9616

332

.296

2123

64.3

0.02

0-0

.21

1.36

60.

540.

140.

370.

100.

240.

072M

ASS

_J20

4821

50+

4441

150

IC50

7031

2.08

9538

44.6

8749

3047

.50.

063

0.23

2.51

51.

240.

270.

390.

100.

370.

082M

ASS

_J20

4828

80+

4424

115

IC50

7031

2.11

9996

44.4

0321

7548

.40.

036

0.20

1.02

50.

450.

110.

300.

060.

340.

052M

ASS

_J20

4835

46+

4353

133

IC50

7031

2.14

7738

43.8

8702

7557

.50.

087

-0.0

42.

565

1.46

0.26

1.00

0.21

0.81

0.16

2MA

SS_J

2048

5169

+43

5101

4IC

5070

312.

2153

3343

.850

3819

43.9

0.11

7-0

.72

3.16

42.

600.

491.

230.

270.

730.

162M

ASS

_J20

4911

76+

4412

329

IC50

7031

2.29

9104

44.2

0916

1949

.00.

089

0.46

2.44

30.

970.

240.

690.

160.

550.

142M

ASS

_J20

4923

23+

4434

373

IC50

7031

2.34

6833

44.5

7699

2957

.80.

072

0.43

2.00

31.

140.

230.

640.

160.

480.

132M

ASS

_J20

4932

19+

4417

031

IC50

7031

2.38

4096

44.2

8423

4865

.30.

144

0.26

3.53

32.

180.

381.

780.

351.

240.

292M

ASS

_J20

5033

07+

4415

387

IC50

7031

2.63

7754

44.2

6075

3155

.70.

063

0.15

1.81

50.

750.

190.

610.

140.

390.

112M

ASS

_J20

5036

95+

4421

408

IC50

7031

2.65

3900

44.3

6134

5764

.50.

077

0.17

2.96

21.

450.

301.

090.

241.

210.

212M

ASS

_J20

5040

29+

4430

490

IC50

7031

2.66

7908

44.5

1362

8175

.50.

025

0.28

1.45

21.

220.

180.

950.

150.

770.

122M

ASS

_J20

5040

53+

4420

506

IC50

7031

2.66

8917

44.3

4744

3146

.50.

041

-0.3

61.

506

0.79

0.16

3.23

0.86

0.23

0.05

Con

tinue

don

next

page

MNRAS 000, 1–13 (2017)

HOYS-CAPS 19

Tabl

eA

1–

cont

inue

dfr

ompr

evio

uspa

geSo

urce

Nam

eR

egio

nR

AD

EC

Nvar

αrm

sM

SG

∆V

σV

∆R

σR

∆I

σI

(J20

00)[

deg]

[deg

][m

ag]

[mag

][m

ag]

[mag

][m

ag]

[mag

][m

ag]

2MA

SS_J

2050

4353

+44

1551

8IC

5070

312.

6813

3344

.264

3974

57.6

0.08

3-0

.77

2.05

41.

510.

251.

400.

290.

870.

162M

ASS

_J20

5046

08+

4419

100

IC50

7031

2.69

1954

44.3

1949

7048

.40.

045

0.29

1.10

50.

860.

140.

780.

160.

380.

072M

ASS

_J20

5048

80+

4419

233

IC50

7031

2.70

3371

44.3

2318

6348

.10.

041

0.34

1.40

50.

790.

151.

610.

280.

260.

062M

ASS

_J20

5050

39+

4450

115

IC50

7031

2.71

0054

44.8

3653

8175

.70.

047

-0.3

03.

756

1.76

0.41

1.71

0.36

1.49

0.31

2MA

SS_J

2050

5317

+44

2353

5IC

5070

312.

7215

5844

.398

2442

42.0

0.07

00.

261.

785

0.93

0.20

1.25

0.28

0.48

0.10

2MA

SS_J

2050

5357

+44

2100

8IC

5070

312.

7232

3744

.350

2069

79.9

0.03

31.

025.

031

1.94

0.51

1.44

0.39

1.47

0.40

2MA

SS_J

2050

5563

+44

1750

2IC

5070

312.

7318

1244

.297

2478

62.2

0.03

3-0

.08

1.06

50.

770.

130.

580.

100.

410.

082M

ASS

_J20

5058

70+

4417

308

IC50

7031

2.74

4567

44.2

9189

8369

.70.

037

0.23

1.45

20.

680.

150.

580.

130.

470.

112M

ASS

_J20

5059

01+

4419

542

IC50

7031

2.74

5850

44.3

3177

2042

.10.

073

0.11

1.62

50.

770.

180.

440.

110.

350.

092M

ASS

_J20

5059

48+

4419

390

IC50

7031

2.74

7896

44.3

2748

3053

.10.

120

0.11

1.55

50.

740.

170.

760.

190.

590.

162M

ASS

_J20

5059

74+

4440

491

IC50

7031

2.74

8900

44.6

8033

7248

.20.

037

-0.0

81.

046

0.71

0.13

0.29

0.06

0.19

0.05

2MA

SS_J

2051

0089

+44

3149

7IC

5070

312.

7537

8344

.530

5181

72.3

0.03

20.

772.

741

1.54

0.31

1.33

0.25

1.09

0.21

2MA

SS_J

2051

0222

+44

1352

1IC

5070

312.

7593

0844

.231

1246

50.4

0.02

60.

131.

325

0.59

0.14

0.28

0.07

0.15

0.04

2MA

SS_J

2051

0310

+44

2402

8IC

5070

312.

7628

1744

.400

7330

60.1

0.12

90.

334.

343

1.63

0.45

2.31

0.49

0.99

0.27

2MA

SS_J

2051

0333

+44

2415

5IC

5070

312.

7639

4644

.404

2875

56.1

0.06

20.

192.

115

1.20

0.23

1.19

0.20

0.80

0.12

2MA

SS_J

2051

0465

+44

2350

1IC

5070

312.

7693

7944

.397

2585

77.7

0.02

90.

332.

082

1.25

0.26

1.03

0.21

0.96

0.20

2MA

SS_J

2051

0570

+44

1632

2IC

5070

312.

7737

7544

.275

5580

74.8

0.03

60.

312.

902

1.37

0.31

1.15

0.26

1.04

0.23

2MA

SS_J

2051

0805

+44

3150

5IC

5070

312.

7836

0044

.530

6840

58.4

0.14

40.

032.

805

0.97

0.26

0.85

0.22

0.85

0.23

2MA

SS_J

2051

0950

+44

3329

6IC

5070

312.

7895

5044

.558

2339

47.2

0.02

3-0

.14

1.16

60.

510.

130.

300.

060.

140.

032M

ASS

_J20

5114

55+

4413

379

IC50

7031

2.81

0671

44.2

2716

3745

.80.

031

-0.0

61.

546

0.74

0.16

0.56

0.12

0.21

0.04

2MA

SS_J

2051

1513

+44

1817

6IC

5070

312.

8131

0844

.304

8572

62.1

0.04

20.

712.

263

1.80

0.26

1.52

0.21

1.15

0.16

2MA

SS_J

2051

1771

+44

1829

8IC

5070

312.

8238

2144

.308

2343

69.9

0.08

40.

144.

352

1.51

0.42

1.34

0.36

1.08

0.29

2MA

SS_J

2051

1824

+44

1308

2IC

5070

312.

8259

2944

.218

9981

67.6

0.03

0-0

.19

1.35

60.

540.

130.

450.

100.

340.

082M

ASS

_J20

5119

45+

4419

306

IC50

7031

2.83

0962

44.3

2514

4366

.40.

099

-0.0

83.

505

2.08

0.38

1.54

0.33

1.10

0.26

2MA

SS_J

2051

1985

+44

2306

5IC

5070

312.

8327

0444

.385

0624

57.5

0.07

50.

283.

015

1.03

0.26

0.91

0.23

0.55

0.15

2MA

SS_J

2051

2099

+44

2619

6IC

5070

312.

8374

6344

.438

7985

73.3

0.03

40.

191.

892

0.89

0.19

0.77

0.16

0.61

0.14

2MA

SS_J

2051

2267

+44

2107

7IC

5070

312.

8444

8344

.352

1279

73.5

0.06

10.

222.

312

1.27

0.24

1.08

0.21

0.86

0.19

2MA

SS_J

2051

2307

+44

2646

1IC

5070

312.

8461

2944

.446

0751

41.4

0.03

5-0

.65

1.22

40.

910.

150.

430.

080.

250.

052M

ASS

_J20

5123

60+

4415

425

IC50

7031

2.84

8329

44.2

6182

1649

.70.

044

0.41

1.98

30.

720.

190.

390.

090.

230.

062M

ASS

_J20

5123

69+

4435

226

IC50

7031

2.84

8633

44.5

8961

2156

.70.

115

0.03

2.94

51.

260.

300.

810.

230.

730.

192M

ASS

_J20

5124

41+

4413

043

IC50

7031

2.85

1717

44.2

1786

2561

.70.

074

0.25

2.47

51.

130.

270.

840.

230.

750.

18R

11_T

1_20

5126

.22+

4405

23.7

IC50

7031

2.85

9283

44.0

8994

8679

.70.

075

0.24

9.07

23.

641.

013.

210.

882.

950.

832M

ASS

_J20

5126

54+

4436

287

IC50

7031

2.86

0504

44.6

0798

2161

.50.

108

0.02

3.89

51.

240.

360.

990.

220.

910.

232M

ASS

_J20

5126

67+

4404

246

IC50

7031

2.86

1175

44.0

7348

7758

.50.

036

-0.2

71.

546

0.90

0.17

1.00

0.21

0.42

0.08

2MA

SS_J

2051

2845

+44

2601

1IC

5070

312.

8685

0044

.433

5936

68.9

0.09

1-0

.36

3.31

61.

440.

351.

110.

290.

890.

242M

ASS

_J20

5130

89+

4406

594

IC50

7031

2.87

8754

44.1

1647

7966

.60.

059

0.75

2.02

31.

200.

221.

180.

180.

900.

162M

ASS

_J20

5132

78+

4423

480

IC50

7031

2.88

6658

44.3

9666

7262

.50.

050

0.03

1.94

50.

980.

200.

700.

150.

520.

112M

ASS

_J20

5133

40+

4434

543

IC50

7031

2.88

9158

44.5

8180

7870

.60.

063

0.34

1.72

30.

910.

190.

890.

170.

750.

162M

ASS

_J20

5133

70+

4410

145

IC50

7031

2.89

0379

44.1

7070

2442

.20.

083

0.81

1.77

30.

730.

180.

470.

110.

360.

102M

ASS

_J20

5138

65+

4403

409

IC50

7031

2.91

1042

44.0

6131

5850

.00.

089

-0.0

12.

136

1.06

0.22

0.64

0.14

0.54

0.12

2MA

SS_J

2051

3925

+44

2428

1IC

5070

312.

9136

0444

.407

7886

73.0

0.03

30.

542.

523

0.90

0.25

0.82

0.22

0.67

0.18

Con

tinue

don

next

page

MNRAS 000, 1–13 (2017)

20 Froebrich et al.

Tabl

eA

1–

cont

inue

dfr

ompr

evio

uspa

geSo

urce

Nam

eR

egio

nR

AD

EC

Nvar

αrm

sM

SG

∆V

σV

∆R

σR

∆I

σI

(J20

00)[

deg]

[deg

][m

ag]

[mag

][m

ag]

[mag

][m

ag]

[mag

][m

ag]

2MA

SS_J

2051

3996

+44

3314

3IC

5070

312.

9164

1244

.553

9247

72.5

0.07

7-0

.02

3.85

21.

350.

371.

350.

341.

080.

282M

ASS

_J20

5141

41+

4415

071

IC50

7031

2.92

2575

44.2

5199

5262

.00.

085

-0.0

34.

555

1.82

0.48

1.57

0.37

1.16

0.26

2MA

SS_J

2051

4599

+44

2835

3IC

5070

312.

9416

5044

.476

4419

52.7

0.07

00.

612.

443

0.98

0.26

0.53

0.12

0.41

0.11

2MA

SS_J

2051

4698

+44

2538

9IC

5070

312.

9457

4244

.427

4772

67.5

0.03

5-0

.16

1.77

60.

740.

170.

510.

120.

460.

122M

ASS

_J20

5147

55+

4425

106

IC50

7031

2.94

8179

44.4

1956

8685

.30.

036

1.11

2.44

10.

850.

230.

790.

210.

780.

222M

ASS

_J20

5148

55+

4405

196

IC50

7031

2.95

2333

44.0

8876

4944

.50.

047

-0.0

72.

356

0.97

0.23

0.61

0.12

0.31

0.06

2MA

SS_J

2051

4886

+44

1102

7IC

5070

312.

9535

8344

.184

0737

44.9

0.04

90.

451.

243

0.64

0.13

0.40

0.09

0.21

0.06

2MA

SS_J

2051

5568

+44

3352

6IC

5070

312.

9821

1744

.564

6276

71.9

0.05

51.

103.

051

1.83

0.33

1.72

0.27

1.33

0.22

2MA

SS_J

2051

5722

+44

0216

1IC

5070

312.

9883

4244

.037

7516

50.8

0.18

90.

512.

863

0.74

0.25

1.05

0.30

0.89

0.26

2MA

SS_J

2051

5864

+44

1456

8IC

5070

312.

9943

2544

.249

1054

52.0

0.04

9-0

.03

1.92

61.

310.

210.

570.

110.

400.

082M

ASS

_J20

5200

17+

4419

590

IC50

7031

3.00

0671

44.3

3301

1743

.70.

031

0.22

2.08

50.

750.

200.

280.

080.

190.

042M

ASS

_J20

5200

99+

4428

413

IC50

7031

3.00

4150

44.4

7819

5948

.70.

032

-0.2

41.

306

0.65

0.15

0.54

0.09

0.42

0.06

2MA

SS_J

2052

0672

+44

2755

3IC

5070

313.

0279

2544

.465

3350

56.2

0.10

30.

902.

263

1.48

0.26

1.03

0.19

1.12

0.23

2MA

SS_J

2052

1294

+44

2053

4IC

5070

313.

0538

3344

.348

1632

74.9

0.07

30.

476.

462

2.43

0.64

2.07

0.57

1.68

0.48

2MA

SS_J

2052

1545

+44

2810

7IC

5070

313.

0643

9244

.469

6772

53.2

0.06

00.

151.

555

0.76

0.16

0.54

0.10

0.47

0.09

2MA

SS_J

2052

1841

+44

1630

5IC

5070

313.

0767

5044

.275

1135

59.2

0.06

80.

363.

053

1.40

0.34

0.93

0.21

0.71

0.17

2MA

SS_J

2052

2802

+44

0331

1IC

5070

313.

1168

5044

.058

6775

84.9

0.07

90.

354.

662

1.63

0.47

1.71

0.46

1.81

0.46

2MA

SS_J

2052

2831

+44

2114

5IC

5070

313.

1180

4244

.354

0873

54.7

0.06

1-0

.00

1.60

51.

390.

200.

980.

140.

630.

112M

ASS

_J20

5230

89+

4420

115

IC50

7031

3.12

8725

44.3

3649

7055

.30.

084

0.19

1.86

51.

370.

220.

900.

170.

860.

162M

ASS

_J20

5234

37+

4417

402

IC50

7031

3.14

3158

44.2

9452

5556

.80.

051

-0.0

51.

855

0.99

0.21

0.86

0.16

0.51

0.10

2MA

SS_J

2052

3531

+44

3319

3IC

5070

313.

1470

9644

.555

3724

50.1

0.04

9-0

.20

2.36

60.

950.

240.

400.

110.

270.

082M

ASS

_J20

5236

47+

4411

463

IC50

7031

3.15

1887

44.1

9621

4549

.80.

093

0.01

3.73

62.

040.

400.

820.

210.

740.

152M

ASS

_J20

5248

66+

4419

507

IC50

7031

3.20

2821

44.3

3069

3346

.60.

049

0.34

1.96

50.

820.

190.

290.

060.

310.

072M

ASS

_J20

5254

30+

4352

165

IC50

7031

3.22

6258

43.8

7121

5155

.60.

121

0.73

2.77

31.

280.

281.

040.

221.

410.

222M

ASS

_J20

5257

28+

4440

463

IC50

7031

3.23

8800

44.6

7954

4844

.20.

036

0.18

1.54

50.

860.

180.

320.

070.

170.

042M

ASS

_J20

5301

79+

4419

058

IC50

7031

3.25

7508

44.3

1826

2955

.50.

070

0.46

2.31

30.

880.

220.

630.

160.

390.

122M

ASS

_J20

5303

29+

4439

488

IC50

7031

3.26

3700

44.6

6358

2446

.30.

040

-0.5

21.

516

0.64

0.16

0.31

0.08

0.19

0.05

2MA

SS_J

2053

0817

+44

0514

3IC

5070

313.

2840

8744

.087

2516

38.2

0.12

00.

272.

273

0.67

0.20

0.67

0.18

0.48

0.13

2MA

SS_J

2053

1400

+44

1257

7IC

5070

313.

3083

5044

.216

0655

54.9

0.06

90.

032.

075

1.00

0.21

0.58

0.16

0.46

0.12

2MA

SS_J

2053

1456

+44

2906

1IC

5070

313.

3106

0844

.485

1031

44.4

0.03

70.

082.

285

1.15

0.26

0.54

0.16

0.17

0.04

2MA

SS_J

2053

1707

+44

3834

3IC

5070

313.

3212

2944

.642

8434

46.1

0.05

40.

181.

895

0.96

0.21

0.41

0.09

0.23

0.07

R11

_T1_

2053

17.4

9+44

2802

.1IC

5070

313.

3228

7544

.467

2636

45.3

0.05

30.

201.

905

0.76

0.18

0.43

0.10

0.25

0.06

2MA

SS_J

2053

2772

+44

1034

5IC

5070

313.

3655

7144

.176

2724

49.1

0.10

80.

012.

086

0.88

0.21

0.48

0.11

0.54

0.14

2MA

SS_J

2053

2968

+44

2356

6IC

5070

313.

3736

8844

.399

0419

57.9

0.16

10.

202.

375

0.85

0.23

0.79

0.20

0.72

0.23

2MA

SS_J

2053

3044

+44

2643

5IC

5070

313.

3768

9244

.445

4517

51.1

0.06

90.

132.

235

0.75

0.22

0.87

0.17

0.32

0.10

2MA

SS_J

2053

3137

+44

1334

5IC

5070

313.

3807

6744

.226

2645

48.3

0.06

2-0

.13

1.63

60.

790.

170.

470.

110.

350.

082M

ASS

_J20

5332

71+

4449

117

IC50

7031

3.38

6350

44.8

1994

7948

.40.

058

0.10

1.17

50.

590.

130.

750.

110.

560.

08R

11_T

1_20

5334

.32+

4407

40.5

IC50

7031

3.39

3004

44.1

2792

6641

.80.

061

-0.2

11.

146

0.52

0.13

0.35

0.09

0.46

0.08

2MA

SS_J

2053

3478

+44

2917

9IC

5070

313.

3949

0044

.488

2642

54.5

0.05

80.

102.

755

1.35

0.29

1.88

0.35

0.45

0.11

2MA

SS_J

2053

3544

+44

2748

1IC

5070

313.

3977

3844

.463

3551

55.1

0.10

1-0

.01

2.76

51.

220.

300.

810.

200.

680.

172M

ASS

_J20

5340

14+

4410

455

IC50

7031

3.41

7237

44.1

7936

4353

.10.

088

0.38

2.87

31.

200.

280.

920.

190.

760.

16C

ontin

ued

onne

xtpa

ge

MNRAS 000, 1–13 (2017)

HOYS-CAPS 21

Tabl

eA

1–

cont

inue

dfr

ompr

evio

uspa

geSo

urce

Nam

eR

egio

nR

AD

EC

Nvar

αrm

sM

SG

∆V

σV

∆R

σR

∆I

σI

(J20

00)[

deg]

[deg

][m

ag]

[mag

][m

ag]

[mag

][m

ag]

[mag

][m

ag]

2MA

SS_J

2053

4270

+44

0348

6IC

5070

313.

4279

7944

.063

5183

67.5

0.06

40.

432.

423

1.55

0.28

1.11

0.22

1.01

0.19

2MA

SS_J

2053

5690

+44

5131

9IC

5070

313.

4871

5044

.858

8816

35.4

0.41

3-0

.56

5.41

41.

820.

552.

120.

451.

820.

482M

ASS

_J20

5023

59+

4451

264

IC50

7031

2.59

8237

44.8

5727

5445

.90.

060

-0.1

51.

476

0.71

0.15

0.40

0.08

0.29

0.07

2MA

SS_J

2050

3699

+44

2049

8IC

5070

312.

6540

5444

.347

1851

60.3

0.05

2-0

.05

1.30

51.

090.

170.

890.

200.

630.

122M

ASS

_J20

5042

80+

4421

554

IC50

7031

2.67

8283

44.3

6551

2053

.00.

058

-0.1

22.

386

0.90

0.24

0.52

0.13

0.36

0.09

2MA

SS_J

2050

5418

+44

3808

3IC

5070

312.

7258

6344

.635

6372

55.9

0.06

20.

151.

685

0.84

0.18

0.53

0.12

0.37

0.09

2MA

SS_J

2050

5429

+44

1752

6IC

5070

312.

7262

5844

.297

9456

49.2

0.04

80.

121.

925

0.87

0.19

0.54

0.11

0.29

0.06

2MA

SS_J

2050

5747

+44

2445

6IC

5070

312.

7394

4244

.412

7432

46.2

0.05

7-0

.19

2.00

60.

850.

210.

750.

170.

360.

082M

ASS

_J20

5101

46+

4415

344

IC50

7031

2.75

6042

44.2

5957

6753

.30.

048

-0.1

31.

326

0.71

0.14

0.37

0.09

0.37

0.08

2MA

SS_J

2051

1606

+44

1500

0IC

5070

312.

8169

5444

.250

0018

52.7

0.10

2-0

.03

1.49

60.

710.

170.

460.

130.

870.

182M

ASS

_J20

5342

61+

4353

536

IC50

7031

3.42

7521

43.8

9823

2033

.80.

285

-0.2

03.

134

1.15

0.31

1.04

0.25

1.11

0.30

LkH

a_17

0IC

5070

313.

0532

2544

.323

9287

78.5

0.03

60.

021.

142

0.63

0.13

0.53

0.12

0.51

0.11

Var

iabl

e_R

_312

.743

500_

44.5

4825

6IC

5070

312.

7435

0044

.548

2636

42.5

0.04

20.

251.

315

0.66

0.14

1.08

0.26

0.22

0.05

Var

iabl

e_I_

312.

7082

21_4

4.04

3568

IC50

7031

2.70

8221

44.0

4357

5447

.50.

077

-0.0

71.

666

0.88

0.19

0.43

0.11

0.36

0.10

H08

_215

0511

2+47

4813

0IC

5146

327.

7130

0047

.803

6122

64.3

0.09

30.

6513

.02

13.

971.

382.

980.

972.

160.

71H

08_2

1523

075+

4714

064

IC51

4632

8.12

8125

47.2

3511

2757

.70.

077

0.24

2.43

51.

330.

260.

990.

200.

870.

17H

08_2

1523

264+

4713

460

IC51

4632

8.13

6000

47.2

2944

2851

.10.

089

-0.1

82.

016

1.05

0.22

0.63

0.13

0.66

0.15

H08

_215

2327

7+47

1409

6IC

5146

328.

1365

4247

.236

0027

50.4

0.06

20.

113.

145

1.03

0.29

0.64

0.14

0.40

0.09

H08

_215

2345

6+47

1440

7IC

5146

328.

1440

0047

.244

6421

47.0

0.03

81.

092.

031

0.77

0.20

0.45

0.10

0.33

0.06

H08

_215

2365

8+47

1436

8IC

5146

328.

1524

1747

.243

5627

45.3

0.03

60.

531.

803

0.97

0.21

0.41

0.08

0.20

0.05

H08

_215

2412

2+47

1252

1IC

5146

328.

1717

5047

.214

4723

57.2

0.04

90.

301.

465

0.47

0.14

0.38

0.10

0.38

0.09

H08

_215

2427

3+47

1013

1IC

5146

328.

1780

4247

.170

3124

84.3

0.04

10.

392.

442

0.84

0.23

0.81

0.22

0.76

0.21

H08

_215

3039

7+47

2330

7IC

5146

328.

2665

4247

.391

8626

69.8

0.04

10.

471.

013

0.52

0.12

0.36

0.09

0.38

0.08

H08

_215

3203

5+47

1257

9IC

5146

328.

3347

9247

.216

0817

46.9

0.05

20.

642.

163

0.84

0.22

0.93

0.30

0.31

0.07

H08

_215

3230

5+47

1408

7IC

5146

328.

3460

4247

.235

7519

49.2

0.06

70.

483.

433

1.43

0.38

1.27

0.34

0.48

0.11

H08

_215

3258

1+47

1551

4IC

5146

328.

3575

4247

.264

2820

60.4

0.04

3-0

.08

1.48

50.

610.

160.

570.

160.

340.

09H

08_2

1532

961+

4713

542

IC51

4632

8.37

3375

47.2

3172

2861

.40.

036

1.19

1.04

11.

040.

191.

080.

180.

740.

13H

08_2

1533

050+

4714

440

IC51

4632

8.37

7083

47.2

4556

2169

.50.

059

0.20

2.28

20.

770.

220.

770.

230.

580.

17H

08_2

1533

820+

4714

590

IC51

4632

8.40

9167

47.2

4972

2551

.80.

065

-0.5

82.

276

0.99

0.24

1.48

0.35

0.42

0.10

H08

_215

3418

7+47

1750

3IC

5146

328.

4244

5847

.297

3124

47.2

0.05

11.

072.

011

1.07

0.24

0.45

0.11

0.21

0.06

H08

_215

3421

5+47

1553

5IC

5146

328.

4256

2547

.264

8626

60.4

0.04

40.

441.

643

0.63

0.16

0.42

0.12

0.40

0.10

H08

_215

3425

0+47

1825

0IC

5146

328.

4270

8347

.306

9424

52.5

0.04

30.

271.

145

0.48

0.12

0.79

0.17

0.39

0.08

H08

_215

3465

3+47

1435

7IC

5146

328.

4438

7547

.243

2526

43.1

0.09

90.

301.

005

0.72

0.14

0.65

0.15

0.43

0.12

H08

_215

3574

8+46

5944

2IC

5146

328.

4895

0046

.995

6124

78.9

0.05

7-0

.08

5.68

61.

940.

582.

100.

551.

750.

49H

08_2

1540

032+

4725

221

IC51

4632

8.50

1333

47.4

2281

2561

.50.

055

0.01

3.65

51.

610.

381.

100.

270.

690.

19H

08_2

1540

878+

4713

575

IC51

4632

8.53

6583

47.2

3264

1647

.60.

110

0.30

1.18

50.

480.

130.

610.

150.

480.

14H

08_2

1553

579+

4704

446

IC51

4632

8.89

9125

47.0

7906

1951

.30.

072

-0.2

21.

126

0.45

0.12

0.25

0.08

0.42

0.11

H08

_215

2196

2+47

1351

5IC

5146

328.

0817

5047

.230

9730

82.8

0.03

30.

161.

122

0.37

0.11

0.35

0.11

0.36

0.11

H08

_215

2224

6+47

1307

7IC

5146

328.

0935

8347

.218

8125

55.0

0.15

00.

491.

933

0.80

0.21

0.60

0.15

0.67

0.19

H08

_215

2228

2+47

1055

0IC

5146

328.

0950

8347

.181

9419

41.5

0.06

30.

381.

255

0.72

0.16

0.29

0.07

0.29

0.08

H08

_215

2307

5+47

1406

4IC

5146

328.

1281

2547

.235

1127

57.7

0.07

70.

242.

435

1.33

0.26

0.99

0.20

0.87

0.17

Con

tinue

don

next

page

MNRAS 000, 1–13 (2017)

22 Froebrich et al.

Tabl

eA

1–

cont

inue

dfr

ompr

evio

uspa

geSo

urce

Nam

eR

egio

nR

AD

EC

Nvar

αrm

sM

SG

∆V

σV

∆R

σR

∆I

σI

(J20

00)[

deg]

[deg

][m

ag]

[mag

][m

ag]

[mag

][m

ag]

[mag

][m

ag]

H08

_215

2316

8+47

1345

1IC

5146

328.

1320

0047

.229

1925

51.7

0.09

00.

091.

605

0.75

0.18

0.43

0.14

0.54

0.13

H08

_215

2326

4+47

1346

0IC

5146

328.

1360

0047

.229

4428

51.1

0.08

9-0

.18

2.01

61.

050.

220.

630.

130.

660.

15H

08_2

1523

277+

4714

096

IC51

4632

8.13

6542

47.2

3600

2750

.40.

062

0.11

3.14

51.

030.

290.

640.

140.

400.

09H

08_2

1523

278+

4711

386

IC51

4632

8.13

6583

47.1

9406

2786

.40.

076

0.78

1.03

10.

420.

110.

490.

170.

480.

14H

08_2

1523

456+

4714

407

IC51

4632

8.14

4000

47.2

4464

2147

.00.

038

1.09

2.03

10.

770.

200.

450.

100.

330.

06H

08_2

1523

512+

4710

097

IC51

4632

8.14

6333

47.1

6936

1946

.30.

138

-0.2

82.

676

1.14

0.28

0.94

0.31

0.66

0.17

H08

_215

2354

5+47

1128

6IC

5146

328.

1477

0847

.191

2816

47.8

0.05

2-0

.05

1.07

60.

450.

120.

170.

050.

270.

07H

08_2

1523

658+

4714

368

IC51

4632

8.15

2417

47.2

4356

2745

.30.

036

0.53

1.80

30.

970.

210.

410.

080.

200.

05H

08_2

1523

731+

4712

344

IC51

4632

8.15

5458

47.2

0956

2040

.20.

068

0.82

1.52

30.

440.

140.

410.

090.

330.

08H

08_2

1524

122+

4712

521

IC51

4632

8.17

1750

47.2

1447

2357

.20.

049

0.30

1.46

50.

470.

140.

380.

100.

380.

09H

08_2

1524

273+

4710

131

IC51

4632

8.17

8042

47.1

7031

2484

.30.

041

0.39

2.44

20.

840.

230.

810.

220.

760.

21H

08_2

1531

683+

4715

299

IC51

4632

8.32

0125

47.2

5831

2247

.30.

021

-0.2

61.

016

0.41

0.12

0.35

0.09

0.12

0.03

H08

_215

3196

3+47

1602

9IC

5146

328.

3317

9247

.267

4719

41.8

0.05

8-0

.04

3.02

60.

940.

281.

090.

230.

250.

07H

08_2

1531

996+

4715

399

IC51

4632

8.33

3167

47.2

6108

2041

.70.

065

0.34

3.00

31.

050.

301.

400.

300.

280.

07H

08_2

1532

035+

4712

579

IC51

4632

8.33

4792

47.2

1608

1746

.90.

052

0.64

2.16

30.

840.

220.

930.

300.

310.

07H

08_2

1532

120+

4714

025

IC51

4632

8.33

8333

47.2

3403

2647

.30.

031

0.65

4.23

31.

700.

471.

270.

310.

230.

06H

08_2

1532

135+

4716

018

IC51

4632

8.33

8958

47.2

6717

2445

.80.

039

0.36

3.64

31.

410.

371.

460.

470.

190.

05H

08_2

1532

159+

4714

137

IC51

4632

8.33

9958

47.2

3714

1750

.60.

075

0.48

3.81

31.

430.

370.

590.

160.

410.

11H

08_2

1532

175+

4713

329

IC51

4632

8.34

0625

47.2

2581

1944

.30.

095

-0.4

44.

016

1.22

0.38

1.47

0.39

0.49

0.11

H08

_215

3225

0+47

1417

5IC

5146

328.

3437

5047

.238

1927

55.5

0.06

60.

172.

065

0.93

0.21

1.10

0.23

0.40

0.11

H08

_215

3230

5+47

1408

7IC

5146

328.

3460

4247

.235

7519

49.2

0.06

70.

483.

433

1.43

0.38

1.27

0.34

0.48

0.11

H08

_215

3236

8+47

1905

2IC

5146

328.

3486

6747

.318

1120

39.2

0.05

5-0

.27

1.50

60.

670.

170.

890.

190.

250.

06H

08_2

1532

525+

4714

576

IC51

4632

8.35

5208

47.2

4933

1844

.40.

023

-0.2

41.

326

0.53

0.14

0.28

0.08

0.12

0.03

H08

_215

3258

1+47

1551

4IC

5146

328.

3575

4247

.264

2820

60.4

0.04

3-0

.08

1.48

50.

610.

160.

570.

160.

340.

09H

08_2

1532

961+

4713

542

IC51

4632

8.37

3375

47.2

3172

2861

.40.

036

1.19

1.04

11.

040.

191.

080.

180.

740.

13H

08_2

1533

050+

4714

440

IC51

4632

8.37

7083

47.2

4556

2169

.50.

059

0.20

2.28

20.

770.

220.

770.

230.

580.

17H

08_2

1533

820+

4714

590

IC51

4632

8.40

9167

47.2

4972

2551

.80.

065

-0.5

82.

276

0.99

0.24

1.48

0.35

0.42

0.10

H08

_215

3418

7+47

1750

3IC

5146

328.

4244

5847

.297

3124

47.2

0.05

11.

072.

011

1.07

0.24

0.45

0.11

0.21

0.06

H08

_215

3421

5+47

1553

5IC

5146

328.

4256

2547

.264

8626

60.4

0.04

40.

441.

643

0.63

0.16

0.42

0.12

0.40

0.10

H08

_215

3425

0+47

1825

0IC

5146

328.

4270

8347

.306

9424

52.5

0.04

30.

271.

145

0.48

0.12

0.79

0.17

0.39

0.08

H08

_215

3465

3+47

1435

7IC

5146

328.

4438

7547

.243

2526

43.1

0.09

90.

301.

005

0.72

0.14

0.65

0.15

0.43

0.12

Var

iabl

e_V

_328

.709

503_

47.6

8756

9IC

5146

328.

7095

0047

.687

5630

57.5

0.02

31.

153.

031

0.97

0.29

0.64

0.19

0.45

0.11

Var

iabl

e_V

_327

.827

057_

47.5

7705

3IC

5146

327.

8270

4247

.577

0324

57.6

0.09

4-0

.18

1.87

60.

710.

180.

520.

140.

670.

16V

aria

ble_

V_3

28.5

2029

4_47

.114

960

IC51

4632

8.52

0292

47.1

1494

2453

.50.

120

-0.2

22.

606

0.97

0.27

0.81

0.22

0.72

0.19

Var

iabl

e_V

_328

.435

669_

47.5

9556

2IC

5146

328.

4356

6747

.595

5624

34.2

0.27

3-0

.28

2.03

40.

730.

200.

940.

240.

860.

25V

aria

ble_

V_3

27.7

6934

8_47

.164

249

IC51

4632

7.76

9333

47.1

6422

2242

.00.

197

-0.0

42.

246

0.95

0.23

0.79

0.22

0.79

0.22

Var

iabl

e_V

_328

.568

512_

46.8

9204

8IC

5146

328.

5685

0046

.892

0320

58.6

0.12

7-0

.27

2.19

61.

080.

260.

690.

220.

880.

21V

aria

ble_

V_3

28.0

7406

6_47

.578

243

IC51

4632

8.07

4042

47.5

7822

2263

.10.

136

0.03

3.10

50.

940.

280.

800.

200.

800.

23V

aria

ble_

R_3

28.8

6471

6_47

.158

390

IC51

4632

8.86

4708

47.1

5839

2473

.20.

054

1.03

1.47

10.

900.

200.

850.

210.

660.

16V

aria

ble_

I_32

8.78

3020

_47.

4462

39IC

5146

328.

7830

0047

.446

2219

42.1

0.23

60.

302.

633

0.94

0.26

0.62

0.15

1.11

0.28

2MA

SS_J

0641

1725

+09

5432

3N

GC

2264

100.

3218

759.

9089

737

60.7

0.03

00.

501.

953

0.82

0.19

0.53

0.13

0.39

0.10

Con

tinue

don

next

page

MNRAS 000, 1–13 (2017)

HOYS-CAPS 23

Tabl

eA

1–

cont

inue

dfr

ompr

evio

uspa

geSo

urce

Nam

eR

egio

nR

AD

EC

Nvar

αrm

sM

SG

∆V

σV

∆R

σR

∆I

σI

(J20

00)[

deg]

[deg

][m

ag]

[mag

][m

ag]

[mag

][m

ag]

[mag

][m

ag]

2MA

SS_J

0641

0934

+09

5608

1N

GC

2264

100.

2889

179.

9355

818

53.4

0.05

80.

352.

333

0.97

0.24

0.34

0.11

0.34

0.09

2MA

SS_J

0641

0896

+09

3346

0N

GC

2264

100.

2873

339.

5627

821

42.5

0.02

2-0

.16

1.03

60.

480.

120.

260.

060.

130.

032M

ASS

_J06

4121

00+

0933

361

NG

C22

6410

0.33

7500

9.56

003

3666

.90.

026

0.01

1.10

50.

600.

130.

460.

110.

370.

092M

ASS

_J06

4057

83+

0941

201

NG

C22

6410

0.24

0958

9.68

892

3271

.20.

044

0.42

1.98

30.

890.

210.

700.

180.

680.

162M

ASS

_J06

4049

27+

0923

503

NG

C22

6410

0.20

5292

9.39

731

3365

.90.

038

0.49

1.60

30.

560.

170.

530.

140.

360.

102M

ASS

_J06

4142

87+

0925

084

NG

C22

6410

0.42

8625

9.41

900

3350

.60.

075

-0.2

81.

836

0.75

0.18

0.48

0.11

0.40

0.10

2MA

SS_J

0641

1185

+09

2631

4N

GC

2264

100.

2993

759.

4420

636

66.9

0.11

9-0

.68

3.95

41.

990.

421.

600.

411.

200.

302M

ASS

_J06

4100

50+

0945

031

NG

C22

6410

0.25

2083

9.75

086

3475

.30.

033

0.71

2.20

10.

880.

230.

800.

190.

640.

172M

ASS

_J06

4144

22+

0925

024

NG

C22

6410

0.43

4250

9.41

733

3145

.80.

043

0.33

1.17

50.

670.

140.

400.

080.

300.

062M

ASS

_J06

4118

37+

0939

411

NG

C22

6410

0.32

6542

9.66

142

3147

.60.

067

-0.7

21.

284

0.60

0.15

0.41

0.10

0.40

0.09

2MA

SS_J

0641

2119

+09

3214

6N

GC

2264

100.

3382

929.

5373

920

44.0

0.05

00.

011.

486

0.65

0.16

0.18

0.05

0.34

0.07

2MA

SS_J

0640

4100

+09

2754

3N

GC

2264

100.

1708

339.

4650

831

23.4

0.23

7-0

.08

1.23

40.

650.

140.

460.

100.

700.

182M

ASS

_J06

4058

67+

0936

132

NG

C22

6410

0.24

4458

9.60

367

2447

.60.

032

0.77

1.42

30.

660.

150.

350.

080.

150.

042M

ASS

_J06

4050

59+

0954

573

NG

C22

6410

0.21

0792

9.91

592

3574

.90.

029

0.90

1.85

11.

050.

230.

790.

200.

670.

162M

ASS

_J06

4045

16+

0928

444

NG

C22

6410

0.18

8167

9.47

900

3873

.60.

016

1.00

2.16

10.

870.

220.

760.

190.

630.

162M

ASS

_J06

4058

82+

0939

187

NG

C22

6410

0.24

5083

9.65

519

2848

.90.

037

0.25

1.03

50.

650.

130.

350.

090.

330.

062M

ASS

_J06

4127

00+

0930

131

NG

C22

6410

0.36

2500

9.50

364

2643

.50.

059

0.47

1.01

30.

340.

110.

410.

110.

260.

072M

ASS

_J06

4054

26+

0949

203

NG

C22

6410

0.22

6083

9.82

231

3254

.00.

029

0.13

1.14

50.

590.

130.

390.

080.

260.

062M

ASS

_J06

4109

08+

0930

090

NG

C22

6410

0.28

7833

9.50

250

3560

.90.

098

0.36

2.57

30.

980.

270.

740.

220.

730.

192M

ASS

_J06

4052

92+

0944

544

NG

C22

6410

0.22

0500

9.74

844

3574

.20.

028

0.57

1.12

30.

520.

120.

490.

120.

410.

102M

ASS

_J06

4104

97+

0950

460

NG

C22

6410

0.27

0708

9.84

611

3674

.00.

018

0.71

3.53

11.

420.

371.

220.

330.

990.

262M

ASS

_J06

4059

68+

0928

438

NG

C22

6410

0.24

8667

9.47

883

3355

.50.

036

0.07

1.69

50.

620.

170.

500.

110.

340.

082M

ASS

_J06

4047

11+

0932

401

NG

C22

6410

0.19

6292

9.54

447

3556

.50.

043

-0.3

31.

926

0.87

0.19

0.62

0.13

0.44

0.09

2MA

SS_J

0641

1485

+09

2555

0N

GC

2264

100.

3118

759.

4319

423

60.4

0.09

70.

873.

253

1.90

0.39

3.10

0.71

1.24

0.26

2MA

SS_J

0641

1521

+09

3757

6N

GC

2264

100.

3133

759.

6326

724

48.5

0.05

2-0

.31

1.55

61.

060.

190.

550.

110.

380.

082M

ASS

_J06

4116

68+

0929

522

NG

C22

6410

0.31

9500

9.49

783

3769

.30.

031

0.61

2.64

31.

740.

321.

550.

281.

230.

222M

ASS

_J06

4101

11+

0934

522

NG

C22

6410

0.25

4625

9.58

117

3049

.90.

076

-0.0

61.

406

0.69

0.15

0.57

0.13

0.41

0.10

2MA

SS_J

0640

4114

+09

3357

8N

GC

2264

100.

1714

179.

5660

632

64.4

0.05

0-0

.00

2.66

51.

100.

261.

020.

210.

760.

162M

ASS

_J06

4056

16+

0936

309

NG

C22

6410

0.23

4000

9.60

858

2374

.40.

080

0.74

11.1

21

3.79

1.18

3.38

1.03

3.25

0.94

2MA

SS_J

0641

0429

+09

2452

1N

GC

2264

100.

2678

759.

4144

737

62.5

0.03

4-0

.32

1.23

60.

580.

140.

610.

120.

350.

082M

ASS

_J06

4056

39+

0935

533

NG

C22

6410

0.23

4958

9.59

814

3157

.80.

037

0.20

1.78

50.

910.

190.

400.

110.

300.

082M

ASS

_J06

4059

32+

0946

165

NG

C22

6410

0.24

7167

9.77

125

3455

.50.

066

0.27

2.02

51.

000.

220.

630.

150.

600.

142M

ASS

_J06

4114

75+

0934

134

NG

C22

6410

0.31

1458

9.57

039

2378

.80.

089

0.28

2.77

21.

180.

300.

980.

260.

900.

242M

ASS

_J06

4048

84+

0943

256

NG

C22

6410

0.20

3500

9.72

378

3167

.90.

078

0.19

2.62

21.

060.

280.

850.

230.

940.

212M

ASS

_J06

4049

21+

0957

387

NG

C22

6410

0.20

5042

9.96

075

2249

.70.

070

0.55

1.54

30.

870.

190.

690.

130.

390.

092M

ASS

_J06

4059

49+

0929

517

NG

C22

6410

0.24

7875

9.49

769

3152

.30.

034

0.36

1.14

50.

540.

130.

290.

060.

220.

052M

ASS

_J06

4100

51+

0929

159

NG

C22

6410

0.25

2125

9.48

775

3774

.90.

034

0.28

5.00

22.

020.

511.

670.

431.

430.

372M

ASS

_J06

4147

80+

0934

096

NG

C22

6410

0.44

9167

9.56

933

3573

.20.

023

0.34

1.75

21.

040.

200.

870.

170.

760.

142M

ASS

_J06

4131

11+

0926

582

NG

C22

6410

0.37

9625

9.44

950

3671

.70.

025

1.00

3.24

11.

840.

381.

610.

331.

290.

272M

ASS

_J06

4115

11+

0926

443

NG

C22

6410

0.31

2958

9.44

564

3276

.50.

045

-0.2

02.

056

0.89

0.21

0.75

0.17

0.72

0.17

2MA

SS_J

0640

4837

+09

4838

5N

GC

2264

100.

2015

429.

8106

925

43.2

0.08

2-0

.18

2.14

61.

180.

240.

760.

150.

600.

11C

ontin

ued

onne

xtpa

ge

MNRAS 000, 1–13 (2017)

24 Froebrich et al.

Tabl

eA

1–

cont

inue

dfr

ompr

evio

uspa

geSo

urce

Nam

eR

egio

nR

AD

EC

Nvar

αrm

sM

SG

∆V

σV

∆R

σR

∆I

σI

(J20

00)[

deg]

[deg

][m

ag]

[mag

][m

ag]

[mag

][m

ag]

[mag

][m

ag]

2MA

SS_J

0640

5884

+09

3057

3N

GC

2264

100.

2451

679.

5159

232

76.2

0.02

10.

042.

482

0.98

0.25

0.88

0.22

0.74

0.19

2MA

SS_J

0640

4321

+09

4707

2N

GC

2264

100.

1800

429.

7853

333

47.3

0.11

3-0

.79

4.68

42.

090.

531.

390.

310.

680.

152M

ASS

_J06

4113

29+

0931

503

NG

C22

6410

0.30

5375

9.53

064

1845

.70.

044

-1.2

61.

484

0.71

0.18

0.56

0.15

0.27

0.06

2MA

SS_J

0640

5255

+09

5205

9N

GC

2264

100.

2189

589.

8683

129

49.9

0.06

50.

022.

836

1.51

0.32

0.57

0.13

0.52

0.10

2MA

SS_J

0640

4989

+09

3649

4N

GC

2264

100.

2078

759.

6137

235

63.6

0.03

80.

061.

095

0.61

0.12

0.36

0.09

0.26

0.07

2MA

SS_J

0640

1515

+10

0157

8N

GC

2264

100.

0631

2510

.032

7217

75.7

0.10

50.

645.

941

1.94

0.61

1.54

0.50

1.54

0.48

2MA

SS_J

0640

4131

+09

5102

3N

GC

2264

100.

1721

259.

8506

437

57.4

0.07

0-0

.16

2.02

60.

930.

220.

600.

130.

590.

132M

ASS

_J06

4039

11+

0950

586

NG

C22

6410

0.16

2958

9.84

961

3752

.70.

065

-0.4

32.

196

0.95

0.23

0.51

0.14

0.45

0.11

2MA

SS_J

0640

3086

+09

3440

5N

GC

2264

100.

1285

839.

5779

237

73.3

0.04

70.

074.

452

2.03

0.50

1.66

0.42

1.43

0.36

2MA

SS_J

0640

2262

+09

4946

2N

GC

2264

100.

0942

509.

8295

022

46.5

0.06

70.

451.

833

1.28

0.24

0.82

0.16

0.72

0.13

2MA

SS_J

0640

0266

+09

3524

2N

GC

2264

100.

0110

839.

5900

619

44.9

0.02

60.

611.

513

0.51

0.15

0.30

0.08

0.14

0.03

2MA

SS_J

0640

4113

+09

5256

5N

GC

2264

100.

1713

759.

8823

632

61.0

0.03

0-0

.55

1.68

60.

910.

170.

460.

100.

380.

082M

ASS

_J06

4036

52+

0950

456

NG

C22

6410

0.15

2167

9.84

600

2953

.80.

051

0.38

1.59

50.

810.

180.

440.

100.

320.

092M

ASS

_J06

4024

16+

0934

124

NG

C22

6410

0.10

0667

9.57

011

2958

.80.

112

0.50

3.50

31.

810.

401.

400.

291.

100.

242M

ASS

_J06

4038

19+

0929

524

NG

C22

6410

0.15

9125

9.49

789

2160

.90.

040

0.91

2.33

31.

290.

280.

950.

200.

690.

142M

ASS

_J06

4039

34+

0934

455

NG

C22

6410

0.16

3917

9.57

931

2960

.20.

089

0.18

2.90

51.

300.

320.

900.

220.

840.

192M

ASS

_J06

3933

39+

0952

017

NG

C22

6499

.889

125

9.86

714

3264

.40.

038

0.41

1.41

30.

570.

140.

450.

090.

300.

082M

ASS

_J06

3934

41+

0954

512

NG

C22

6499

.893

375

9.91

422

3250

.50.

034

-0.2

41.

516

0.80

0.16

0.37

0.10

0.17

0.05

2MA

SS_J

0640

3446

+09

3518

2N

GC

2264

100.

1435

839.

5883

925

41.9

0.03

90.

361.

365

0.75

0.18

0.34

0.08

0.24

0.05

2MA

SS_J

0640

2309

+09

2742

3N

GC

2264

100.

0962

089.

4617

532

70.3

0.07

50.

245.

672

2.57

0.60

2.08

0.50

1.77

0.42

2MA

SS_J

0640

3059

+09

5014

7N

GC

2264

100.

1274

589.

8374

216

44.1

0.05

5-0

.11

2.13

60.

980.

220.

260.

060.

420.

092M

ASS

_J06

4037

87+

0934

540

NG

C22

6410

0.15

7792

9.58

167

3129

.50.

363

-0.1

12.

484

1.55

0.28

1.19

0.41

0.96

0.30

2MA

SS_J

0640

1370

+09

5630

5N

GC

2264

100.

0570

839.

9418

133

53.4

0.04

2-0

.12

1.26

60.

430.

120.

510.

110.

390.

072M

ASS

_J06

4041

84+

0951

445

NG

C22

6410

0.17

4333

9.86

236

3572

.30.

043

-0.2

54.

866

1.72

0.49

1.44

0.41

1.15

0.34

2MA

SS_J

0640

2881

+09

4824

0N

GC

2264

100.

1200

429.

8066

734

46.5

0.03

4-0

.09

3.88

61.

370.

380.

720.

200.

240.

052M

ASS

_J06

4036

65+

0952

032

NG

C22

6410

0.15

2708

9.86

756

3364

.80.

043

-0.5

01.

966

0.74

0.19

0.64

0.14

0.48

0.12

2MA

SS_J

0640

0600

+09

4942

6N

GC

2264

100.

0250

009.

8285

024

66.1

0.07

10.

222.

032

0.94

0.21

0.64

0.20

0.62

0.16

2MA

SS_J

0640

1113

+09

3805

9N

GC

2264

100.

0463

759.

6349

729

68.9

0.04

60.

083.

972

1.52

0.42

1.38

0.36

1.05

0.27

2MA

SS_J

0640

0552

+09

2226

0N

GC

2264

100.

0230

009.

3738

923

47.6

0.07

9-0

.44

2.28

61.

560.

291.

540.

270.

610.

122M

ASS

_J06

3959

24+

0927

245

NG

C22

6499

.996

833

9.45

681

3067

.90.

062

0.56

1.24

30.

620.

140.

600.

120.

950.

152M

ASS

_J06

3925

50+

0931

394

NG

C22

6499

.856

250

9.52

761

2069

.00.

071

0.69

2.91

30.

990.

290.

900.

240.

710.

21V

aria

ble_

V_1

00.2

7368

9_9.

9051

52N

GC

2264

100.

2736

879.

9051

534

47.9

0.03

20.

052.

305

0.85

0.22

0.32

0.09

0.16

0.04

Var

iabl

e_R

_99.

9984

66_9

.586

287

NG

C22

6499

.998

463

9.58

629

2967

.50.

030

0.38

1.43

30.

740.

150.

710.

140.

470.

09V

aria

ble_

R_1

00.2

0474

2_9.

6267

48N

GC

2264

100.

2047

429.

6267

528

56.7

0.05

60.

822.

003

0.96

0.23

0.61

0.15

0.62

0.13

Var

iabl

e_R

_100

.220

932_

9.88

3164

NG

C22

6410

0.22

0929

9.88

316

2745

.80.

093

-0.9

87.

134

5.01

0.95

0.89

0.22

0.43

0.12

Var

iabl

e_R

_100

.217

537_

9.87

5288

NG

C22

6410

0.21

7533

9.87

529

2449

.90.

074

-0.7

05.

324

1.97

0.57

0.94

0.25

0.65

0.14

Var

iabl

e_I_

99.9

1410

8_9.

7559

66N

GC

2264

99.9

1410

49.

7559

633

76.0

0.04

20.

852.

491

1.45

0.29

1.26

0.26

1.01

0.21

B07

_000

6N

GC

2244

97.8

3000

05.

0730

621

40.8

0.05

60.

741.

253

0.63

0.15

0.57

0.14

0.33

0.07

B07

_005

5N

GC

2244

97.8

6625

04.

8341

721

62.7

0.05

4-0

.24

2.63

60.

980.

250.

820.

190.

640.

15B

07_0

066

NG

C22

4497

.870

417

4.87

028

1867

.80.

036

0.68

1.40

30.

540.

140.

340.

090.

250.

08B

07_0

094

NG

C22

4497

.891

250

4.77

417

2142

.30.

050

0.32

1.51

50.

620.

160.

370.

090.

250.

06C

ontin

ued

onne

xtpa

ge

MNRAS 000, 1–13 (2017)

HOYS-CAPS 25

Tabl

eA

1–

cont

inue

dfr

ompr

evio

uspa

geSo

urce

Nam

eR

egio

nR

AD

EC

Nvar

αrm

sM

SG

∆V

σV

∆R

σR

∆I

σI

(J20

00)[

deg]

[deg

][m

ag]

[mag

][m

ag]

[mag

][m

ag]

[mag

][m

ag]

B07

_009

8N

GC

2244

97.8

9333

34.

6833

319

40.3

0.04

00.

621.

213

0.47

0.14

0.17

0.06

0.20

0.05

B07

_011

6N

GC

2244

97.9

0375

04.

8511

119

67.6

0.09

5-0

.14

5.47

61.

840.

531.

380.

421.

070.

32B

07_0

119

NG

C22

4497

.906

250

4.95

111

1847

.60.

078

0.12

2.03

50.

680.

200.

460.

120.

370.

10B

07_0

147

NG

C22

4497

.920

833

4.91

333

1846

.80.

046

0.67

1.03

30.

460.

120.

240.

060.

180.

05B

07_0

152

NG

C22

4497

.922

083

4.76

722

2235

.80.

085

0.52

1.05

30.

500.

120.

440.

110.

380.

10B

07_0

180

NG

C22

4497

.932

917

5.04

917

2157

.50.

066

-0.4

51.

456

0.58

0.15

0.60

0.12

0.46

0.11

B07

_023

6N

GC

2244

97.9

5208

35.

0347

223

59.3

0.09

50.

031.

355

0.81

0.16

0.75

0.18

0.51

0.15

B07

_024

7N

GC

2244

97.9

5541

74.

9502

818

80.2

0.05

60.

332.

912

0.81

0.27

0.70

0.23

0.79

0.23

B07

_026

5N

GC

2244

97.9

6083

34.

9313

922

51.5

0.05

60.

421.

963

0.83

0.20

0.27

0.07

0.44

0.10

B07

_026

9N

GC

2244

97.9

6166

74.

9097

220

56.9

0.06

10.

961.

683

0.57

0.16

0.51

0.12

0.35

0.10

B07

_030

7N

GC

2244

97.9

7125

05.

0247

219

37.1

0.38

10.

455.

694

2.31

0.65

1.98

0.48

1.34

0.43

B07

_036

9N

GC

2244

97.9

8916

74.

8950

021

51.6

0.12

90.

081.

685

0.69

0.17

0.36

0.10

0.60

0.17

B07

_037

0N

GC

2244

97.9

8958

34.

9333

322

49.4

0.07

4-0

.22

3.62

61.

420.

360.

780.

200.

420.

11B

07_0

373

NG

C22

4497

.989

583

4.94

472

2849

.30.

090

0.72

4.20

31.

430.

420.

620.

170.

530.

14B

07_0

391

NG

C22

4497

.995

417

4.91

806

2147

.90.

054

0.36

1.49

50.

600.

150.

340.

080.

230.

07B

07_0

397

NG

C22

4497

.997

083

5.02

139

2062

.90.

053

0.54

2.00

30.

690.

190.

520.

150.

440.

11B

07_0

423

NG

C22

4498

.004

167

4.86

556

2552

.70.

060

0.38

1.77

50.

730.

200.

420.

110.

430.

10B

07_0

454

NG

C22

4498

.014

167

4.87

667

2371

.90.

053

0.17

2.54

21.

230.

270.

760.

210.

700.

18B

07_0

471

NG

C22

4498

.019

167

4.89

028

2149

.10.

089

0.43

1.22

30.

710.

160.

630.

150.

580.

13B

07_0

473

NG

C22

4498

.019

583

4.79

611

1753

.80.

081

0.08

2.06

50.

810.

210.

490.

140.

420.

12B

07_0

477

NG

C22

4498

.021

250

4.79

417

2143

.70.

032

-0.1

11.

416

0.46

0.14

0.41

0.10

0.20

0.04

B07

_049

4N

GC

2244

98.0

2458

34.

9513

923

58.8

0.03

80.

211.

155

0.51

0.12

0.34

0.08

0.25

0.07

B07

_049

8N

GC

2244

98.0

2500

04.

8419

424

61.7

0.04

1-0

.24

1.84

60.

610.

160.

360.

110.

430.

10B

07_0

507

NG

C22

4498

.027

083

4.79

861

2576

.50.

016

0.21

2.52

20.

960.

250.

850.

210.

730.

19B

07_0

511

NG

C22

4498

.027

917

4.92

528

2054

.50.

051

0.11

1.47

50.

760.

160.

280.

070.

320.

07B

07_0

530

NG

C22

4498

.032

500

4.88

833

1754

.20.

130

0.11

5.22

52.

190.

561.

180.

380.

870.

24B

07_0

539

NG

C22

4498

.035

833

4.69

000

2249

.30.

085

-1.1

01.

034

0.49

0.13

0.37

0.10

0.59

0.14

B07

_054

6N

GC

2244

98.0

3791

74.

8336

127

52.7

0.17

41.

142.

661

1.49

0.33

0.78

0.24

0.95

0.26

B07

_059

5N

GC

2244

98.0

5750

04.

9427

823

43.9

0.04

01.

092.

551

1.10

0.26

0.65

0.13

0.37

0.07

B07

_059

6N

GC

2244

98.0

5791

74.

8266

721

39.5

0.09

9-0

.04

1.08

60.

720.

150.

430.

110.

610.

13B

07_0

607

NG

C22

4498

.061

667

4.84

000

2133

.20.

137

-0.7

91.

184

0.49

0.14

0.37

0.10

0.54

0.14

B07

_064

2N

GC

2244

98.0

7333

34.

8855

619

37.7

0.05

50.

831.

113

0.55

0.13

0.26

0.06

0.23

0.06

B07

_065

6N

GC

2244

98.0

7958

34.

8427

826

53.9

0.08

50.

983.

233

1.77

0.41

0.78

0.18

0.67

0.14

B07

_065

9N

GC

2244

98.0

8041

74.

9594

421

44.5

0.05

30.

362.

095

1.11

0.23

0.86

0.21

0.29

0.07

B07

_068

4N

GC

2244

98.0

8708

34.

8611

129

66.6

0.12

9-0

.75

1.99

40.

930.

211.

010.

250.

990.

23B

07_0

691

NG

C22

4498

.089

583

4.84

083

2646

.20.

045

0.01

1.42

60.

840.

160.

250.

060.

250.

06B

07_0

696

NG

C22

4498

.092

500

4.64

250

2354

.00.

052

-0.6

91.

384

0.77

0.17

0.71

0.16

0.45

0.10

B07

_070

5N

GC

2244

98.0

9541

74.

8458

324

43.7

0.07

20.

601.

113

0.55

0.13

0.43

0.08

0.42

0.10

B07

_070

9N

GC

2244

98.0

9666

75.

0158

323

46.7

0.07

90.

081.

255

0.60

0.14

0.39

0.10

0.36

0.10

B07

_078

8N

GC

2244

98.1

3166

74.

9236

122

46.7

0.04

90.

801.

783

0.85

0.19

0.34

0.08

0.31

0.07

B07

_079

5N

GC

2244

98.1

3625

04.

7488

924

58.3

0.04

71.

201.

421

0.72

0.18

0.47

0.08

0.46

0.09

Con

tinue

don

next

page

MNRAS 000, 1–13 (2017)

26 Froebrich et al.

Tabl

eA

1–

cont

inue

dfr

ompr

evio

uspa

geSo

urce

Nam

eR

egio

nR

AD

EC

Nvar

αrm

sM

SG

∆V

σV

∆R

σR

∆I

σI

(J20

00)[

deg]

[deg

][m

ag]

[mag

][m

ag]

[mag

][m

ag]

[mag

][m

ag]

B07

_085

1N

GC

2244

98.1

5875

04.

6811

118

44.1

0.02

0-0

.12

1.18

60.

540.

130.

150.

040.

150.

03B

07_0

877

NG

C22

4498

.169

583

4.69

028

2240

.60.

075

-0.2

11.

066

0.56

0.12

0.35

0.08

0.30

0.08

B07

_087

8N

GC

2244

98.1

7000

04.

7727

820

42.2

0.03

1-0

.72

1.26

40.

520.

130.

180.

050.

200.

04B

07_0

903

NG

C22

4498

.181

667

4.90

500

2147

.10.

082

-0.0

01.

566

0.65

0.16

0.46

0.09

0.43

0.10

B07

_091

3N

GC

2244

98.1

8458

34.

8547

224

56.5

0.05

1-0

.28

1.23

60.

620.

150.

460.

100.

310.

08B

07_0

917

NG

C22

4498

.187

917

4.75

639

1855

.60.

057

-0.1

41.

786

0.88

0.20

0.54

0.14

0.46

0.11

B07

_101

2N

GC

2244

98.2

6208

35.

0019

421

38.8

0.04

80.

031.

116

0.49

0.12

0.31

0.08

0.22

0.05

B07

_101

6N

GC

2244

98.2

6708

34.

7983

320

47.0

0.04

70.

251.

325

0.68

0.15

0.47

0.11

0.32

0.07

B07

_108

1N

GC

2244

98.3

2041

74.

8000

022

55.0

0.05

50.

371.

853

0.82

0.19

0.76

0.19

0.37

0.10

Var

iabl

e_V

_98.

0789

79_4

.987

689

NG

C22

4498

.078

750

4.98

750

2352

.50.

071

-0.1

13.

086

1.15

0.32

1.94

0.51

0.44

0.12

Var

iabl

e_V

_98.

0837

17_4

.990

977

NG

C22

4498

.083

333

4.99

083

1951

.60.

051

0.34

1.52

50.

810.

171.

690.

410.

430.

09V

aria

ble_

V_9

8.23

2353

_5.1

5882

5N

GC

2244

98.2

3208

35.

1586

123

47.2

0.07

90.

461.

873

0.73

0.19

0.80

0.21

0.40

0.10

Var

iabl

e_V

_98.

0728

53_5

.332

977

NG

C22

4498

.072

500

5.33

278

2075

.90.

052

0.44

2.10

30.

610.

200.

660.

190.

600.

18V

aria

ble_

V_9

7.67

2302

_4.9

2139

2N

GC

2244

97.6

7208

34.

9213

919

54.0

0.14

30.

193.

015

0.99

0.29

1.81

0.45

0.76

0.20

Var

iabl

e_R

_97.

5555

57_4

.934

767

NG

C22

4497

.555

417

4.93

472

3074

.60.

034

0.01

1.55

20.

540.

150.

590.

140.

400.

12V

aria

ble_

R_9

7.88

1714

_5.1

6110

2N

GC

2244

97.8

8166

75.

1608

319

47.2

0.03

0-0

.12

2.49

60.

940.

250.

490.

160.

160.

04V

aria

ble_

R_9

7.84

1774

_5.1

5631

6N

GC

2244

97.8

4166

75.

1561

123

44.9

0.05

60.

721.

133

0.48

0.12

0.55

0.17

0.30

0.07

Var

iabl

e_I_

97.7

5560

8_4.

9363

05N

GC

2244

97.7

5541

74.

9361

124

74.8

0.01

41.

251.

661

0.70

0.21

0.66

0.19

0.53

0.16

Var

iabl

e_I_

97.6

5500

6_4.

9007

79N

GC

2244

97.6

5500

04.

9005

617

69.1

0.05

10.

903.

141

1.03

0.29

0.92

0.24

0.67

0.20

Var

iabl

e_I_

97.7

0332

3_4.

8755

70N

GC

2244

97.7

0291

74.

8755

618

70.3

0.12

5-0

.27

2.00

60.

760.

202.

000.

500.

900.

23

MNRAS 000, 1–13 (2017)