manual dcout web

24
PV Lead-Acid Battery System (DC Out) All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 1 Design Kit

Upload: tsuyoshi-horigome

Post on 28-Jun-2015

304 views

Category:

Business


0 download

TRANSCRIPT

Page 1: Manual dcout web

PV Lead-Acid Battery System (DC Out)

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 1

Design Kit

Page 2: Manual dcout web

Contents

Slide #

1. Lead-Acid Battery1.1 Lead-Acid Battery Specification...........................................................................1.2 Discharge Time Characteristics...........................................................................1.3 Charge Time Characteristics................................................................................

2. Solar Cells2.1 Solar Cells Specification......................................................................................2.2 Output Characteristics vs. Incident Solar Radiation.............................................

3. Solar Cell Battery Charger.........................................................................................3.1 Concept of Simulation PV Lead-Acid Battery Charger Circuit..............................3.2 PV Lead-Acid Battery Charger Circuit..................................................................3.3 Charging Time Characteristics vs. Weather Condition.........................................3.4 Concept of Simulation PV Lead-Acid Battery Charger Circuit + Constant

Current.................................................................................................................3.5 Constant Current PV Lead-Acid Battery Charger Circuit......................................3.6 Charging Time Characteristics vs. Weather Condition + Constant Current..........

4. Simulation PV Lead-Acid Battery System in 24hr.4.1 Concept of Simulation PV Lead-Acid Battery System in 24hr..............................4.2 Short-Circuit Current vs. Time (24hr.)..................................................................4.3 PV-Battery System Simulation Circuit..................................................................4.4 PV-Battery System Simulation Result..................................................................

Simulations index............................................................................................................

345

67891011

121314

15161718-2324

2All Rights Reserved Copyright (C) Bee Technologies Corporation 2010

Page 3: Manual dcout web

GS YUASA’s Lead-Acid : MSE-100-6

• Nominal Voltage................ 6.0 [Vdc]

• Capacity............................ 100[Ah]@C10, 65[Ah]@C1

• Rated Charge.................... 0.1C10A

• Input Voltage...................... 6.69 [Vdc]

• Charging time..................... 24 [hours] @0.1C10A

1.1 Lead-Acid battery Specification

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 3

Page 4: Manual dcout web

0.6C (60A)

0

R31G

0

C110n

0 0

IN-

OUT+

OUT-

IN+

G1

limit(V(%IN+, %IN-)/1m,0,Idch)GVALUE

Hi

PARAMETERS:Idch = {Rate*CxAh}CxAh = 100Rate = 0.1

U1

MSE-100-6

NS = 1TSCALE = 3600

SOC1 = 1

PLUS

MINUS

1.2 Discharge Time Characteristics

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 4

Battery Model Parameters

NS (number of batteries in unit) = 1 cellC (capacity) = 100[Ah]@C10 SOC1 (initial state of charge) = “1” (100%)TSCALE (time scale) , simulation : real time

1 : 3600s or 1s : 1h

Discharge Rate : 0.1C(10A), 0.25C(25A) , 0.6C(60A), and 1C(100A)

TSCALE=3600 means time Scale (Simulation time :

Real time) is 1:3600

0.1C (10A)

0.25C (25A)

1C (100A)

Page 5: Manual dcout web

1.3 Charge Time Characteristics

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 5

SOC [%]

Battery Model Parameters

NS (number of batteries in series) = 1 cellC (capacity) = 100[Ah]@C10 SOC1 (initial state of charge) = “1” (100%)TSCALE (time scale) , simulation : real time

1 : 3600s or 1s : 1h

Charging Time

Input Voltage = 6.69 VdcInput Current = 10 A @0.1C10

V26.69

PARAMETERS:

Ich = {0.1*CxAh}CxAh = 100

Hi

00

IN-

OUT+

OUT-

IN+G1

limit(V(%IN+, %IN-)/0.1m,0,Ich)

GVALUE

0

R31G

0

C110n

U1

MSE-100-6

NS = 1TSCALE = 3600

SOC1 = 0

PLUS

MINUS

C10AVbatt [V]

Page 6: Manual dcout web

BP Solar’s photovoltaic module : BP365TS

• Maximum power (Pmax)..............65[W]

• Voltage at Pmax (Vmp)...............8.7[V]

• Current at Pmax (Imp)................7.5[A]

• Short-circuit current (Isc)............8.1[A]

• Open-circuit voltage(Voc)...........11.0[V]

2.1 Solar Cells Specification

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 6

456mm

1513

mm

Page 7: Manual dcout web

2.2 Output Characteristics vs. Incident Solar Radiation

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 7

Parameter, SOL is added as normalized incident radiation,

where SOL=1 for AM1.5 conditions

SOL=1

SOL=0.5

SOL=0.16

SOL=1

SOL=0.5

SOL=0.16

Cur

rent

(A)

Pow

er (W

)

Voltage (V)

BP365TS Output Characteristics vs. Incident Solar Radiation

+

BP365TS

U2BP365TSSOL = 1

Page 8: Manual dcout web

3. Solar Cell Battery Charger

• Solar Cell charges the Lead-Acid Battery (MSE-100-6) with direct connect technique. Choose the solar cell that is able to provide current at charging rate or more with the maximum power voltage (Vmp) nears the battery charging voltage.

• MSE-100-6

– Charging time is approximately 24 hours with charging rate 0.1C or 10A

– Voltage during charging with 0.1C is between 5.93 to 6.69 V

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 8

5.93 V

6.69 V

0.1C or 10A

Page 9: Manual dcout web

3.1 Concept of Simulation PV Lead-Acid Battery Charger Circuit

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 9

Lead-Acid Battery

Photovoltaic Module

MSE-100-6 (GS YUASA)DC6.0V 100[Ah]@C10, 65[Ah]@C1

Short circuit current ISCdepends on condition: SOL

Over Voltage Protection Circuit

6.84V Clamp Circuit

BP 365TS (BP Solar) × 3panelsVmp(system)=Vmp(panel)=8.7VImp=22.5A (7.5A×3)Pmax=195W (65W × 3)

Page 10: Manual dcout web

3.2 PV Lead-Acid Battery Charger Circuit

• Input value between 0-1 in the “PARAMETERS: sol = ” to set the normalized incident radiation, where SOL=1 for AM1.5 conditions.

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 10

Hi

0

0

C11n

pvpv

pv

+

BP365TS

U4BP365TSSOL = {sol}

PARAMETERS:sol = 1

0

pv

0

+

BP365TS

U2BP365TSSOL = {sol}

pv

+

BP365TS

U3BP365TSSOL = {sol}

U1MSE-100-6

TSCALE = 3600SOC1 = 0

PLU

S

MIN

US

0

DMOD

D1

Voch6.84Vdc

0

Page 11: Manual dcout web

3.3 Charging Time Characteristics vs. Weather Condition

• Simulation result shows the charging time for sol = 1, 0.5, and 0.16.

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 11

sol = 1.00 sol = 0.50sol = 0.16

Page 12: Manual dcout web

3.4 Concept of Simulation PV Lead-Acid Battery Charger Circuit + Constant Current

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 12

Lead-Acid Battery

Photovoltaic Module

Over Voltage Protection Circuit

6.84V Clamp Circuit

MSE-100-6 (GS YUASA)DC6.0V 100[Ah]@C10, 65[Ah]@C1

Constant Current Control Circuit

Icharge=0.1C (10A)

Short circuit current ISCdepends on condition: SOL

BP 365TS (BP Solar) × 3panelsVmp(system)=Vmp(panel)=8.7VImp=22.5A (7.5A×3)Pmax=195W (65W × 3)

Page 13: Manual dcout web

DMODD1

Voch6.84Vdc

0

0

0

C11n

IC = 6

pv

pv

+

BP365TS

U4BP365TSSOL = {sol}

0

PARAMETERS:sol = 1

0

pv

+

BP365TS

U2BP365TSSOL = {sol}

pv

+

BP365TS

U3BP365TSSOL = {sol}

0

pv Hi

PARAMETERS:

Ich = {0.1*CxAh}CxAh = 100

IN-

OUT+

OUT-

IN+

G1

limit(V(%IN+, %IN-)/0.1m,0,Ich)GVALUE

U1MSE-100-6

TSCALE = 3600SOC1 = 0

PLU

S

MIN

US

3.5 Constant Current PV Lead-Acid Battery Charger Circuit

• Input the battery capacity (Ah) and charging current rate (e.g. 0.1*CxAh) in the • “PARAMETERS: CxAh = 100 and rate = 0.1 ” to set the charging current.

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 13

Vmp(system)=Vmp(panel)=8.7VImp=22.5APmax=195W

Page 14: Manual dcout web

3.6 Charging Time Characteristics vs. Weather Condition(Constant Current)

• Simulation result shows the charging time for sol = 1, 0.5, and 0.16. If PV can generate current more than the constant charge rate (0.1), battery can be fully charged in about 9.364 hour.

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 14

sol = 1.00 sol = 0.50sol = 0.16

Page 15: Manual dcout web

4.1 Concept of Simulation PV Lead-Acid Battery System in 24hr.

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 15

Lead-Acid Battery

Photovoltaic Module

Over Voltage Protection Circuit

6.84V Clamp Circuit

MSE-100-6 (GS YUASA)DC6.0V 100[Ah]@C10, 65[Ah]@C1

DC/DC Converter

Vopen= (5.72V)Vclose= (6.35V)

The model contains 24hr. solar power data (example).

DC Load

VIN=4.5~9.0VVOUT=3.3V

VLOAD = 3.3VILOAD ≈ 18A

Low-Voltage Shutdown Circuit

BP 365TS (BP Solar) × 3panelsVmp(system)=Vmp(panel)=8.7VImp=22.5A (7.5A×3)Pmax=195W (65W × 3)

Page 16: Manual dcout web

4.2 Short-Circuit Current vs. Time (24hr.)

• Short-circuit current vs. time characteristics of photovoltaic module BP365TS for 24hours as the solar power profile (example) is included to the model.

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 16

The model contains 24hr. solar power data

(example).

BP365TS_24H_TS3600

pv

pv

+

BP365TS

U4

00

pv

+

BP365TS

U2

pv

+

BP365TS

U3

0

Page 17: Manual dcout web

Conof f 1100n

C10.1n

0

Ronof f 1

100dchth

DC/DC Converter

Low-Voltage Shutdown Circuit

DMOD

D1

Voch6.84Vdc

0

0

0

battpv

batt1+-

+

-S2S

VON = 0.7VOFF = 0.3

ROFF = 10MEGRON = 10m

0

0

Iomax

IN+IN-

OUT+OUT-

ecal_Iomax

n*V(%IN+, %IN-)*I(IN)/3.3EVALUE 0

IN+IN-

OUT+OUT-

E2

IF( V(lctrl) > 0.25 ,Lopen ,Lclose) EVALUE

0

PARAMETERS:Lopen = 5.72

Lclose = 6.35

IN+IN-

OUT+OUT-

E1

IF(V(batt1)>V(dchth),5,0)EVALUE

Conof f1nIC = 5

Ronof f100

PARAMETERS:n = 1

Lctrl

+ U2BP365TS_24H_TS3600

I1

18.181A

0

OUT

IN+IN-

OUT+OUT-

E3

IF( I(OUT)-V(Iomax) > 0 ,n*V(%IN+, %IN-)*I(IN)/(I(OUT)+1u), 3.3 )EVALUE

out_dc

DMOD

D2

U1MSE-100-6

TSCALE = 3600SOC1 = 0.7

PLU

S

MIN

US

IN-

OUT+

OUT-

IN+

G1

Limit( V(%IN+, %IN-)/0.01, 1m, 3.3*I(out)/(n*limit(V(%IN+, %IN-), 4.5, 9)) )

GVALUE

IN

60W

0

+ U3

0

+ U4

4.3 PV-Battery System Simulation Circuit

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 17

Solar cell model with 24hr. solar

power data.

Lopen value is load shutdown voltage.

Lclose value is load reconnect voltage

SOC1 value is initial State Of Charge of

the battery, is set as 70% of full voltage.

60W Load (3.3Vx18.181A).

Simulation at 100W load, change I1 from 18.181A to 30.303A

Page 18: Manual dcout web

4.3.1 Simulation Result (SOC1=100, IL=18.18A or 60W load)

• Run to time: 24s (24hours in real world)• Step size: 0.01s

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 18

PV generated current

Battery current

Battery voltage

Battery SOC

DC/DC input current

DC output voltage

SOC1=100%

PV module charge the battery

Charging time

Battery supplies current when solar power drops.

Fully charged

Page 19: Manual dcout web

4.3.2 Simulation Result (SOC1=70, IL=18.18A or 60W load)

• Run to time: 24s (24hours in real world)• Step size: 0.01s

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 19

SOC1=70%

V=Lopen

V=Lclose

Shutdown

Reconnect

Charging time

• .Options ITL4=30

Battery supplies current when solar power drops.

Fully charged

PV generated current

Battery current

Battery voltage

Battery SOC

DC/DC input current

DC output voltage

PV module charge the battery

Page 20: Manual dcout web

4.3.3 Simulation Result (SOC1=30, IL=18.18A or 60W load)

• Run to time: 24s (24hours in real world)• Step size: 0.01s

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 20

SOC1=30%

V=Lopen

V=Lclose

ShutdownReconnect

Charging time

Fully charged

PV generated current

Battery current

Battery voltage

Battery SOC

DC/DC input current

DC output voltage

Battery supplies current when solar power drops.

PV module charge the battery

• .Options ITL4=30

Page 21: Manual dcout web

4.3.4 Simulation Result (SOC1=10, IL=18.18A or 60W load)

• Conoff: IC=0• Run to time: 24s (24hours in real world)• Step size: 0.01s

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 21

SOC1=10%

V=Lclose

Shutdown

Reconnect

PV module charge the battery

Charging time

Fully charged

Battery supplies current when solar power drops.

PV generated current

Battery current

Battery voltage

Battery SOC

DC/DC input current

DC output voltage

Page 22: Manual dcout web

4.3.5 Simulation Result (SOC1=100, IL=30.30A or 100W load)

• Run to time: 24s (24hours in real world)• Step size: 0.01s

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 22

• .Options ITL4=30

SOC1=100%

Charging time

V=Lopen

Shutdown

V=Lclose

Reconnect

Battery supplies current when solar power drops.

PV generated current

Battery current

Battery voltage

Battery SOC

DC/DC input current

DC output voltage Shutdown

V=Lopen

PV module charge the battery

Page 23: Manual dcout web

4.4 Simulation Result (Example of Conclusion)

The simulation start from midnight(time=0). The system supplies DC load 60W.• If initial SOC is 100%,

– this system will never shutdown.• If initial SOC is 70%,

– this system will shutdown after 6.062 hours (about 6:04AM.).– system load will reconnect again at 8:51AM (Morning).

• If initial SOC is 30%, – this system will shutdown after 1.553 hours (about 1:33AM.).– system load will reconnect again at 8:46AM (Morning).

• If initial SOC is 10%, – this system will start shutdown.– this system will reconnect again at 8:58AM (Morning).

• With the PV Panel generated current profile, battery will fully charged in about 8.087 hours.The simulation start from midnight(time=0). The system supplies DC load 100W.• If initial SOC is 100%,

– this system will shutdown after 4.491 hours (about 4:30AM.).– system load will reconnect again at 7:20AM (Morning).– this system will shutdown again at 6:45PM (Night).

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 23

Page 24: Manual dcout web

Simulations index

Simulations Folder name

1. PV Lead-Acid Battery Charger Circuit............................................

2. Constant Current PV Lead-Acid Battery Charger Circuit...............

3. PV-Battery System Simulation Circuit (SOC1=100, 60W).............

4. PV-Battery System Simulation Circuit (SOC1=70, 60W)...............

5. PV-Battery System Simulation Circuit (SOC1=30, 60W)...............

6. PV-Battery System Simulation Circuit (SOC1=10, 60W)...............

7. PV-Battery System Simulation Circuit (SOC1=100, 100W)...........

charge-sol

charge-sol-const

sol_24h_60W_soc100

sol_24h_60W_soc70

sol_24h_60W_soc30

sol_24h_60W_soc10

sol_24h_100w_soc100

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 24