manual of steel design

Upload: sejowan-haque-tomal

Post on 03-Feb-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/21/2019 Manual of Steel Design

    1/158

    WIND LOAD [EX-A]

    Project name: xxx

    Client: xxxAddress: xxx

    ro ect ocaton: xxx

    General Data:

    Total length of the building, L = 118 ft 359 mm

    Total !idth of the building or s"an of gable, # = 49 ft $%935 mm

    #a&s"acing or s"acing of rafter = 13 ft 39' mm

    10 ft 3(%) mm

    13 ft 39' mmSolution:

    !0 *m"h $$ m"h

    1 +Table '9, "age--33.

    4"#E-00$ +Page--33.

    %. Terrain ex"osure categor& = A

    +Table '$(, "age--33.

    + (-$5 ft. 0"3!8 1"1#4

    +'( ft. 0"41$ 1"34

    +3( ft. 0"49# 1"$8!

    +%( ft. 0"$!$ 1"803

    +5( ft. 0"!4 1"991

    +( ft. 0"!## "1!

    +/( ft. 0"#$ "313

    +)( ft. 0"#!9 "4$4

    +9( ft. 0"81 "$84

    +$(( ft. 0"849 "#09

    +$$5 ft. 0"909 "9

    +Table '$$, "age--3.

    +(-$5 ft. 1"!$4

    +'( ft. 1"$9

    +3( ft. 1"$11

    +%( ft. 1"4$#

    +5( ft. 1"418

    a1e e g t o t e u ng,0=

    ge e g t o t e u ng,

    =

    4ustained !ind "ressur, 6= C

    cC

    7C

    68

    b

    $. #asic !ind s"eed from ##C, 8b=

    tructure m"ortance coe c ent,7=

    e oc t& -to-"ressure con1ers on coe c ent,c=

    ex"osure coe c en ,6an sus a ne ! n "ressure,

    6:

    C%5 6= *m'

    C

    6= *m'

    C9

    6= *m'

    C$'

    6= *m'

    C$5

    6= *m'

    C$)

    6= *m'

    C'$

    6= *m'

    C'%

    6= *m'

    C'/

    6= *m'

    C3(

    6= *m'

    C35

    6= *m'

    ust res"onse actor,;:

    ;%5

    ;

    ;9

    ;$'

    ;$5

  • 7/21/2019 Manual of Steel Design

    2/158

    +( ft. 1"388

    +/( ft. 1"3!3

    +)( ft. 1"34

    +9( ft. 1"34

    +$(( ft. 1"309+$$5 ft. 1"8#

    A1erage height of the gable, h = 11"$ ft 3"$0! meter

    0"#9$

    0"91$

    1"89

    0"$

    0"9

    a. '( ft " = 1"$94 0"433 *lf

    '(>3( ft " = 1"8!4 0"$0! *lf

    3(>%( ft " = "088 0"$!# *lf

    %(>5( ft " = "8 0"! *lf

    5(>( ft " = "4$! 0"!!# *lf

    (>/( ft " = "!14 0"#1 *lf/(>)( ft " = "#! 0"#49 *lf

    ;$)

    ;'$

    ;'%

    ;'/

    ;3(

    ;35

    At ea1e height of the gable frame, he

    = *m'

  • 7/21/2019 Manual of Steel Design

    3/158

    )(>9( ft " = "894 0"#8! *lf

    9(>$(( ft " = 3"03 0"81 *lf

    $((>$$5 ft " = 3"19 0"8#4 *lf

    ind!ard roof: " = -0"#! -0"0# *lfLee!ard roof: " = -0"$9# -0"1! *lf

    Lee!ard !all: " = -0"34$ -0"094 *lf

    4ide or 0nd !alls: " = -0"488 -0"13 *lf

    ind!ard !all: (-$5 ft " = 0"98 0"!# *lf

    $5>'( ft " = 1"13! 0"308 *lf

    '(>3( ft " = 1"40! 0"38 *lf

    3(>%( ft " = 1"!3 0"443 *lf

    %(>5( ft " = 1"84 0"49$ *lf

    5(>( ft " = 1"998 0"$4 *lf

    (>/( ft " = "1$! 0"$8$ *lf

    /(>)( ft " = "30 0"!$ *lf

    )(>9( ft " = "43! 0"!!1 *lf

    9(>$(( ft " = "$!$ 0"!9! *lf

    $((>$$5 ft " = "#!1 0"#$ *lf

    ind!ard roof: " = -1" -0"331 *lf

    Lee!ard roof: " = -1"0$$ -0"8! *lf

    Lee!ard !all: " = -0"803 -0"18 *lf

    4ide or 0nd !alls: " = -0"94! -0"$# *lf

    *m'

    *m'

    *m'

    *m'

    *m'

    *m'

    *m'

    9. @esign "ressure for external forces "lus internal "ressure, " = 6C

    ;hC

    "e-C?

    "i

    h

    *m'

    *m'

    *m'

    *m'

    *m'

    *m'

    *m'

    *m'

    *m'

    *m'

    *m'

    *m'

    *m'

    *m'

    *m'

  • 7/21/2019 Manual of Steel Design

    4/158

    359 meter

    $%935 meter

    39' meter

    3(%) meter

    39' meter

    At ea1e At h

    (/95$9 (9$%/

    ( (

    ( (

    ( (

    ( (

    ( (

    ( (

    ( (

    ( (

    ( (

    ( (

    $'))5

    (

    (

    (

    (

  • 7/21/2019 Manual of Steel Design

    5/158

    (

    (

    (

    (

    ((

    -()%-()%

  • 7/21/2019 Manual of Steel Design

    6/158

  • 7/21/2019 Manual of Steel Design

    7/158

    WIND LOAD [EX-%]

    Project name: xxx

    Client: xxx

    Address: xxxro ect ocaton: xxx

    General Data:

    Total length of the building, L = 1!0 ft %)/) mm

    Total !idth of the building or s"an of gable, # = !$ ft $9)$' mm

    #a&s"acing or s"acing of rafter = 0 ft (9 mm

    0 ft (9 mm

    4 ft /3$5 mm

    Solution:

    10 *m"h $3( m"h

    1 +Table '9, "age--33.

    4"#E-00$ +Page--33.

    %. Terrain ex"osure categor& = %

    +Table '$(, "age--33.

    + (-$5 ft. 0"801 1"!!#

    +'( ft. 0"8!! 1"803

    +3( ft. 0"9# "03

    +%( ft. 1"0$$ "19!

    +5( ft. 1"1$ "34

    +( ft. 1"18$ "4!#

    +Table '$$, "age--3.+(-$5 ft. 1"31

    +'( ft. 1"94+3( ft. 1"$8

    +%( ft. 1"33+5( ft. 1"1$+( ft. 1"01

    0a1e height of the building, 20=

    idge height of the building, 2=

    usta ne ! n "ressur, 6=

    c 7 6 b

    $. #asic !ind s"eed from ##C, 8b=

    '. 4tructure im"ortance coefficient, C7=

    3. 8elocit& -to-"ressure con1ersion coefficient, Cc=

    ex"osure coe c en ,6an sus a ne ! n "ressure,

    6:

    C%5

    6= *m'

    C

    6= *m'

    C9

    6= *m'

    C$'

    6= *m'

    C$5

    6= *m'

    C$)

    6= *m'

    us res"onse ac or,;:

    ;%5

    ;

    ;9

    ;$'

    ;$5

    ;$)

  • 7/21/2019 Manual of Steel Design

    8/158

    A1erage height of the gable, h = ft !"#0# meter

    1"81

    1"8$$1"8!

    0"$

    0"4!4

    a. '( ft " = "319 0"9!9 *lf

    '(>3( ft " = "$4$ 1"0!3 *lf

    3(>%( ft " = "#3 1"13# *lf

    %(>5( ft " = "8#3 1" *lf5(>( ft " = 3"00 1"$4 *lf

    ind!ard roof: " = -0"0!1 -0"0$ *lf

    Lee!ard roof: " = -1"0! -0"$04 *lf

    Lee!ard !all: " = -0"839 -0"3$ *lf

    At ea1e height of the gable frame, he

    = *m'

  • 7/21/2019 Manual of Steel Design

    9/158

    4ide or 0nd !alls: " = -1"1!$ -0"48# *lf

    ind!ard !all: (-$5 ft " = 1"$1 0"$3 *lf

    $5>'( ft " = 1"391 0"$81 *lf'(>3( ft " = 1"!1# 0"!#$ *lf

    3(>%( ft " = 1"#9$ 0"#$ *lf

    %(>5( ft " = 1"94$ 0"81 *lf

    5(>( ft " = "0#4 0"8!! *lf

    ind!ard roof: " = -0"989 -0"413 *lf

    Lee!ard roof: " = -"134 -0"891 *lf

    Lee!ard !all: " = -1"#!# -0"#38 *lf4ide or 0nd !alls: " = -"093 -0"8#4 *lf

    *m'

    9. @esign "ressure for external forces "lus internal "ressure, " = 6C

    ;hC

    "e-C?

    "i

    h

    *m'

    *m'

    *m'

    *m'

    *m'

    *m'

    *m'

    *m'

    *m'

    *m'

  • 7/21/2019 Manual of Steel Design

    10/158

    %)/) meter

    $9)$' meter

    (9 meter

    (9 meter

    /3$5 meter

    n er"o a onAt ea1e At h

    ( (

    ( (

    $)$((% $)5%)%/

    ( (

    ( (

    ( (

    (

    ($')55$

    (((

  • 7/21/2019 Manual of Steel Design

    11/158

    -((/-()%

  • 7/21/2019 Manual of Steel Design

    12/158

  • 7/21/2019 Manual of Steel Design

    13/158

    WIND LOAD [EX-A]

    @ate: xxxProject name: xxx

    Client: xxx

    Address: xxxro ect ocaton: xxx

    General Data:

    Total length of the building, L = 80 ft '%3)% mm

    Total !idth of the building, # = 4$ ft $3/$ mm

    #a&s"acing or s"acing of frame = 1! ft %)/ mm

    10 ft 3(%) mm

    ! ft $))9/ mm

    #0 ft '$33 mm3 ft 9$% mm

    Solution:

    4lenderness of the #uilding: NON SLENDE&

    10 *m"h $3( m"h

    1 +Table '9, "age--33.4"#E-0$ +Page--33.

    %. Terrain ex"osure categor& = A

    +Table '$(, "age--33.

    + (-$5 ft. 0"3!8 0"#!!

    +'( ft. 0"41$ 0"8!4

    +3( ft. 0"49# 1"03$

    +%( ft. 0"$!$ 1"1#!

    +5( ft. 0"!4 1"99+( ft. 0"!## 1"409

    +/( ft. 0"#$ 1"$09

    +)( ft. 0"#!9 1"!01

    +9( ft. 0"81 1"!8!

    +$(( ft. 0"849 1"#!#

    +$$5 ft. 0"909 1"89

    g t o eac oor,

  • 7/21/2019 Manual of Steel Design

    14/158

    +$3( ft. 0"9!$ "009

    +$%5 ft. 1"01# "11#

    +$( ft. 1"0!$ "1#

    +Table '$$, "age--3.

    +(-$5 ft. 1"!$4+'( ft. 1"$9+3( ft. 1"$11+%( ft. 1"4$#+5( ft. 1"418+( ft. 1"388+/( ft. 1"3!3+)( ft. 1"34+9( ft. 1"34+$(( ft. 1"309

    +$$5 ft. 1"8#+$3( ft. 1"!8+$%5 ft. 1"$+$( ft. 1"38

    Bean roof le1elto" of "ara"et !hiche1er greater, h = !! ft 0"1 meter

    1"439

    1"48

    1"3# +7nter"olated 1alue.

    = " an = "

  • 7/21/2019 Manual of Steel Design

    15/158

    )(>9( ft " = 3"4!$ #"3# "sf < = 11"$#9 *i"s

    9(>$(( ft " = 3"!31 #$"83 "sf < = 1"134 *i"s

    $((>$$5 ft " = 3"888 81" "sf < = 1"993 *i"s

    $$5>$3( ft " = 4"18 8!"1 "sf < = 13"#9$ *i"s

    $3(>$%5 ft " = 4"3$ 90"8$ "sf < = 14"$3# *i"s

    $%5>$( ft " = 4"$$! 9$"1$ "sf < = 1$"$ *i"s

    *m'

    *m'

    *m'

    *m'

    *m'

    *m'

  • 7/21/2019 Manual of Steel Design

    16/158

    '%3)% meter

    $3/$ meter

    %)/ meter

    $))9/ meter

    '$33 meter(9$% mm

    7nter"olationAt ea1e At h

    ( (

    ( (

    ( (

    ( (

    ( (( (

    $%3)9 $%/9/33

    ( (

    ( (

    ( (

    ( (

  • 7/21/2019 Manual of Steel Design

    17/158

    ( (

    ( (

    ( (

    ((((((

    $3/(3$/(((

    ((((

    $%9$9$

  • 7/21/2019 Manual of Steel Design

    18/158

  • 7/21/2019 Manual of Steel Design

    19/158

    EA&'( )*A+E LOAD2eight of the building, 2 = 100 ft

    2eight of each stor&, h = 10 ft

    4 no

    Total stor& of the building, n = 10 noea, o. oor "e" e o roo o u,n o. oor "e" a o5e roo

    engt ota mens on engt ota mens on

    +ft. o @e"th +in. idth +in. +ft. o @e"th +in. idth +in.

    $ 10 4 14 10 3

    ' 1 ! 1! 10 3

    3 14 $ 18 1 3

    % 1! 3

    5 18 3

    0 3

    Total roof slab area, A +sft.= $000 4

    Total length of 5 in bric* !all +ft.= 100 2eight of the 5 in !all +ft.= 3

    Total length of $( in bric* !all +ft. = 0 2eight of the $( in !all +ft.= 3eram c es on mor er e "er s me concre e "er s =

    4us"ended celling +"er sft. = 10 $3 mm Celling +"er sft. = !

    %ea, '6.i7al Inter,eiate /loor olu,n '6.i7al Inter,eiate /loor

    Length Total @imension Length Total @imension

    +ft. o @e"th +in. idth +in. +ft. o @e"th +in. idth +in.

    $ 10 3 14 10 10 ! 10 10

    ' 1 ! 1! 1 10 4 1 1

    0 10

    Total floor slab area, A +sft.= $000 $

    Total length of 5 in bric* !all +ft.= 10 2eight of the 5 in !all +ft.= 10

    Total length of $( in bric* !all +ft. = 80 2eight of the $( in !all +ft.= 10

    Ceramic tiles on morter bed +"er sft '( mm

  • 7/21/2019 Manual of Steel Design

    20/158

    4ite coefficient for soil characteristics, 4 = 1"$

    0"0#3

    0"9$ seconds

    1"94

    Total seismic dead load, = #"#8 Ei"s2ence, @esign base shear, 8 = D7C = 40"3# Ei"s

    Concentrated lateral force at to" of the building,

  • 7/21/2019 Manual of Steel Design

    21/158

    5'5( (

    $()(( (

    $%$/5 (

    ( (

    ( (

    ( (

    5(3)3

    393/5 5'5

    $'9( 5%((

    ( (

    /%55

  • 7/21/2019 Manual of Steel Design

    22/158

  • 7/21/2019 Manual of Steel Design

    23/158

    ;*&LIN DESIGN

    Project name: xxx

    Client: xxx

    Address: xxx

    Project locaton: xxx

    IN;*' CALCULATION:

    $0"041 *si 34"$ Encm'

    0lastic modulus, 0 = 9000 *si 19993"#9 Encm' WIND LOAD ON WIND WARD R

    19"!8$ ft !000 mm IN;*' < 0"## = > 2t

    3"93# ft 100 mm O*';*' < 11"4 +n > ,

    4lo"e of the roof ie "itch = $"#1 degree $"#1 degree 1"8# +n > , 0"0391

    0"0391

    -1"8# *m' -39$$95 "sf -5e Si@n ini7ate te Win i Su7tion"

    5e Si@n ini7ate te Win i .reure"

    IB;OSED LOAD

    Li1e load, LL = 11"9 "sf

    4"3$ *gm' ()9 "sf

    C001! 3"89 *gm '$5 "lf

    SOL*'ION

    //5((' sft

    L780 LHA@:

    9'''5 lb

    %)5 "lf

    @0A@ LHA@:

    )9) lb

    5$%) lb

    $'(% lb

    $' "lf

    7@ LHA@:

    -3(3$5/ lb

    -$5% "lf

    @047; LHA@ CHB#7AT7H:

    Iield stress of steel, ,

    5'/ "lf 0"0## +N>,

    0"1$0 '553$5 ft-lb 3"4!1 KN-m

    0"1$0 '55'/ ft-lb 0"34! KN-m

    -$%/)) "lf -"1$8 +N>,

    -$%/9$ "lf -"1$8 +N>,

    ($ "lf 0"009 +N>,

    0"1$0 /$%% ft-lb 9"#13 KN-m

    0"1$0 '955 ft-lb 0"040 KN-m

    Se7tion C001! !hose: 4x = 3$"!9 '$)

    !hose: 4& = 8"04# (%9

    !hose: 7x = 3"48 )3

    !hose: 7& = 0"39# (95

    '(3(5 "si K 33('/ "si ooen e7tion i O+ = 0"!1 (Choosen section

    %($(/ "si K %39'5 "si ooen e7tion i O+ = 0"91 (Choosen section

    e7= 2or e2le7tion:

    1"9# in '( ((/ "0! in /or Si,.le Su..orte %ea,

    (Deflection exceeds the limit select ! "e!m h!#in$ $%e!te% I)

    De22l" $l4 l Len@t

    1"$# in (/3 (5 0"98 in 384EI *ni2o(&ection is 'ithin deflection limit)

    1"31 in (5 (( 0"!$ in /or ontinuou %ea,

    (&ection is 'ithin deflection limit)De22l" l4 l Len@t

    384EI *ni2o

    Unifo%ml dist%i"ted se%#ice lo!d ' * 'DL

    + 'LL

    *

    Load com"onent "er"endicular to the roof, !&= !cosu =

    Load com"onent "arallel to the roof, !x= !sinu =

    Bx= !

    &L'=

    B&= !

    xL'=

    Unifo%ml dist%i"ted lo!d ' * 'DL

    + 'WL *

    Load com"onent "er"endicular to the roof, !&= !

    @Lcosu !

    L=

    Load com"onent "arallel to the roof, !x= !

    @Lsinu ( =

    Bx= !

    &L'=

    B&= !

    xL'=

    x$(3mm3 in3

    x$(3mm3 in3

    x$(mm% in%

    x$(mm% in%

    e7= treF 2 B

    >S

    B

    6>S

    6 Chec, st%ess R!tio[Actual Stress / Allowable Stress]

  • 7/21/2019 Manual of Steel Design

    25/158

    C!lcl!tion :

    = 0"! (Choosen section is OK)

    = 1"0$ (Choose next hi$he% section) D 00

    2 !4

    t 1"!

    I

    I6 S

    S6

    Chec, defflection R!tio[Actual deff / Allowable dffl]

  • 7/21/2019 Manual of Steel Design

    26/158

  • 7/21/2019 Manual of Steel Design

    27/158

  • 7/21/2019 Manual of Steel Design

    28/158

    n Loa O+

    Ao5e ?alue"

  • 7/21/2019 Manual of Steel Design

    29/158

  • 7/21/2019 Manual of Steel Design

    30/158

  • 7/21/2019 Manual of Steel Design

    31/158

  • 7/21/2019 Manual of Steel Design

    32/158

  • 7/21/2019 Manual of Steel Design

    33/158

    GI&' DESIGN

    Project name: xxx

    Client: xxx

    Address: xxxProject locaton: xxx

    !$

    0lastic modulus, 0 = 9000

    19"!9

    4"#

    1"$!

    Li1e load, LL = 0

    4"3$

    000 4"4

    SOL*'ION

    )%(/3

    L780 LHA@:

    (

    (

    @0A@ LHA@:

    /%)3

    5)''

    $33(5

    /

    7@ LHA@:

    '/39'$

    $39$'

    @047; LHA@ CHB#7AT7H:

    /

    0"0## '($)

    $39$'

    0"0## %$53(9

    4ection C'(('( !hose: 4x = 3! ''

    Iield stress of steel, itan7e eteen ti22ener"

    7lr" Ditan7e eteen to 2lan@e

    tt7=" o2 e

    ahK$

    ahO$

    C1K() h/tw>=56250kv/Fy

    C1O() h/tw

  • 7/21/2019 Manual of Steel Design

    49/158

    2."# t Fy EQN-2

    E)N-1

    E)N-

    g greater 7.

  • 7/21/2019 Manual of Steel Design

    50/158

  • 7/21/2019 Manual of Steel Design

    51/158

  • 7/21/2019 Manual of Steel Design

    52/158

  • 7/21/2019 Manual of Steel Design

    53/158

  • 7/21/2019 Manual of Steel Design

    54/158

  • 7/21/2019 Manual of Steel Design

    55/158

  • 7/21/2019 Manual of Steel Design

    56/158

  • 7/21/2019 Manual of Steel Design

    57/158

  • 7/21/2019 Manual of Steel Design

    58/158

  • 7/21/2019 Manual of Steel Design

    59/158

    OL*

    IN;*' DA'A:

    0lastic modulus, 0 = 9000 *si

    $0 *si

    Axial com"ressi1e force, P = !"!4 *i"

    Boment at end, B = $9 ft-*i"

    Length of the column, L = $"1 fto of brace "oint, n = $

    Solution:

    Ta*e effecti1e length factor +according to su""ort condition., E =

    00 mm #"8#4 in

    10 mm 0"394 in -area, A =

    d = #00 mm #"$$9 in

    $ mm 0"19# in

    1"38

    144"4 Control

    10# eight =

    K than the maximum slenderness ratio

    0"$8 *si

    #"1! *si

    Allo!able bending stress for maximum section modulus,

    9"3! *si

    Iield stress of steel, &E'ANG*LA& /OO'ING]

    IN;*' DA'A:

    18 in %5/ mm

    18 in %5/ mm

    Longitudinal column bar number, Q = 9 ') mm

    umber of column steel rod, n = 8 os ) os

    Jnfactored +ser1ice. li1e load, LL = 00 Ei"s

    Jnfactored +ser1ice. dead load, @L = 4$ Ei"s

    #ase of footing belo! final grade, 2 = 4 ft

    Jltimate concrete strength, fc? = 4 Esi

    Iield stress of steel, f& = !0 Esi

    $ Esf

    Jnit !eight fill material ie soil, = 100 7bcft

    SOL*'ION:

    Assumed total de"th of footing, @ = 4 in

    3(( "sf

    '(( "sf

    %5(( "sf

    9))9

    4ide of the suare footing, L or # = A = 99% ft

    2ence, 4elected side of the footing, L or # = 10 ft

    )3 Ei"s

    )3 Esf

    0ffecti1e de"th, d = @-%5 = $95 in

    $5( in$3 Ei"s

    $

    $9$$ in

    40 %( for interior columns

    $'/% in 3( for edge columns

    $($ in '( for corner columns

    Coumn si6e: Long side, CL4=

    4hort side, C44

    =

    Allo!able soil "ressure, a=

    Pressure of footing, !f= @G$5( =

    Pressure of soil, !s= G+2-@. =

    2ence, 0ffecti1e soil "ressure, e=

    a-!

    f-!

    s=

    euired area of the footing, A = [email protected]= ft'

    Jltimate or factored load, Pu= $%@L$/LL =

    et u"!ard "ressure, u= P

    uL'=

    Perimeter of "unching area, bo= '+CL4d.'+C44d. =Punching shear force, 8

    u'= P

    u-

    u+C

    L4d.+C

    44d. =

    atio of long to short side of column, Bc = CL4

    C44

    =

    euired de"th for "unching, d$= 8

    u'+()5G% fc? b

    o. =

    as= a

    s=

    d'= 8

    u'+()5G+'%Bc. fc? b

    o. =

    d3= 8u'+()5G+asdbo'. fc? bo. =

  • 7/21/2019 Manual of Steel Design

    98/158

    Critical section location for one-!a& shear action:

    3$5 in

    $/9'9 Ei"s

    $39 in

    $)3 Ei"-ft

    $''' "si

    (((3')

    Ta*en, eui1alent constant stress bloc* de"th, a = 1"0! in +Trial 1alue of a = d'(.

    euired steel area, As = Bu+(9f&+d-a'.. = /'3 $(Baximum steel area for balanced steel ratio, As = rbd= /)

    Binimum steel area for shrin*age, As = ((('b@ = 5/

    Binimum steel area for flexure, As = +'((f&.Gbd = /)

    Therefore, ado"ted steel area, As = /)

    Choosen bar number, Q = ! 0 mm

    umber of bar, n = $) os

    4"acing, 4 = !"#1 in cc in both directions

    e7= o2 earin@ tre:

    ''5

    Area of footing, A' = LG# = $((

    //$$' Ei"s

    #earing strength at to" of footing, ' = $ A'A$ = 5$%() Ei"s ;reater than '$

    2ence, maximum ado"ted 1alue of ' = '$ = $5%''% Ei"s

    4ince Pu is less than $ and ', bearing stress is adeuate

    euired minimum do!el area, Asd = (((5A$ = $'

  • 7/21/2019 Manual of Steel Design

    99/158

    Collecte D!t!: !le: Unit:

    4" ;ra1it& of coarse aggregate +CA. = $)5

    4" ;ra1it& of fine aggregate +

  • 7/21/2019 Manual of Steel Design

    100/158

  • 7/21/2019 Manual of Steel Design

    101/158

    "8 lb ('%)

    4!"8# lb (%944"89 lb (5$

    11"38 lb ($)'

    +#& !eight. +#& 1olume.

    1 $

    "1 $)9

    "01 '3

    0"$1 (/3

    7on7rete 1$ lbft3

    ) da&s cur1e.

    ion S t&"e of Construction.

    ction.

    m si6e of CA.

    A S

  • 7/21/2019 Manual of Steel Design

    102/158

  • 7/21/2019 Manual of Steel Design

    103/158

    BOBEN' ONNE'ION END ;LA'E ONNE'I

    [/O& S'A'I LOAD ONL]

    IN;*' DA'A:

    #ending moment, B = 1$ *i"-ft

    4hear force0nd reaction, = 1! *i"s

    Iield stress of steel,

  • 7/21/2019 Manual of Steel Design

    104/158

    Wit o2 te Moint ;late:

    idth of the joint "late, = bf $ = !"90! in

    Len@t o2 te Moint ;late:Binimum erection clearance for bolts, 0 = 1"9# in

    Binimum edge distance +Center of hole to edge of joint "late., Le = 1"9# in

    Positions of bolts abo1e tension flange, Pf = db (5 = 1"9!9 in

    Length of the joint "late, L = d '+s Le. = 33"4# in

    'i7=ne o2 te Moint ;late:Boment arm for bending moment of joint "late, Pe = Pf - a - +db%. = 1"3# in

    Ca = 1"09

    Cb = bf = 0"9$

    Area of the tension flange, Af = bf x tf = 1"8! in'

    Area of !eb +clear of flanges., A! = +d - 'tf. x t! = $"891 in'

    0"#9

    #ending moment acting on the joint "late, B = am

  • 7/21/2019 Manual of Steel Design

    105/158

    ON

    IN;*'

    NO (ANGE

    '559$ in

    ('3 in

    59( in

    (3$5 in

    +$)5.

    0 ,,

    11 ,,

  • 7/21/2019 Manual of Steel Design

    106/158

    1#! ,,

    $0 mm

    $0 mm

    Page : %-$$9

    $0 mm ;2 0"$F in

    8$1 ,,

    IN;UT &e2":

    Page : %-$$$

    A3$ A490

    /6 =i a a

    3 $$3 $$%

    %' $$$ $$3

    %5 $$ $$'

    5( $(9 $$

    18 ,,

    O"+"

    4ee the AIS ASD9tEDI'IONCode:

    4ee the AIS ASD 8t EDI'IONCode:

  • 7/21/2019 Manual of Steel Design

    107/158

    * 7E ,si

    Weldin$ &iGe: 0"98

    To. Fl!n$e to 9nd ;l!te Weldin$

    Fo% F

  • 7/21/2019 Manual of Steel Design

    108/158

    !"3# 0"40 in

    We" to 9nd ;l!te Weldin$

    (9')G' 3"81 0"4 in

    4 One &ided Connection (&in$le &he!% Connection)

    #eam 4ection

    3$ mm 1"80 in

    $ mm 0"0 in

    1$0 mm $"91 in

    ! mm 0"4 in

    #olt @ia 1! mm 0"!3 in

    Allo!able 4hearing 4tress 14"48 '$ *si

    Allo!able Load #olt 9"11 E !"$4 Ei"s

    os of #olts euired "00 os 3 os

    %( mm $5/ in %( mm $5/ in

    8ertical 4"acing of #olt /5 mm '95 in

    2ori6aontal 0nd distance of hole in #eam 5( mm $9/ in

    0nd distance #earing 1alue from Table 7-< '5/9) E $8 Ei"s

    Actual 8alue #earing 1alue from Table 7-< $0"#8 E 11"4 Ei"s

    L-Cle!t &ection:

    a 100 mm 39% in

    100 mm 39% in7 $0 mm 9)% in

    t7=" ! mm ('% in

    >4> Chec, fo% e!%in$

    ALLOWA%LE LOADF & 3$"99 +N 8"09 +i.

    t

    2

    t2

    Ecm'

    8ertical 0dge @istance l12ori6ontal 0dge @istance l

    h

  • 7/21/2019 Manual of Steel Design

    113/158

    UN&AF9 ? INCR9A&9 T6ICK4 OF ;LAT94

    ) &he!% &t%ess

    Iield 4trength = 3%%/ Ecm' 5( Esi

    Jltimate 4trength = %%)$ Ecm' 5 Esi

    Allo!able 4hear 4trength = 1#"93 +N>7, 0 +i

    Allo!able 4hear 4trength = 13"44 +N>7, 19"$ +i

    Net Area = 11"#! 3"!$

    = 4"1! +N 3"0 +i

    O4K4 &he!%in$ &t%ess

    Gro Area = $5(( %5

    = 3"! +N "3# +i

    O4K4 &he!%in$ &t%ess

    L-CL9AT CONN9CTION

    >4 T'o &ided Connection (Do"le &he!% Connection)

    #eam 4ection

    3$ mm 1"80 in

    $ mm 0"0 in

    1$0 mm $"91 in

    ! mm 0"4 in

    #olt @ia 1! mm 0"!3 inAllo!able 4hearing 4tress 14"48 '$ *si

    Allo!able Load #olt 9"11 E 13"09 Ei"s

    os of #olts euired 1"00 os 3 os

    %( mm $5/ in

    %( mm $5/ in

    , in'

    Actual 4hearing 4tress +f1.

    , in'

    Actual 4hearing 4tress +f1.

    t

    2

    t2

    Ecm'

    l1

    lh

  • 7/21/2019 Manual of Steel Design

    114/158

    4"acing of #olt /5 mm '95 in

    0nd distance of hole in #eam 5( mm $9/ in

    0nd distance #earing 1alue from Table 7-< '5/9) E $8 Ei"s

    Actual 8alue #earing 1alue from Table 7-< $0"#8 E 11"4 Ei"s

    L-Cle!t &ection:

    a 100 mm 39% in

    100 mm 39% in

    7 $0 mm 9)% in

    t7=" ! mm ('% in

    >4> Chec, fo% e!%in$

    ALLOWA%LE LOADF & #1"98 +N 1!"18 +i.

    &AF9 ? ;ROID9

    ) &he!% &t%ess

    Iield 4trength = 3%%/ Ecm' 5( Esi

    Jltimate 4trength = %%)$ Ecm' 5 Esi

    Allo!able 4hear 4trength = 13"#9 +N>7, 0 +i

    Allo!able 4hear 4trength = 13"44 +N>7, 19"$ +i

    Net Area = '%'% 3/

    = "0 +N>7, "93 +i

    O4K4 &he!%in$ &t%ess

    Gro Area = 3((( %5

    = 1"!3 +N>7, "3# +i

    O4K4 &he!%in$ &t%ess

    , in'

    Actual 4hearing 4tress +f1.

    , in'

    Actual 4hearing 4tress +f1.

  • 7/21/2019 Manual of Steel Design

    115/158

    *si

    os

    mm

    mm 0"#1 in

    mm

    mm

    Ei"s 48"93 KN

    +5*si for $0 GraeS 5)*si for 3! Grae.

    &e2" AIS ASD-8tEition ;-4-11

  • 7/21/2019 Manual of Steel Design

    116/158

    T@ OF 9AC6 ROW

    'ale I-/

    F * 38

    $ '9

    $$'5 3'

    $'5 33

    $5 %35

    Banuall6 ;ro5ie $/5 5()

    ' 5)

    ''5 53

    '5 /'5'/5 /9)

    Banuall6 ;ro5ie 3 )/

    T!"l!% !le t n &ee the AI&C A&D 1!n!l ;!$e E

    E@eDitan7eFL5 LF

    in

    Aloale2or 1 2

    ab

    c

  • 7/21/2019 Manual of Steel Design

    117/158

    Chec, fo% %oss o% Net A%e!

    E4< x F On %oss A%e!M

    E4/ x F On Net A%e!M &he!% on Net !%e! o#e%ns 'he

    dia of 2ole O L+n.

    L+n. = $3)9

    dia of 2ole = $)((

    Net A%e! o#e%n

    'ale I-/

    F * 38

    $ '9

    $$'5 3'

    $'5 33

    $5 %35Banuall6 ;ro5ie $/5 5()

    ' 5)

    ''5 53

    '5 /'5

    '/5 /9)

    E@eDitan7eFL5 LF

    in

    Aloale2or 1 2

  • 7/21/2019 Manual of Steel Design

    118/158

    Banuall6 ;ro5ie 3 )/

    T!"l!% !le t n &ee the AI&C A&D 1!n!l ;!$e E

    Chec, fo% %oss o% Net A%e!

    E4< x F On %oss A%e!M

    E4/ x F On Net A%e!M &he!% on Net !%e! o#e%ns 'he

    dia of 2ole O L+n.

    L+n. = $3)9

    dia of 2ole = $((

    Net A%e! o#e%n

    ab

    c

  • 7/21/2019 Manual of Steel Design

    119/158

  • 7/21/2019 Manual of Steel Design

    120/158

    F * 53 F * 7E F * >EE

    3'5 35 5(

    3 39% 53

    %( %3) '5

    %)) 5'5 /5

    59 $3 )/5

    5 /( $((

    /3$ /)) $$3

    )$3 )/5 $'5)9% 93 $3)

    9/5 $(5 $5(

    LoaF +i.tenerF 1in7" ti7= ,aterial

  • 7/21/2019 Manual of Steel Design

    121/158

    mm (55 in

    mm (3 in

    F * 53 F * 7E F * >EE

    3'5 35 5(

    3 39% 53

    %( %3) '5

    %)) 5'5 /559 $3 )/5

    5 /( $((

    /3$ /)) $$3

    )$3 )/5 $'5

    )9% 93 $3)

    LoaF +i.tenerF 1in7" ti7= ,aterial

  • 7/21/2019 Manual of Steel Design

    122/158

    9/5 $(5 $5(

    mm (55 in

    mm (3 in

  • 7/21/2019 Manual of Steel Design

    123/158

    %EAB %EA&ING ;LA'E DESIGN

    IN;*' DA'A:

    eaction force, = 0 *i"s

    $0 "si

    idth of the bearing "late +"arallel to beam., C +. = 8 in +;enerall

    $0 *si

    00 mm /)/

    SOL*'ION:80

    Length of bearing "late "arallel to !all, # = AC 11 in

    Pro1ide minimum Length of bearing "late, # = 11"8# in 30Actual bearing "ressure on "late, f" = +#GC. 10"!1 "si

    Cantile1er "rojection, n = #'-* = 4"!8 in 4a&, * =

    3#"$ *si

    0"!1 in

    Sa2e %earin@ ;reure on Baonr6 an on7rete Wall:

    '6.e o2 Wall: Pressure +"si.

    %ri7=: i. soft 1$0

    ii. medium 00

    iii. hard 300

    Concrete i. hollo! units 1$0

    ii. solid units !0

    Allo!able unit bearing "ressure on !all, 35 ft " = $"99 "sf 1!#

    35>%( ft " = $"99 "sf 1!#

    ind!ard roof: " = -3"#4 "sf -10$

    Lee!ard roof: " = -1$"9 "sf -49

    Lee!ard !all: " = -8"08 "sf -#

    4ide or 0nd !alls: " = -1$"9 "sf -49

    ind!ard !all: (-$5 ft " = 14"# "sf 41

    $5>'( ft " = 1!"$ "sf 4!

    '(>'5 ft " = 18"33 "sf $13

    '5>3( ft " = -$"99 "sf -1!8

    3(>35 ft " = -$"99 "sf -1!835>%( ft " = -$"99 "sf -1!8

    ind!ard roof: " = -1$"# "sf -441

    Lee!ard roof: " = -#"# "sf -#!4

    Lee!ard !all: " = -0"0! "sf -$!

    4ide or 0nd !alls: " = -#"# "sf -#!4

    ote: Binus sign means the direction of the "ressure is a!a& from the surfacePlus sign means "ressure is to!ard the surface

    Lee!ard roof, C"=

    /. @esign "ressure for external forces "lus internal suction, " = 6;

    hC

    ";C

    "i

    h

    ). @esign "ressure for external forces "lus internal "ressure, " = 6;hC"-;C"i

    h

  • 7/21/2019 Manual of Steel Design

    157/158

    m"h+

  • 7/21/2019 Manual of Steel Design

    158/158

    "lf

    "lf

    "lf

    "lf

    "lf

    "lf

    "lf

    "lf

    "lf

    "lf

    "lf

    "lf

    "lf

    "lf