mais chak

Upload: blondu007

Post on 03-Apr-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/28/2019 Mais Chak

    1/27

    Numerical simulation of electrostaticspray painting

    Matthias Maischak

    I AMf Institute for Applied Mathematics

    Hannover University, Germany

    BMBF-Projekt 03STM1HV

    3D Adaptive Multilevel FEM-BEM Kopplung fur ein ElektrostatischesTeilproblem der Nasslackierung mit Aussenraumaufladung

    Head: Prof. Stephan (Hannover)

    Partners: Prof. Peukert, Dr. Schmid, Hr. Horn (Erlangen)

    Hr. Sonnenschein, Hr. Poppner (DaimlerChrysler)

  • 7/28/2019 Mais Chak

    2/27

    Overview

    Physical/Engineering problem Model problem

    Variational Formulation Method of Characteristics Least-Squares formulation Numerical examples

    I AMf Overview 2

  • 7/28/2019 Mais Chak

    3/27

    Electrostatic spray painting

    I AMf Electrostatic spray painting 3

  • 7/28/2019 Mais Chak

    4/27

    Target

    Electrode

    Outer boundary

    T

    E

    A

    u

    uA

    0

    1

    I AMf Model configuration (3D) 4

  • 7/28/2019 Mais Chak

    5/27

    Electric corona discharge configuration

    Applied Voltage between Target and Electrode(s) Electrical field (Poisson equation)

    Ion transport (Convection), Space charge density Fluid (Moving Air, CFD) vAir

    Particle tracking, Particle charge P

    Corona discharge

    Corona discharge: Locally high electric field strength leads to

    ionization of air, ions are transported along field lines. Cloud of

    space charge near electrode has influence on local field strength.

    I AMf Electric corona discharge configuration 5

  • 7/28/2019 Mais Chak

    6/27

    Distribution of scalar potential u

    0u = + PElectric field

    E = uDensity of ionic current

    jIon = bE+ vAir

    Charge conservation law

    t+ div(jIon) = S

    Source term S due to to charge transfer between and P.

    0: 8.8542 1012

    Electron mobility: 2 104 m2

    V s

    I AMf Electric corona discharge configuration 6

  • 7/28/2019 Mais Chak

    7/27

    Electrostatic Model problem

    Poisson equation

    u = 0

    in (1)

    Electrical fieldE = u (2)

    Boundary conditions (applied voltage)

    u = u0 on T (Target) (3)

    u = u1 on E (Electrode) (4)

    I AMf Electrostatic Model problem 7

  • 7/28/2019 Mais Chak

    8/27

    Artifical boundary conditions on

    u

    n| =

    0 (Outflow b.c.)

    Su (infinite domain)(5)

    oru| = 0 (Faraday) (6)

    Using the Poincare-Steklov operator

    S := 12 (W + (I K

    )V1

    (I K)) we can describe a charge freeexterior domain as a boundary condition for the interior domain.

    The symmetric fem-bem coupling formulation approximates the

    Poincare-Steklov operator by the Schur-complement of Galerkin

    matrices.

    I AMf Artifical boundary conditions on 8

  • 7/28/2019 Mais Chak

    9/27

    Linear transport equation Neglecting the air flow and the

    particle charge we can describe the unipolar ion transport by the

    linear transport equation

    div(E) =0 in (7)

    =A on E (Inflow-b.c.) (8)

    Non-linear transport equation Inserting the Poisson equation

    in the linear transport equation we eliminate div E and we obtain

    E + 2

    0=0 in (9)

    =A on E (Inflow-b.c.) (10)

    I AMf Transport equation 9

  • 7/28/2019 Mais Chak

    10/27

    Kaptzovs assumption

    Let Eonset be the field strength where corona emission starts. With

    Kaptzovs assumption we obtain on E the boundary condition:

    A 0, E n Eonset (11)A(E n + Eonset) = 0 (12)

    Peek-field strength Eonset (argument r in cm, result in V/m)

    Eonset =3.1 106(1 + 0.308r

    ) (Cylinder) (13)

    Eonset =3.1 106(1 + 0.308r/2

    ) (Spherical) (14)

    I AMf Kaptzovs assumption 10

  • 7/28/2019 Mais Chak

    11/27

    Solve initial Laplace equation

    ?Adjust A on E

    ?Solve coupled differential equations

    ?

    6

    Solve non-linear transport equation

    ?

    -

    -

    Method of Characteristics or

    Non-linear Least-Squares

    ?Solve Newton-steps

    6

    Solve Poisson equation

    6

    I AMf Flowchart of electro static subproblem 11

  • 7/28/2019 Mais Chak

    12/27

    Poisson equation

    Find u H1D := {v H1() : u|T = u0, u|E = u1}, such that:

    (u, v)0 = 10

    (, v)0 v H1D,0 (15)

    Solver: diagonal preconditioned Conjugate Gradient

    Overlaping domain decomposition as preconditioner for CG

    Mixed formulation

    Find (p, u) H(div; ) L2() such that(q, p)0 + (u, div q)0 = u0, q nT + u1, q nE q H(div; )

    (v, divp)0 = 1

    0 (, v)0 v L2() (16)

    Solver: unpreconditioned GMRES

    Overlapping domain decomposition as preconditioner for GMRES

    I AMf Poisson equation 12

  • 7/28/2019 Mais Chak

    13/27

    Symmetric FEM-BEM-coupling

    Find (u, ) H1D() H1/2(), such that:

    u = 0

    in

    =u

    non

    2 = W u + (I K) on

    0 = (I K)u + V on Variational formulation:

    Find (u, ) H1D() H1/2(), such that:

    2(u, v)0 + W u ,v + (K I), v = 2

    0v dx v H1D,0()

    (K I)u, V , = 0 H1/2()

    I AMf Symmetric FEM-BEM-coupling 13

  • 7/28/2019 Mais Chak

    14/27

    V (x) := 12

    1|x y|(y) dsy single layer potential

    K(x) :=1

    2

    ny

    1

    |x

    y

    |

    (y) dsy double layer potential

    K(x) :=1

    2

    nx

    1

    |x y|(y) dsy adjoint double layer potential

    W (x) :=

    1

    2

    nx

    ny

    1

    |x y|(y) dsy hypersingular operator

    I AMf Symmetric FEM-BEM-coupling 14

  • 7/28/2019 Mais Chak

    15/27

    Smoothing of electrical field

    Let E = uhClement-Interpolation: Let x be a node of the mesh Th.Then we define

    U(x) =

    TTh,xT

    T

    i.e. U(x) is the union of all elements connected to the node x.

    Then the value of Eh in the node x is given by

    Eh(x) :=

    U(x)

    E(x) dyU(x)

    1 dy

    L2

    -Projection: The L2

    -Projection Eh of E is given by:Find Eh VEh := {Eh [H1()]3 : Eh|T ist linear , T Th}, suchthat:

    (Eh, vh)L2() = (E, vh)L2()

    vh

    VE

    h

    . (17)

    I AMf Smoothing of electrical field 15

  • 7/28/2019 Mais Chak

    16/27

    Method of Characteristics

    We compute (x) along a field line, i.e., along a characteristic line.

    We write (s) = (x(s)). x(s) is determined by b E(x(s)) = dx(s)dsand x(0) = x0. Then there holds

    0 = bE + b 2

    0= (s) + b

    2(s)

    0(18)

    For 0 = (x(0)) the solution reads

    1

    =

    1

    0+

    bs

    0(19)

    resp.

    (s) = 0 00 + b0s(20)

    I AMf Method of Characteristics 16

  • 7/28/2019 Mais Chak

    17/27

    The remaining problem is the determination

    of the characteristic field line:

    Find x(s), such that bE(x(s)) = dx(s)ds , i.e.

    x(s) = x(0) + s

    0

    bE(x(t)) dt

    On the finite element mesh follow the direction

    of the electrical field. Efficient computation of

    boundary crossing points is essential.

    Computated values of space charge density are

    averaged on each element. Resulting average

    density is smoothed using Clement interpola-tion.

    I AMf Method of Characteristics 17

  • 7/28/2019 Mais Chak

    18/27

    Least-Squares Formulation

    Find the minimum of the non-linear least squares functional

    J(; f, D, N) =E + 2

    0 S2L2( (21)

    for functions VA withVA = {v H1() : v = A on E} (22)

    The first and second Frechet-derivative of (21) read:

    J(; ) =2

    (E + 2

    0 S)(E + 2

    0) dx

    J(; , ) =2

    (E + 20

    )(E + 20

    ) dx

    + 2

    (E + 2

    0 S) 2

    0dx

    I AMf Least-Squares Formulation 18

  • 7/28/2019 Mais Chak

    19/27

    The Newton algorithm applied to (21) reads:

    Find k+1 VA , such that

    0 = J(k; ) + J(k; , k+1 k) V0 (23)

    I AMf Least-Squares Formulation 19

  • 7/28/2019 Mais Chak

    20/27

    Numerical Examples

    Mesh Elements Nodes

    Single electrode (tetrahedral,Horn) 347193 68647

    Single electrode (tetrahedral,Sonnenschein) 1650233 281829

    Six electrodes (tetrahedral,Sonnenschein) 3030803 545429

    Using single electrode mesh created by Erlangen-group (Horn)

    Applied Voltage: 26300 V

    Electrode radius: 0.0075 cm

    Distance Electrode-Target: 0.32 m

    Measured Ion flow density (central target): 1.4mA/m2

    Computed Eonset: 1.4 107 Vm (Cylinder),1.86 107 Vm (Spherical)

    Charge injection law: |A = 0 max(0, (E n Eonset)/(Emax Eonset))I AMf Numerical Examples 20

  • 7/28/2019 Mais Chak

    21/27

    I AMf Numerical Examples 21

  • 7/28/2019 Mais Chak

    22/27

  • 7/28/2019 Mais Chak

    23/27

    0.1000E11

    0.4663E11

    0.2175E10

    0.1014E09

    0.4729E09

    0.2205E08

    0.1028E07

    0.4795E07

    0.2236E06

    0.1043E05

    0.4862E05

    0.2267E04

    0.1057E03

    0.4931E03

    0.2299E02

    0.1072E01

    0.5000E01

    0.1000E11

    0.4663E11

    0.2175E10

    0.1014E09

    0.4729E09

    0.2205E08

    0.1028E07

    0.4795E07

    0.2236E06

    0.1043E05

    0.4862E05

    0.2267E04

    0.1057E03

    0.4931E03

    0.2299E02

    0.1072E01

    0.5000E01

    Space charge density (MOC), full injection law (Eonset = 0)

    Piecewise linear E-Field (left), piecewise constant u (right)I AMf Numerical Examples 23

  • 7/28/2019 Mais Chak

    24/27

    0.7883E+02

    0.1893E+03

    0.4547E+03

    0.1092E+04

    0.2622E+04

    0.6298E+04

    0.1512E+05

    0.3632E+05

    0.8723E+05

    0.2095E+06

    0.5031E+06

    0.1208E+07

    0.2902E+07

    0.6969E+07

    0.1674E+08

    0.4019E+08

    0.9653E+08

    absolute value

    0.8214E+02

    0.1938E+03

    0.4574E+03

    0.1080E+04

    0.2548E+04

    0.6012E+04

    0.1419E+05

    0.3348E+05

    0.7901E+05

    0.1865E+06

    0.4400E+06

    0.1038E+07

    0.2451E+07

    0.5783E+07

    0.1365E+08

    0.3221E+08

    0.7601E+08

    absolute value

    Electric field strength (MOC), first and 7th iteration

    I AMf Numerical Examples 24

  • 7/28/2019 Mais Chak

    25/27

    0.1000E11

    0.4663E11

    0.2175E10

    0.1014E09

    0.4729E09

    0.2205E08

    0.1028E07

    0.4795E07

    0.2236E06

    0.1043E05

    0.4862E05

    0.2267E04

    0.1057E03

    0.4931E03

    0.2299E02

    0.1072E01

    0.5000E01

    absolute value

    0.1000E11

    0.4663E11

    0.2175E10

    0.1014E09

    0.4729E09

    0.2205E08

    0.1028E07

    0.4795E07

    0.2236E06

    0.1043E05

    0.4862E05

    0.2267E04

    0.1057E03

    0.4931E03

    0.2299E02

    0.1072E01

    0.5000E01

    absolute value

    Space charge density near tip (MOC), first and 7th iteration

    0.1915E+06

    0.2825E+06

    0.4168E+06

    0.6149E+06

    0.9072E+06

    0.1339E+07

    0.1975E+07

    0.2914E+07

    0.4299E+07

    0.6343E+07

    0.9358E+07

    0.1381E+08

    0.2037E+08

    0.3006E+08

    0.4434E+08

    0.6543E+08

    0.9653E+08

    absolute value

    0.1975E+06

    0.2865E+06

    0.4156E+06

    0.6030E+06

    0.8747E+06

    0.1269E+07

    0.1841E+07

    0.2671E+07

    0.3874E+07

    0.5621E+07

    0.8154E+07

    0.1183E+08

    0.1716E+08

    0.2490E+08

    0.3612E+08

    0.5239E+08

    0.7601E+08

    absolute value

    Electric field strength near tip, first and 7th iteration

    I AMf Numerical Examples 25

  • 7/28/2019 Mais Chak

    26/27

    0.0000E+00

    0.1058E+03

    0.2117E+03

    0.3175E+03

    0.4233E+03

    0.5292E+03

    0.6350E+03

    0.7408E+03

    0.8467E+03

    0.9525E+03

    0.1058E+04

    0.1164E+04

    0.1270E+04

    0.1376E+04

    0.1482E+04

    0.1588E+04

    0.1693E+04

    0.0000E+00

    0.8859E+02

    0.1772E+03

    0.2658E+03

    0.3544E+03

    0.4429E+03

    0.5315E+03

    0.6201E+03

    0.7087E+03

    0.7973E+03

    0.8859E+03

    0.9745E+03

    0.1063E+04

    0.1152E+04

    0.1240E+04

    0.1329E+04

    0.1417E+04

    n E L2() 2/0L2() E + 2/0L2() Emax1 1.2160E+04 1.2068E+03 1.1657E+04 1.0297E+08

    2 1.0299E+04 1.1297E+03 9.8192E+03 8.2916E+07

    3 1.0067E+04 1.1132E+03 9.5929E+03 8.0682E+07

    4 1.0117E+04 1.1163E+03 9.6416E+03 8.1190E+07

    5 1.0095E+04 1.1141E+03 9.6202E+03 8.0963E+07

    I AMf Least-Squares error indicator 26

  • 7/28/2019 Mais Chak

    27/27

    Conclusion/ to do

    Method of Characteristics gives space charge distribution

    Need better E-field (with mixed formulation?)

    Initial mesh should be better adjusted to field lines Use Least squares functional of transport problem for adaptive

    scheme

    I AMf Conclusion/ to do 27