management of the febrile infant risk minimizers vs. test minimizers steven e. krug, m.d. saem...

63
Management of the Febrile Infant Risk Minimizers vs. Test Minimizers Steven E. Krug, M.D. SAEM Annual Meeting St. Louis, MO -- May, 2002

Upload: sherilyn-wright

Post on 24-Dec-2015

216 views

Category:

Documents


0 download

TRANSCRIPT

Management of the Febrile Infant

Risk Minimizers vs. Test Minimizers

Steven E. Krug, M.D.

SAEM Annual Meeting

St. Louis, MO -- May, 2002

Fever, What’s The Big Deal ?

65% of children 0-2 years visit a physician for a febrile illness10 to 20% of all pediatric visits to EDs 20 to 30% of pediatric office visits

Fever without a source accounts for as many as 50% of these visits

A self limited illness in the vast majority

A small percentage will have a SBI

Occult Bacteremia in Febrile Children How It All Began

McGowan JE, et al: NEJM 1973; 288:1309

Febrile children at Boston City Hospital “24 hour pediatric walk-in clinic”

Temp > 38.3 0C -- all ages - 3 month study Results:

10,535 visits 2165 children with fever 708 blood cultures 31 (4.4%) true positives

Note: 43 cultures (6.1%) produced false positives

So, Are You a Risk-Minimizer ?

Green SM, Rothrock SG: Ann Emerg Med 1999; 33:211

Desire to lower the risk of adverse sequelae from occult infections - “ROWS”

Do not believe that clinical evaluation is sufficient to reliably identify ill children

Use risk stratification to target higher risk patient groups for intervention

Believe that the potential benefit of reducing adverse sequelae justifies empiric diagnostic testing and treatment

If Not, Perhaps a Test-Minimizer ?

Green SM, Rothrock SG: Ann Emerg Med 1999; 33:211

Believe the occurrence of adverse outcomes is so low as to not justify time, expense and invasiveness of risk stratification

Believe that clinical evaluation and follow up will serve to identify nearly all ill children

Believe that parents prefer less testing and treatment

Are willing to accept a greater chance of being wrong

Well Intentioned Risk Minimizers at Work

Can We Identify High Risk Children ?

Demographic and clinical parameters age, temperature, petechiae

Lab screening profiles CBC, ESR, CRP, UA, etc. OB/SBI risk appears to correlate with some sensitivity, specificity and positive predictive value for

OB and SBI were less than ideal

Clinical scoring systems (McCarthy, et al.) initially very promising, ultimately disappointing

Identification of High Risk PatientsSensitivity of the Physical Exam

McCarthy, et al. Pediatrics 1982; 70:802

Yale Observation Score (AIOS) incidence of SBI related to score

< 10 = 2.7%, > 10 = 40.2%, > 16 = 92.3%

sensitivity 88%, specificity 77%, low PPV negative predictive value of normal Hx & PE

findings plus low AIOS was 96%

AIOS was fairly good in its ability to identify the sick, but perhaps even better in identifying the well ?

Failure of Clinical AssessmentTeach SJ, Fleisher GR: J Pediatr 1995;

126:877

Prospective application of the Yale Obs. Scale

children 3 - 36 months with T > 39.0 0C 611 children in study, 192 with bacteremia median YOS (6) was the same for both groups YOS > 10:

sensitivity 5.2%; specificity 96.7%, positive predictive value 4.5%, negative predictive value 97.1%

The YOS has performed similarly in other recent studies

Social Smile & SBI Bass JW, et al: Pediatr Infect Dis J 1996;

15:541

Do smiling febrile children have bacteremia?

512 children aged 3 to 36 months of age T > 39.5 0C and WBC > 15,000 social smile associated with shorter fever duration smile present in 45% of bacteremic children smile present in 49% of non-bacteremic pts. no demographic or laboratory differences found

between the groups

Yikes !! - So, is that a smile, or is it a grimace ?

Lessons Learned From the Search for OB/SBI

Risk Factors for OB/SBI

Age: neonates, 28-90 days, 3-36 months Fever: OB risk increases with temperature

hyperpyrexia (T > 40.5 0C) - 8 to 25% OB

Petechiae - 15 to 20% occurrence of SBI

Immunodeficiency - e.g. HIV, SCD WBC > 15,000; Bands > 1000

5 fold increased risk for occult bacteremia

Ill patient or toxic appearence

The big question -- Are all of these still true ??

Identification of Low Risk PatientsPhysical & Laboratory Screening

Profiles

Rochester Criteria Dagan et al: J Pediatr 1985; 107:855

T > 380C, term, well appearing, secure follow-up peripheral WBC between 5-15,000/mm3

band count < 1500 /mm3

urinalysis with < 10 WBC/hpf no evidence of ear, soft tissue or bone infection

Performance: 233 infants 0-2 months of age 1 of 144 (0.7%) low risk infants had SBI 22 of 89 (25%) high risk infants had SBI

Identification of Low Risk Patients Dagan R, et al: J Pediatr 1988; 112:355

Modified Rochester Criteria added diarrhea to criteria:

if present < 25 WBC/hpf on stool smear

Performance 237 infants 0-2 months of age 0 of 148 low risk infants had SBI 21 of 88 (24%) high risk infants had SBI

So, perhaps we can identify the low risk children !

Identification of Low Risk PatientsBaker MD, et al: NEJM 1993; 329:1437

CHOP Low Risk Criteria T > 38.20C, well appearing, low IOS WBC < 15,000 /mm3 ; BNR < 0.2 urinalysis with < 10 WBC/hpf CSF with < 8 WBC/mm3 & (-) gram stain negative chest x-ray

Performance: 747 patients aged 29-56 days 64/65 patients with SBI noted as high risk 1/287 assigned to low risk had SBI OPD assignment saved $ 3,100/patient

CHOP Low Risk Protocol: More DataBaker MD, et al: Pediatrics 1999; 103:627

Three year study (1994-1996) at CHOP Infants 29 to 60 days of age with T > 38.0 0C

422 infants 43 (10%) with SBI

UTI (4%); OB (2.1%); BM (1.2%); BGE (1.2%); cellulitis (1.2%)

101 (24%) identified as low risk no SBI in the low risk infants

Note: Over 8 years this protocol has shown a nearly perfect 100% negative predictive value for >1200 infants

Are Febrile Neonates DifferentBaker M, Bell L: Arch Pediatr Adol Med 1999;

153:508

Can laboratory screening profiles reliably identify febrile neonates with low risk for SBI ? applied CHOP protocol to 254 infants (3 - 28 days) 43% of infants qualified for OPD management 32 infants (12.6%) with SBI

17 UTI (6.7%); 8 OB (3.1%); 4 BM (1.6%), BGE (.8%)

5 “low risk” infants had serious infections would miss 20 infants with SBI per 1,000

Yes, febrile neonates are indeed different

Identification of Low Risk PatientsBaskin M, et al: J Pediatrics 1992;

120:22

The BCH Low Risk Criteria T > 380C, low IOS, presence of secure follow-up peripheral WBC < 20,000/mm3

CSF WBC < 10/mm3

urinalysis dip with (-) leukocyte esterase all patients treated with ceftriaxone

Performance: 503 patients aged 28 -89 days 27 of 503 (5.4%) who met the criteria had SBI

9 OB (1.8%), 8 UTI (1.6%), 10 BGE (2.0%)

all were treated and were well at follow-up

Components of Fever Protocols

Avner J, Baker MD: EMCNA 2002; 20:49

Boston Philadelphia RochesterAge (days) 28-89 29-56 0-60Temp (0C) > 38.0 > 38.0 > 38.0Infant Obs. Score Yes Yes NoPeripheral WBC < 20,000 < 15,000 5-15,000CSF obtained Yes Yes NoAntibiotic given Yes No NoSBI in low risk pts (%) 5.4 0 1.1NPV (%) 94.6 100 98.9Sensitivity (%) Not stated 100 92.4

Empiric Antibiotic TherapyDoes it Work?

Carroll WD, et al: Pediatrics 1983; 72:608 Small study (10 patients) - PCN vs. placebo Difference between groups was not great

Jaffe DM, et al: NEJM 1987; 317:1175 Large multi-center study - amoxicillin vs. placebo Enrolled 955 children 3-36 months with T > 39.0 0C 27 (2.8%) with bacteremia -- small number of cases Outcome differences between groups were not great

Empiric Antibiotic TherapyDoes it Work?

Bass JW, et al: Pediatr Infect Dis J 1993; 12:466 Prospective study - augmentin vs. ceftriaxone

519 children aged 3-36 months -- 60 (11.6%) with OB T > 40.0 0C - or - T > 39.5 0C and WBC > 15 K

Both Rx regimens appeared to be adequate

Fleisher GR, et al: J Pediatr 1994; 124:504 Multi-center study - ceftriaxone vs. amoxicillin

6733 patients -- 195 (2.9 %) with bacteremia

“...ceftriaxone eradicated bacteremia, had fewer focal complications, and less persistent fever…”

Is There a Cost Effective Strategy? Lieu TA, et al: Pediatrics 1992; 89:1135

Decision analysis, cost-effectiveness model 6 strategies for management of febrile infants 28 to 90 days with Temp > 38.0 0C used data from literature (e.g. Baskin, Baker)

Clinical judgment alone appeared to be the least effective clinical model and the 2nd least cost effective strategy

Full sepsis W/U and outpatient IM ceftriaxone was judged to be the most effective strategy

Practice GuidelinesBaraff L, et al*: Ann Emerg Med 1993 & Pediatrics

1993

Expert consensus panel recommendations Based on meta-analysis of the literature Fever is defined as > 38.0 0C for 0-3 months and >

39.0 0C for 3-36 months Infants at greatest risk during 0-3 months Rochester criteria selected as screening criteria for

high vs. low risk

* Note: Panel members confessed risk-minimizers

Consensus Panel Guidelines

Toxic-Appearing Infants and Children

Hospitalize, evaluate and treat for presumed sepsis, meningitis, or SBI

This holds for all age groups

THIS SHOULD BE A NO BRAINER

Consensus Panel Guidelines

Febrile (low risk) Infants < 28 days of age

Despite low probability of sepsis and studies showing favorable outcome for outpatient observation, the panel recommends SBI evaluation and hospital admission for all infants with either parenteral therapy or close observation

Consensus Panel Guidelines

Low-Risk Infants 28-90 Days of Age

Obtain urine culture and provide close follow-up

- OR -

Full sepsis evaluation (blood, urine, CSF) and treat with IM ceftriaxone

All children who receive presumptive therapy should have an LP

Consensus Panel Guidelines

Low-Risk Infants 3-36 Months of Age

Urine culture for males < 6 mo & females < 2 yrs Stool culture if blood or mucus or > 5 WBC/hpf Chest x-ray if decreased breath sounds or SOB Blood culture if T > 39.0 0C and WBC > 15,000 Empiric therapy if T > 39.0 0C and WBC > 15,000 No diagnostic tests or antibiotics if T < 39.0 0C

The Febrile InfantVariability in Management

Approaches

Ros SP, et al. Pediatr Emerg Care 1994; 10:264

Surveyed members of AAP Section on EM Numerous fever and age group definitions 74% routinely screen with a CBC 45% routinely draw blood cultures

36% use clinical appearance as basis for culturing

53% routinely administer antibiotics 44% use lab criteria as basis for antibiotic Rx

Despite published guidelines, no clear standard of care!

What Do Parents PreferOppenheim PI, et al: Ann Emerg Med 1994;

24:836

Interviewed parents regarding management options for febrile infant/child scenarios

Parents successfully identified the strategies associated with a higher probability for an adverse outcome

71% chose options with less testing and treatment (and greater risk!)

So, perhaps parents are test minimizers??

What do Parents PreferBennett JE, et al: Arch Pediatr Adol Med 2000;

154:43

Survey of parent utilities for outcomes of OB convenience sample, single urban PED 94 subjects interviewed provided with 8 possible outcomes blood drawing viewed to be of minimal risk and

concern Parents were intolerant of adverse outcomes

Okay, so maybe parents are risk-minimizers

Parents, Physicians & Antibiotics

Bauchner H, et al: Pediatrics 1999; 103:395

Survey of AAP general pediatricians 610 responses (67%) 40% indicated that parents frequently ask for antibiotic

when the MD feels it is not needed 48% stated parents often pressure them to prescribe

antibiotic therapy nearly 1/3 stated they occasionally or frequently comply

with that pressure parental pressure viewed as #1cause of the

unnecessary use of antibiotics

Risk Minimizers vs. Test Minimizers

- Published guidelines- “ROWS”- Risk of OB sequelae- Parental preferences

- Cost of care- Changing Hx of OB/SBI- Risk of testing- Risk of Rx- Parental preferences

Attorneys, Payors, and Other Predators

“To Test/Treat - or -

Not To Test/Treat”

Management of the Febrile Infant

What’s Controversial, What’s Changed?

Eradication of Hemophilus influenzae what is the current risk of OB and SBI what is the natural history of pneumococcal OB do the 1993 consensus guidelines make sense

Continuous blood culture monitoring systems True efficacy of empiric antimicrobial therapy The febrile infant with a viral infection OB/SBI risk with hyperpyrexia; petechiae

Disappearance of H. influenzae

Prior to introduction of Hib vaccine (1987) 10-15% of OB and majority of OB related SBI 12,000 cases/yr invasive H. flu in children < 5 yrs.

33-60% develop focal infection, 15-25% develop BM 12 times more likely than pneumococcus

Currently about 300 cases per year (94/95) no longer a leading cause of sepsis/meningitis incidence now greatest in children < 5 months

Median age for BM: 1986 = 15 mo. 1995 = 25 yrs.

Risk of Bacteremia in the Post-Hib Era

Lee GM: Arch Pediatr Adol Med 1998; 152:624

Three year study (1993-1996) at BCH*

Children aged 3 - 36 months with T > 39.00C 11,911 patients 75% received CBC, 74% had blood cultures 149 positive blood cultures (1.6%)

92% pneumococcal no H. influenzae isolates!!

*Is BCH the center of the risk-minimizer universe ?

Bacteremia in Boston Lee GM: Arch Pediatr Adol Med 1998;

152:624

Prevalence greatest in 6 - 24 month age group

WBC and absolute neutrophil counts were the most accurate predictors for bacteremia WBC > 15 x 109 -- {Sens. = 86%, Spec. = 77%} attributed to higher WBC with pneumococcal OB

OB risk associated with temperature OR: > 40.0 =1.9; > 40.5 = 2.6; > 41.0 = 3.7

Lower OB rate not explained by Hib vaccine

Outcome of Pneumococcal Bacteremia

Bachur R, Harper MB: Pediatrics 2000; 105:502

Re-evaluation of children in ED with OPB Nine year study at BCH (1987-96) 548 episodes of OPB

40 (7%) with PB or new focal infection 14 PB(2.5%); 8P(1.5%); 8M**(1.5%);

6C(1.0%); 4 PC(0.7%) patients not initially Rx, and those treated who remained

febrile were are greatest risk for PB majority with OPB can be managed as outpatients

** Three diagnoses/cases of BM were controversial

Persistent Bacteremia/Meningitis in OPB

Bachur R, Harper MB: Pediatrics 2000; 105:502

Rx Group N__ __PB___ BM__

NoAntibx 68 19 (28%) 1 (1.5%)

OrAntibx 208 11 (5%) 2 (1%)

PaAntibx 195 10 (5%) 2 (1%)

TOTAL 471 40 (8%) 5 (1%)

Prevalence/Outcome of Occult Bacteremia

Alpern ER, et al: Pediatrics 2000; 106:505

Three year retrospective study (1993-1996) 5900 children aged 2-24 months, T > 39.0

Prevalence of OB = 1.9% 83% pneumococcal; H. influenzae not isolated

Focal bacterial infections in 17 (0.3%) pneumonia (8), cellulitis (4), osteo (2), others (3)

Serious adverse outcome in 2 (0.03%) meningitis (1), sepsis/death (1)

Note: 96% OB with spontaneous resolution without Rx

Occult Bacteremia in Philadelphia

Alpern ER, et al: Pediatrics 2000; 106:505

Mean time to culture shorter for true positives mean times: true (+) = 14.9 hrs; false (+) = 31.1 < 18 hours 13x more likely to be true pathogen

Nearly all true positives re-evaluated in ED average time from notification 10.6 (+ 9.7) hrs 33% were still febrile 53% admitted to the hospital 4.8% found to have persistent bacteremia

oral antibiotics Rx at 1st visit did not affect rate of PB

Perhaps blood cultures can be an effective screen?

Prevalence/Outcome of False (+) Blood Cultures

Alpern ER, et al: Pediatrics 2000; 106:505

Overall contamination rate was 2.1% 85% were re-evaluated in ED 35% were still febrile and were admitted 1.9% of repeat cultures also contaminated!

At least in Philadelphia, the risk of a contaminated blood culture equals or exceeds that of a true positive !

Remember the data from McGowan, 1973?

Prevalence of False (+) Blood Cultures Alpern ER, et al: Pediatrics 2000; 106:505

Age(Months) N__

OB Rate (95% CI)____

False + Rate (95% CI)____

2-5 728 1.0% (0.4-2.0) 3.6% (2.3-5.2)

6-11 2181 1.8% (1.3-2.4) 1.8% (1.3-2.5)

12-17 1722 2.3% (1.6-3.1) 1.8% (1.2-2.5)

18-24 1270 2.0% (1.3-3.0) 2.0% (1.3-3.0)

Use of Antibiotics to Prevent SBI

Bulloch B, et al: Acad Emerg Med 1997; 4:679

Meta-analysis of published RCCT’s 4 studies: Carroll, Jaffe, Fleisher, Bass

Antibiotic use trended to risk for SBI odds ratio = 0.60 (P.O.) & 0.38 (I.M.) need to treat 414 kids to prevent 1 SBI case no significant effect of antibiotic therapy

Concluded that widespread antibiotic use should not replace clinical judgement

Outcomes in Occult Bacteremia

Bulloch B, et al: Acad Emerg Med 1997; 4:679

Study Occult Bacteremia (n) Serious Bacterial Infections

Carroll, et al. 5 in IM + PO PCN 5 in no antibiotic

None2 meningitis

Jaffe, et al. 19 in PO amoxicillin 8 in placebo

1 periorb. cellulitis, 1 bacteremia1 persistent bacteremia

Fleisher, et al. 76 in PO amoxicillin

71 in IM ceftriaxone

3* meningitis, 1 septic arthritis,1 sepsis, 1 pneumonia2** meningitis, 1 osteomyelitis

Bass, et al. 22 in PO augmentin38 in IM ceftriaxone

3 pneumoniaNone

Does empiric therapy truly reduce the risk for SBI?

Predictors of Pneumococcal Bacteremia

Kuppermann N, et al: Ann Emerg Med 1998; 31:679

With invasive H. influenzae infections out of the picture, are there unique predictors for OPB

Multivariate analysis - 6,500 children 3-36 months 164 children (2.5%) with OPB

Three variables retained association with OPB ANC: OR of 1.15 for each 1,000 cells/mm3

if ANC > 10,000 -- OPB rate 8.2% temp: OR of 1.77 for each 10 C age < 2 years: OR of 2.43 vs. 2-3 years of age

Band Counts in Young Febrile Children

Kuppermann N, et al: Arch Pediatr Adol Med 1999; 153:261

Compared CBC findings in febrile children with a documented SBI (bacteremia or UTI) versus a proven respiratory viral infection

Children with SBI had a greater mean ANC11.3 x 109 vs 5.9 x 109

No differences in percentage band count or absolute band count between the groups

Identification of Children with UMD

Kuppermann N, et al: Pediatrics 1999; 103:e20

Clinical/hematologic features of children with unsuspected meningococcal disease (UMD) retrospective, four center study,1985-96 381 children with meningococcal disease 45 (12%) with UMD [discharged home !!] compared to 6400 culture negative children

no difference in Temp, WBC, ANC significantly higher band counts in UMD predictive value of band count was low (PPV 0.06%)

Bad news… There is still no crystal ball for UMD

Febrile Children with Bronchiolitis

Kuppermann N: Arch Ped Adoles Med 1997; 151:1207

Evaluated risks of bacteremia and UTI in febrile children with/without bronchiolitis 432 children aged 0-24 months

Children with bronchiolitis had significantly fewer positive cultures blood 0% vs. 2.7%; urine 1.9% vs. 13.6% none of the children < 2 months of age with

bronchiolitis (36) had bacteremia or UTI

SBI Risk in Children With Recognizable Viral Syndromes

Greene DS, Harper MB: Pediatr Infect Dis J 1999;18:258

Five year retrospective study (1993 -1998)

Children aged 3-36 months with T > 39 0C 1347 children diagnosed with a “RVS”

croup, varicella, bronchiolitis, stomatitis blood cultures obtained in 65% 2 of 876 (0.2%) blood cultures were positive

Office-based physicians have known this for a very long time.

Bacteremia in Fever & Petechiae

Mandl KD, et al: J Pediatr 1997; 131:398

Prior studies suggest a high risk for bacteremia 7 to 11% incidence of meningococcemia

Enrolled 411 children -- (58% 3-36 mo.) 8 (1.9%) with bacteremia or clinical sepsis

six with serious invasive bacteremia

none of 357 well-appearing children had OB toxic appearance had sensitivity of 100% WBC > 15 K or < 5K had sensitivity of 100% all children with meningococcemia had purpura

Occult Pneumonia in Febrile Children

Bachur R, et al: Ann Emerg Med 1999;

33:166

What is the incidence of occult pneumonia in febrile children with high WBC ?

Prospective cohort ED study age < 5 years, T > 39 0C, WBC > 20,000 radiographs obtained in 225 of 278 patients positive radiographic findings in

40% of those with a suggestive clinical exam 26% of those without clinical evidence for pneumonia

recommends empiric chest radiography

UTI’s in Febrile InfantsShaw KN, et al: Pediatrics 1998;

102:e16.

UTI is by far the most frequent SBI fever may be only presenting sign of UTI

What is the prevalence of UTI in febrile infants 2400 febrile infants -- overall 3.3%

gender -- male: 1.8%; female: 4.3% race -- white: 10.7%; AA: 2.1%; others: 5.7% other source -- yes: 2.7%; no: 5.9% temperature -- < 39.0: 2.2%; > 39.0: 3.9%

Should we screen all febrile children for UTI ?

UTI’s in Febrile Children Gorelick, Shaw: Arch Ped Adol Med 2000;154:386.

Developed clinical decision rule [] T > 39.0 0C fever > 2 days white race age < 1 year absence of another potential source

All with UTI had at least one risk factor Presence of any two factors

sensitivity 95%, specificity 31% Rule eliminated 30% of unneeded cultures

Risk of SBI in Febrile Seizures

Trainor J, et al: Clin Pediatr Emerg Med 1999;

1:13

Multi-center study of ED management of simple febrile seizures (Chicago, 1998)

455 children with febrile seizure 1.3% with bacteremia 5.9% UTI 12.5% with abnormal chest x-ray normal CSF in all who had an LP (135)

Meningitis Risk in Simple Febrile Seizures: What’s Been Reported ?

Literature review of reported cases of febrile seizures and meningitis 2,870 cases of febrile seizures with LP’s 1.7% with bacterial meningitis 17% of those with meningitis described as

clinically inapparent

Is occult bacterial meningitis a significant clinical entity ?

Meningitis Risk in Febrile Seizures

Green SM, et al: Pediatrics 1993; 92:527

Studied children with meningitis -- how many presented solely with seizures? 486 children with bacterial meningitis complex seizures present in 79% 93% of those with seizures were obtunded of the few with “normal” LOC, 78% had nuchal rigidity

the two patients without meningismus had other straightforward indications for LP

Occult meningitis is more myth than fact

What is the Cost Effective Strategy?

Yamamoto LG, et al: Am J Emerg Med 1998; 16:193

Updated decision analysis which considered: low incidence of H. influenzae infections emergence of resistant S. pneumoniae negative consequences of unnecessary Rx

Assuming zero or low Rx consequences -- empiric therapy associated with best outcomes

Assuming realistic Rx consequences - no testing and no treatment option may be best

Cost Effectiveness Post-Vaccine?

Lee GM, et al: Pediatrics 2001; 108:835

Updated prior decision analysis, considering: Elimination of H. influenzae Lower rate of occult bacteremia (1.5%) Published efficacy of empiric Rx Negative consequences of unnecessary Rx

At current rate of OB, CBC plus selective blood culture and treatment is still best

If OB rate < 0.5%, strategies employing empiric testing & treatment should be eliminated

Serotyping of Pneumococcal OB

Alperin ER, et al: Pediatrics 2001; 108:e23

What is potential efficacy of pneumococcal vaccine in the prevention of OB

S pneumoniae accounts for the vast majority (83%) of pathogens in children with OB

Eight serotypes isolated: 6A, 9V, 19F, 18C, 4, 6B, 23F, 14

98% of serotypes would be covered by the currently licensed vaccine -- all except 6A

Good news…We may soon erradicate OPB

Food For Thought And A Little Math

Current risk of OB: 1.5 to 1.9% 92% pneumococcal

Risk of meningitis in OPB: 1 to 2% Risk of adverse sequelae in BM: 33 - 50% Need to treat 2500 febrile kids to prevent one case

of BM; 5000-7500 per adverse sequelae remember that antibiotics may not prevent BM! incidence of ADR’s: 150 - 600(?)/ case of BM alarming growth rate of antibiotic resistance

Evolving Pneumococcal Resistance

Kaplan, et al: Pediatrics 1998; 102:538.

Prospective surveillance study of invasive pneumococcal infections three year (1993-1996), eight center study 1291 systemic pneumococcal infections

Proportion of non-susceptible isolates (PCN, ceftriaxone) increased annually nearly doubled over the three year period

penicillin resistance 21% ceftriaxone resistance 9.3%

So, What Do We Actually Know

Extremely common presenting complaint Much concern (phobia?) regarding fever Fairly effective strategies to identify low risk

infants - these do not apply to neonates #1 bad actor (H. flu) effectively erradicated UMD - “pediatrician’s nightmare” - still out there Risk of OB, now under 2%, primarily OPB Can apply risk stratification to OPB 93-96% spontaneous resolution of OPB

So, What Do We Actually Know

No consensus regarding optimal approach to the febrile infant

Not entirely clear what parents want Empiric Rx does not prevent sequelae Rising rates of antimicrobial resistance UTI remains the most common occult “SBI” RVS are a reasonable explanation for fever Pneumovax may make this all a moot point

Some Friendly Advice

Keep abreast of the literature Discuss this with colleagues & mentors

local practice variations institutional practice guidelines antimicrobial resistance rates

Both approaches (RM & TM) are defensible Choose the best strategy for you Be consistent Always treat the ill appearing child with fever

Notable Quotes

“Unfortunately, many practitioners have become reluctant to rely on clinical judgement, preferring diagnostic tests and frequent use of antibiotics.”…….

“We should resist the urge to use antibiotics empiricially, especially in a patient who looks well, for whom antibiotics have not been shown clearly to be beneficial”

-- JK Stamos, ST Shulman: Lancet 1997

“Antibiotics are not antipyretics”-- SE Krug: Overheard many evenings in CMH ED