makromolekulak_2010_12_07 simon istván. prion protein

29
Makromolekulak_2010_12_07 Simon István

Upload: philip-armstrong

Post on 30-Dec-2015

218 views

Category:

Documents


0 download

TRANSCRIPT

  • Makromolekulak_2010_12_07

    Simon Istvn

  • Prion protein

  • Bound IUP structuresp27Kip1IA3FnBPTcf3

  • Aminosav sszettelekRadivojac et al. Protein Sci. 2004;13:71-80. Rvid, hossz, N- s C- terminlis rgikban lv rszeknekms-ms aminosav sszettelk van

  • Dunker order promoting: W, C, F, I, Y, V, L, Ndisorder promoting: K, E, P, S, Q, G, R, G, A2. Uversky High net charge/ low average hydrophobicityMachine learning algorithms (SVM, NN)

    Datasets PDB for ordered short and long disorderPrediction of protein disorder from the amino acid sequence

  • Pairwise energy calculated from structure

  • To take into account that the contribution of amino acid i depends on its interaction partners, we need a quadratic form in the amino acid compositionThe connection between composition and energy is encoded by the 20x20 energy predictor matrix: PijEstimation of pairwise energies from amino acid compositions

  • Estimated energies correlate with calculated energiesCorr coeff: 0.74

  • Estimated pairwise energies of globular proteins and IUPsIUPsGlob

  • IUPred: http://iupred.enzim.hu

  • IUPred: http://iupred.enzim.huP53 Tumor antigen

  • IUPs: high frequency in proteomescoliyeast

  • Erds-RnyiThe yeast interactomeBarabsi-AlbertNetworks

  • The mediator complex

  • Hub proteins contain more disordered regions in all four genomes

  • Distinct interfaces of disordered proteins More hydrophobic More residue-residue contacts Less segments

  • Lack of segmentation of the interfaces of IUPsIUPsGlob

  • LM average disorder profileslocal drop in disorder

  • Predicting protein disorder - IUPredBasic idea:If a residue is surrounded by other residues such that they cannot form enough favorable contacts, it will not adopt a well defined structureit will be disordered..QSDPSVEPPLSQETFSDLWKLLPENNVLSPLPSQAMDDLMLSPDDIEQWFTEDPGPDEAPRMPEAAPRVAPAPAAPTPAAPAPA..The algorithm:

  • Predicting protein disorder - IUPredBack to p53:The predicted interaction energy:E = 1.16*0.10+(-0.82)*0+=1.138

  • Predicting binding sites - ANCHOR3 Interaction with globular proteinsWe consider the average amino acid composition of a globular dataset instead of the own environment:

    A 10%C 0%D 12 %E 10 %F 2 % stbA 7.67%C 2.43%D 4.92 %E 5.43 %F 3.19 % stbComposition calculated on a large globular datasetThe thus gained energy:where

  • Predicting binding sites - ANCHORExample: N terminal p53Contains three binding sites:MDM2: 17-27RPA70N: 33-56RNAPII: 45-58The three quantities are combined optimally to best distinguish binding sites.This is converted into a p-value (probability of the residue forming a disordered binding site).P = p1*Saverage + p2*Eint + p3*Egain

  • Application: Segmented bindingExample: human p27

    Inhibitor of CDK2-CyclinA complex.3 domains become ordered during binding:

    D1 binds strongly LH forms a helix, binds weakly and steers the third domain to place D2 binds strongly but not evenly contains 3 subdomains that give the majority of binding energy

    We are able to identify strongly interacting regions separately

  • Rendezetlensg predikci - IUPred

  • Ismeretlen szekvencia predikcik

  • Ismeretlen szekvencia predikcikANCHORPSIPRED

  • Ismeretlen szekvencia predikcikA modellnk:DNS kt, globulris domnrendezetlenrszekkthely, rszbena-helikliskthely, a-helikliskthely, nincsszerkezeti infoA valsg (p53):DNS kt, globulris domnMDM2 kthelyRPA70N s RNAPIIkthely (tfedek)regulcis kthely, 4 partner(klnbz konformcik)tetramerizcis rgi,a-heliklis