magnetoelectric materials for miniature, wireless neural … · 1 magnetoelectric materials for...

30
Magnetoelectric materials for miniature, wireless neural stimulation at 1 therapeutic frequencies 2 3 Amanda Wickens 1,2 , Benjamin Avants 2 , Nishant Verma 3 , Eric Lewis 2 , Joshua C. Chen 3 , 4 Ariel K. Feldman 4,5 , Shayok Dutta 2 , Joshua Chu 2 , John O’Malley 6 , Michael Beierlein 6 , 5 Caleb Kemere 2,3 , Jacob T. Robinson 1,2,3,7 6 7 1 Applied Physics Program, Rice University, Houston, Texas, USA, 2 Department of Electrical and 8 Computer Engineering, Rice University, Houston, Texas, USA, 3 Department of Bioengineering, Rice 9 University, Houston, Texas, USA, 4 Department of Computer Science, Rice University, Houston, Texas, 10 USA, 5 Department of Cognitive Science, Rice University, Houston, Texas, USA, 6 Department of 11 Neurobiology and Anatomy, McGovern Medical School at UTHealth, Houston, Texas, USA, 12 7 Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA 13 14 A fundamental challenge for bioelectronics is to deliver power to miniature 15 devices inside the body. Wires are common failure points and limit device 16 placement. Wireless power by electromagnetic or ultrasound waves must 17 overcome absorption by the body and impedance mismatches between air, 18 bone, and tissue. Magnetic fields, on the other hand, suffer little absorption by 19 the body or differences in impedance at interfaces between air, bone, and 20 tissue. These advantages have led to magnetically-powered stimulators based 21 on induction or magnetothermal effects. However, fundamental limitations in 22 these power transfer technologies have prevented miniature magnetically- 23 powered stimulators from applications in many therapies and disease models 24 because they do not operate in clinical “high-frequency” ranges above 20 Hz. 25 Here we show that magnetoelectric materials – applied for the first time in 26 bioelectronics devices – enable miniature magnetically-powered neural 27 stimulators that operate at clinically relevant high-frequencies. As an 28 example, we show that ME neural stimulators can effectively treat the 29 symptoms of a Parkinson’s disease model in a freely behaving rodent. We also 30 show that ME-powered devices can be miniaturized to sizes smaller than a 31 grain of rice while maintaining effective stimulation voltages. These results 32 suggest that ME materials are an excellent candidate for wireless power 33 delivery that will enable miniature neural stimulators in both clinical and 34 research applications. 35 36 Wireless neural stimulators have the potential to provide less invasive, longer 37 lasting interfaces to brain regions and peripheral nerves compared to battery- 38 powered devices or wired stimulators. Indeed, wires are a common failure point for 39 bioelectronic devices. Percutaneous wires present a pathway for infection 1 and 40 implanted wires can also limit the ability of the stimulators to move with the tissue, 41 leading to a foreign body response or loss of contact with the target tissue 2,3 . 42 Additionally, chronic stress and strain on wires, particularly for devices in the 43 periphery, can lead to failure in the wire itself or its connection to the stimulator 4 . In 44 small animals like rats and mice, wires used to power neural stimulators can 45 interfere with natural behavior, particularly when studying social interaction 46 between multiple animals 5 . 47 not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was this version posted November 5, 2018. ; https://doi.org/10.1101/461855 doi: bioRxiv preprint

Upload: others

Post on 03-Feb-2021

18 views

Category:

Documents


0 download

TRANSCRIPT

  • Magnetoelectricmaterialsforminiature,wirelessneuralstimulationat1therapeuticfrequencies23AmandaWickens1,2,BenjaminAvants2,NishantVerma3,EricLewis2,JoshuaC.Chen3,4ArielK.Feldman4,5,ShayokDutta2,JoshuaChu2,JohnO’Malley6,MichaelBeierlein6,5CalebKemere2,3,JacobT.Robinson1,2,3,7671AppliedPhysicsProgram,RiceUniversity,Houston,Texas,USA,2DepartmentofElectricaland8ComputerEngineering,RiceUniversity,Houston,Texas,USA,3DepartmentofBioengineering,Rice9University,Houston,Texas,USA,4DepartmentofComputerScience,RiceUniversity,Houston,Texas,10USA,5DepartmentofCognitiveScience,RiceUniversity,Houston,Texas,USA,6Departmentof11NeurobiologyandAnatomy,McGovernMedicalSchoolatUTHealth,Houston,Texas,USA,127DepartmentofNeuroscience,BaylorCollegeofMedicine,Houston,Texas,USA1314Afundamentalchallengeforbioelectronicsistodeliverpowertominiature15devicesinsidethebody.Wiresarecommonfailurepointsandlimitdevice16placement.Wirelesspowerbyelectromagneticorultrasoundwavesmust17overcomeabsorptionbythebodyandimpedancemismatchesbetweenair,18bone,andtissue.Magneticfields,ontheotherhand,sufferlittleabsorptionby19thebodyordifferencesinimpedanceatinterfacesbetweenair,bone,and20tissue.Theseadvantageshaveledtomagnetically-poweredstimulatorsbased21oninductionormagnetothermaleffects.However,fundamentallimitationsin22thesepowertransfertechnologieshavepreventedminiaturemagnetically-23poweredstimulatorsfromapplicationsinmanytherapiesanddiseasemodels24becausetheydonotoperateinclinical“high-frequency”rangesabove20Hz.25Hereweshowthatmagnetoelectricmaterials–appliedforthefirsttimein26bioelectronicsdevices–enableminiaturemagnetically-poweredneural27stimulatorsthatoperateatclinicallyrelevanthigh-frequencies.Asan28example,weshowthatMEneuralstimulatorscaneffectivelytreatthe29symptomsofaParkinson’sdiseasemodelinafreelybehavingrodent.Wealso30showthatME-powereddevicescanbeminiaturizedtosizessmallerthana31grainofricewhilemaintainingeffectivestimulationvoltages.Theseresults32suggestthatMEmaterialsareanexcellentcandidateforwirelesspower33deliverythatwillenableminiatureneuralstimulatorsinbothclinicaland34researchapplications.3536Wirelessneuralstimulatorshavethepotentialtoprovidelessinvasive,longer37lastinginterfacestobrainregionsandperipheralnervescomparedtobattery-38powereddevicesorwiredstimulators.Indeed,wiresareacommonfailurepointfor39bioelectronicdevices.Percutaneouswirespresentapathwayforinfection1and40implantedwirescanalsolimittheabilityofthestimulatorstomovewiththetissue,41leadingtoaforeignbodyresponseorlossofcontactwiththetargettissue2,3.42Additionally,chronicstressandstrainonwires,particularlyfordevicesinthe43periphery,canleadtofailureinthewireitselforitsconnectiontothestimulator4.In44smallanimalslikeratsandmice,wiresusedtopowerneuralstimulatorscan45interferewithnaturalbehavior,particularlywhenstudyingsocialinteraction46betweenmultipleanimals5.47

    not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which wasthis version posted November 5, 2018. ; https://doi.org/10.1101/461855doi: bioRxiv preprint

    https://doi.org/10.1101/461855

  • 48Oneoftheprimarychallengesforwirelessneuralstimulatorsistocreateefficient49miniaturedevices(<1cminlength)thatoperatereliablybeneathboneandtissue50asananimalorhumanpatientengagesinnormalactivity.Atlengthsoflessthan151cm,devicescouldbefullyimplantedintheperipheryandbelightenoughtoallow52forunrestrictedanimalbehavior;howeverfordevicesthissmall,powerdelivery53remainsachallenge.Efficientpowertransferwithpropagatingelectromagnetic54wavesrequiresantennaswithfeaturesizescomparabletotheelectromagnetic55wavelength.Thus,forsub-millimeterdevices,suchastheproposedRFpowered56“neurograins6,”effectivepower-transferfrequencieslieintheGHzrange,where57electromagneticradiationisabsorbedbythebody7.Absorptionofthisradio-58frequencyelectromagneticenergylimitstheamountofpowerthatcanbesafely59deliveredtoimplantsdeepinsidetissue7.Asaresult,researcherstypicallyturnto60magneticinductionorbatteriestopowerimplanteddevices;however,these61techniquesalsolimitthedegreeofminiaturization.Batteriesincreasethesizeofthe62deviceandaddconsiderableweight.Additionally,batteriesrequirereplacementor63charging,whichcanlimitthepotentialuses.Inductivelycoupledcoils,ontheother64hand,canbemadesmallerandlighterthanbatteries,however;thepowera65receivingcoilcangenerateisdirectlyrelatedtotheamountoffluxcapturedbythe66areaofthecoils.Thus,whenthereceivercoilsareminiaturized,theoutputpower67reducesandbecomesmoresensitivetoperturbationsinthedistanceorangle68betweenthetransmitterandreceiver8.Forexample,Freemanetal.demonstrated69thatsmallinductivecoilslessthan1mmindiametercanpowerstimulatorsforthe70sciaticnerveinanesthetizedrats9;however,initspresentform,thisdevicewould71havedifficultyprovidingstablestimulationinfreelymovinganimalsduetothe72reducedpowercouplingefficiencythataccompanieschangesintheangleand73distancebetweenthereceiverandtransmittercoils.7475Additionally,forneuralstimulatorstotreatanumberofneurologicaldisorderslike76Parkinson’sDisease(PD),obsessive-compulsivedisorder,andepilepsy,theymust77operatesafelyandeffectivelyinthehigh-frequency“therapeuticband”between10078and200Hz10–12.Thistypeofhigh-frequencyneuralstimulationischallenging79becausechargeontheelectrodemustbedissipatedbetweensuccessivestimulation80pulsestopreventelectrolysis,tissuedamage,andchangestothelocalpH13.Charge81dissipationathigh-frequenciesisaccomplishedbyusingabiphasicstimulus82waveformthatactivelyorpassivelychargesanddischargestheelectrodewitheach83cycle.Indeedallclinicallyapprovedelectricalneuralstimulationtherapiesinthis84therapeuticbandusevariousformsof“chargebalanced”biphasicstimulation85waveforms14.8687Recently,severalpromisingalternativestomagneticinductionandbatterieshave88enabledminiatureneuralstimulators;however,theseapproacheshaveyetto89demonstrateinvivooperationinthetherapeutichigh-frequencybandinfreely90movinganimals.Montgomeryetal.andHoetal.haveshownthatonecanusethe91mousebodyasanelectromagneticresonantcavitytoeffectivelytransferenergyto92sub-wavelengthscaledevicesimplantedinsidetheanimal15,16.Thisapproachis93

    not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which wasthis version posted November 5, 2018. ; https://doi.org/10.1101/461855doi: bioRxiv preprint

    https://doi.org/10.1101/461855

  • particularlyeffectivetodrivetinyLEDsforoptogeneticstimulation.However,94becausetheelectricalwaveformismonophasic,electricalstimulationhasbeen95limitedto<20Hz.Usingsuperparamagneticnanoparticlestoabsorbenergyfrom96high-frequency(500kHz)magneticfields17,onecanheatspecificregionsofthe97brain18,19infreelymovinganimals19.Thislocalheatcanstimulateneuralactivity98whenthetargetedbrainregionisgeneticallymodifiedtorespondtochangesin99temperature18,19.Howeverthisapproachrequirestransgenesis,whichadds100regulatorycomplexityandhasyettoshowhigh-frequencyoperationduethe101requirementforthetissuetocoolbetweenstimulationintervals.Ultrasound102providesapromisingandefficientmethodtopowerbioelectronicimplantsbecause103ultrasoundwavelengthsare105timessmallerthanelectromagneticwavesatthe104samefrequencyallowingsub-millimeter-sizeddevicestohavewavelength-scale105piezoelectricantennas20,21.However,implementationofthese“neuraldust”motes106canbechallenginginfreelymovinganimalsbecausetheimpedancemismatch107betweenair,bone,andtissuerequirescontactbetweensofttissueandthe108ultrasoundtransducerforefficientpowertransfer.Asaresult,therehasyettobea109demonstrationofultrasound-poweredneuralstimulatorsinfreelymoving110animals22.111112Hereweshowthatmagnetoelectric(ME)materialsenablethefirstmagnetically113poweredminiatureneuralstimulatorsthatoperateinthetherapeutichigh-114frequencyband.Similartoinductivecoils,thesematerialstransformamagnetic115fieldtoanelectricfield,butinsteadofusinganimplantedcoilweuseamaterialthat116generatesavoltageviamechanicalcouplingbetweenmagnetostrictiveand117piezoelectriclayersinathinfilm.Namely,themagneticfieldgeneratesstraininthe118magnetostrictivelayerasthemagneticdipolesalignwiththeappliedfield.That119strainexertsaforceonthepiezoelectriclayer,whichgeneratesavoltage(Fig.1).By120exploitingthistransductionmechanism,magnetoelectricsdonotsufferfromthe121sameminiaturizationconstraintsascoilsandcanbedrivenbyweakmagneticfields122ontheorderofafewmillitesla.Thesepropertieshaveledresearcherstopropose123magnetoelectricsasapromisingmaterialforbioelectronicimplants23–27.Herewe124demonstratethefirstproof-of-principlewirelessneuralstimulatorsbasedonME125materialsinafreelybehavingrodentmodelforParkinson’sDisease(PD),andthat126thesematerialscouldpowerminiaturedevicesdeepwithinthehumanbrain.127128FabricationandcharacterizationofMEstimulators129130Wefabricatedproof-of-principleMEstimulatorsbybondingarectangular131magnetostrictivelayer(Metglas)toaplatinumcoatedpiezoelectriclayer,132polyvinlydinefluoride(PVDF).Wethenencapsulatedthefilmsinaprotective133parylene-Clayer(8-10μmthick)(Fig.1a,seeMethods).WeusedPVDFlayers134between28and110μm,whichyieldedtotaldevicethicknessesbetween50-150135μm.Whenwemeasuredthevoltageacrossthefilm,wefoundadramaticvoltage136increasewhentheappliedmagneticfieldfrequency,matchesanacousticresonant137frequency(Fig.1b).Becausetheresonantfrequencyisproportionaltotheinverseof138thefilmlength,wecandesignmultiplefilmsandselectivelyactivatethemby139

    not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which wasthis version posted November 5, 2018. ; https://doi.org/10.1101/461855doi: bioRxiv preprint

    https://doi.org/10.1101/461855

  • changingthestimulusfrequency(Fig.S2b).Usingthisprinciple,wecanusedifferent140magneticfieldfrequenciestoactivateseparatedevicesthatmaybeindifferentareas141ofthebody,orcreatebiphasicstimulatorsbyinterleavedresonantstimulationof142twodifferentfilms,witheachfilmdrivingeitherthepositiveornegativephaseof143theneuralstimulus.144

    Figure1|MEfilmsconvertalternatingmagneticfieldsintoavoltage.(a)DiagramofaMEdeviceonafreelymovingratforwirelessneuralstimulation.TheactiveMEelementconsistsofpiezoelectricPVDF(blue)andMetglas(gray)laminateencapsulatedbyParylene-C.Insetshowstheoperatingprinciplewherebythestrainproducedwhenmagnetizingthegraymagnetostrictivelayeristransferredtothebluepiezoelectriclayer,whichcreatesavoltageacrossthefilm.(b)ExampleofaresonantresponsecurveforaMEfilmshowingthatthemaximumvoltageisproducedwhenthemagneticfieldfrequencymatchesanacousticresonanceat171kHz.PhotographinsetshowsanexampleofanassembledMEstimulator.The“Stressprofile”insetshowsatopviewofthestressproducedinaMEfilmascalculatedbyafiniteelementsimulationonandoffresonance(COMSOL).(c)Devicetestingsetupwithapermanentmagnettoapplyabiasfieldandanelectromagneticcoiltoapplyanalternatingmagneticfield(scalebars:upper=1cm,lower=2mm)(d)Maximumstimulationduration(usinga400μs/phasepulserepeatedatincreasingfrequencies)foraMEdeviceinbiphasicandmonophasicoperation.Maximumstimulationtimeisdeterminedbytimeofelectrolysisonastereotrodeinsalineasevidencedbygasbubbles(errorbars+/-1standarddeviationforn=4trials).Dashedlinesindicatefrequenciesofelectricalstimulationusedinvariousclinicalapplications,showingthatbiphasicoperationisnecessaryformanyclinicallyrelevantapplications.Romannumeralsindicatestimulationfrequenciesdemonstratedbypreviouslypublishedminiaturemagneticstimulators(i:Magnetothermal,Chenet.al,2015,ii:Magnetothermal,Munshiet.al,2017,iii:Mid-FieldOptogenetics,Montgomeryet.al,2015,iv:RFInductiveCoupling,Freemanet.al,2017).

    not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which wasthis version posted November 5, 2018. ; https://doi.org/10.1101/461855doi: bioRxiv preprint

    https://doi.org/10.1101/461855

  • 145WecanfurtherenhancethevoltagegeneratedbytheMEfilmsbyapplyinga146constantbiasfieldwithapermanentmagnetoranelectromagnet(Fig.1c).Because147thestraininthemagnetostrictivematerialisasigmoidalfunctionofthemagnetic148fieldstrength,thechangeinvoltageproducedbythealternatingfieldislargest149whenthefieldoscillatesaboutthemidpointofthesigmoid(Fig.S1)28,29.Thus,we150useabiasfieldtooffsetthemagneticfieldnearthecenterofthesigmoidal151magnetostrictiveresponsecurve.Thisbiasfieldallowsustogeneratetherapeutic152voltagelevelswhileapplyingasmall(fewmT)alternatingmagneticfieldusingan153electromagneticcoilandcustomcontrolcircuitrythatspecifiesthefrequencyand154timingofthealternatingmagneticfield(Fig.S3).155156ToidentifytheoperationalfrequenciesforourMEstimulatorswetestedthemin157salineandfoundthatwithabiphasicstimulationwaveformwecouldapplyconstant158stimulationuptoatleast800Hzwithoutsignificanthydrolysis.Forthistestwe159operatedeitheronefilmformonophasicstimulationortwofilmsforbiphasic160stimulationattachedtoastereotrode(Microprobes)insaline(seeMethods).We161thenmeasuredthetimeatwhichwecouldseebubblesattheelectrodetipresulting162fromhydrolysis.Thishydrolysiseventindicatesconditionsthatwouldlesionthe163surroundingtissue.Wefoundthatwithamonophasicstimulationwaveform164stimulationfrequenciesabove50Hzproducedhydrolysiswhilebiphasiccharge-165balancedstimulationshowednohydrolysisuptothemaximumtestedfrequencyof166800Hz.Comparedtopreviouslydemonstratedminiaturemagneticneural167stimulators,thebiphasicMEdevicesshownherearethefirsttoaccessthehigh-168frequencybandsusedforclinicalapplicationslikethetreatmentofParkinson’s169diseaseandobsessive-compulsivedisorder(Fig1d).170171Anadditionalchallengeforanywirelesslypoweredneuralstimulatoristomaintain172awell-regulatedstimulationvoltage.Thischallengeisespeciallyprevalentas173devicesbecomesmall,whichoftenreducesthepowertransferefficiencyresultingin174agreatersensitivitytothealignmentbetweenthedeviceandpowertransmitter.ME175materialsoffertwomainadvantagesthatcanenablestableandeffectivestimulation176evenasdevicesbecomesmallandmovewithrespecttothedrivercoils:177178First,MEdevicesgeneratevoltageswellinexcessoftheeffectivestimulation179potential,allowingthemtobeeffectiveevenifthematerialsaremisalignedwiththe180drivercoils.Atresonance,wehavemeasuredMEvoltagesinexcessof30Vatafield181strengthofonly1mT(Fig.S2c,d).Becauseeffectivestimulationvoltagesareusually182between1-5V,wecancaptheappliedvoltagetothiseffectivestimulationrange183usinganLEDorZenerdiode.AslongasthevoltagegeneratedbytheMEfilmis184greaterthanorequaltothecappingvoltage,wewillapplyapproximatelythesame185stimulusvoltageregardlessoftheangleordistancebetweenthedrivercoilandthe186MEfilm.Foratypicalfilmwefoundthatwecouldreorientthefilmby+/-80187degreesandmaintainvoltagesinexcessof3V(Fig.S1h).Thislargeangular188toleranceisaidedbythelargemagneticpermeabilityoftheMetglaslayer,which189

    not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which wasthis version posted November 5, 2018. ; https://doi.org/10.1101/461855doi: bioRxiv preprint

    https://doi.org/10.1101/461855

  • helpstodirectthemagneticfieldlinesalongthelongaxisofthefilm,wheretheyare190mosteffectiveatcreatingamagnetostrictiveresponse.191192Second,thevoltagegeneratedbyapiezoelectricmaterialdependsonthethickness193ofthepiezoelectriclayerandnottheareaofthefilm30,allowingustofabricatesmall194magnetoelectricfilmsthatgenerateroughlythesamestimulationvoltageaslarger195devices.FigureS2showsthepeakvoltagegeneratedandqualityfactorforMEfilms196ofdifferentareas.Wefoundthat,fora52μmthickPVDFlayer,thevoltageremains197around10Vevenasthefilmlengthdecreases.Variationsof+/-40%inpeak198voltageandqualityfactorsarelikelyduetodefectsproducedduringfilm199fabrication,whichmaybereducedwithimprovedmanufacturing.Wealsoverified200thattheoutputvoltagedependsonlyonthepiezoelectricfilmthicknessby201measuringthepeakvoltagesfromMEdeviceswiththreedifferentthicknessesof202PVDF:28μm,52μm,and110μm.Asexpected,weseethatthepeakvoltage203increaseslinearlywiththePVDFthicknessandisindependentofthefilmlength.We204calculated(andexperimentallyconfirmed)thatthepowergeneratedbyaMEdevice205isproportionaltothefilmwidthforagiventhicknessandalength-to-widthratio>3206(seeFig.S2f).Despitethedecreaseinpowerasfilmsbecomesmaller,wecalculate207thatfilmslessthan1cmlongcangenerateupto4mW,whichismorethan208sufficientformanywirelessapplicationsincludingneuralstimulation31.209210MonophasicstimulationbyMEfilmsevokeactionpotentialsinvitro211212Usingfluorescencemicroscopytoimagevoltageinculturedcells,wefoundthat213monophasicstimulationfor50msat100HzbyMEfilmsreliablystimulatedaction214potentials(APs).Fortheseexperimentsweused“spiking”humanembryonickidney215(HEK)celllinesthatweremodifiedtoexpresssodiumandpotassiumchannels.216Thesecellshavespike-likeelectricalwaveformsthatarerectangularinshapeand217canlastforafewsecondsdependingontheconfluencyoftheculture32.To218determinetherelativetimingbetweenmagneticstimulationandactionpotential219generation,wetransfectedthesecellswithArcLight33-ageneticallyencodedvoltage220indicatorthatallowsustomeasureactionpotentialsusingfluorescencemicroscopy.221222

    not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which wasthis version posted November 5, 2018. ; https://doi.org/10.1101/461855doi: bioRxiv preprint

    https://doi.org/10.1101/461855

  • Toimagefluorescencewhileweappliedmagneticfields,wedevelopedan223experimentalsetupthatallowsustoplacecellsandMEfilmsbeneathanobjective224lensatthecenterofa10cmlongsolenoidwitha3cmgapinthecenter.This225configurationallowedustoplaceMEfilms,cells,andtheobjectivelensatthecenter226oftheappliedmagneticfield(Fig.2a).Twoslightlylargercoilsplacedoneitherside227ofthegapprovidetheconstantbiasfield.228229WethenapproximatedanimplantedMEstimulatorusingtwoexperimental230configurations:1)growingcellsdirectlyontheMEfilm(Fig.S4)and2)layinga231coverslipwithadherentcellsontopoftheMEfilm(Fig.2).Toculturecellsdirectly232ontheMEfilm,wecoatedthetopparylenelayerwithpoly-l-lysine.Thehealthy233proliferationofHEKsontheMEdeviceindicatesthatthisencapsulationapproach234preventstheMEmaterialsfromlimitingcellgrowth(Fig.S4b).However,inatypical235usecase,thetargetcellsmaynotadheretotheMEstimulator,sowealsotestedthe236responseofcellslaidontopoftheMEmaterials.Inthisconfigurationwefirstgrew237thecellsoncoverslipsfor3-5daysbeforeinvertingthecoverslipsandlayingthem238ontheMEfortesting(Fig.2,seeMethods).239

    Figure2|MonophasicMEstimulatorsactivatecellsinvitro(a)Schematicoftheexperimentalsetup(b)MicroscopeimageofholesstampedintotheMEfilmandfiniteelementsimulationoftheelectricfieldshowsthattheholesproducefringingelectricfieldsthatoverlaptheculturecells(c)VoltageacrosstheMEfilmwhenthemagneticfieldisonresonanceand(d)offresonance.Insetsshowazoominofthehighfrequencycarrierwaveform.(e-g)FluorescencefromspikingHEKstransfectedwithArcLightshowactionpotentialsaretriggeredbytheMEfilmdrivenatresonance(e),butnotwhenthefilmisdrivenoffresonance(f).FluorescencefromHEKcellstransfectedwithGFPshownoresponsewhentheMEfilmisdrivenonresonanceconfirmingthatthemeasuredArcLightresponseistheresultofachangeintransmembranepotentialandnotanartifactofthemagneticfieldoracousticresonanceoftheMEfilm.

    not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which wasthis version posted November 5, 2018. ; https://doi.org/10.1101/461855doi: bioRxiv preprint

    https://doi.org/10.1101/461855

  • 240Tocreatefringingelectricfieldsthatinteractwiththeculturedcells,westamped241holesintheMEfilm(Fig.2b).Thefilmswereotherwisefabricatedasdescribed242above(Fig.1,Methods).InexperimentsusingMEfilmsandPtelectrodeswefound243thathigh-frequencybiphasicstimulationattheMEresonancefrequency(typically24420-150kHz)wasnoteffectivetostimulateAPsinculturedHEKs,aspredictedbythe245low-passfilteringpropertiesofthecellmembrane9.Tocreateaneffective246monophasicstimuluswaveform,weusedaSchottkydiodetorectifythevoltageto247createentirelypositiveornegativevoltagewaveformsdependingonthediode248direction.Thisrectifiedwaveformhasaslowlyvaryingmonophasicenvelopeinthe249

  • Thetransistorsblockcurrentsgeneratedbyonefilmfrompropagatingthroughthe286circuitryattachedtotheotherfilm,ensuringthatonlyonehalfofthecircuitisactive287atatime.ByswitchingthemagneticfieldfrequencybetweenthetwoMEresonance288frequencies,wecanalternatepositiveandnegativephasestimulationtocreatea289biphasicneuralstimulator(Fig.3b-d).Inthiscasetheresidualchargeof-2.3nC,290whichdischargesin500Hzwithoutaccumulatingcharge.292293WefoundthatourbiphasicMEstimulatoriscapableofrepeatableneural294stimulationusingneocorticalbrainslicesderivedfrommicethatexpressthe295geneticallyencodedcalciumindicatorGCaMP3inGABAergicneurons.Toimage296neuralactivityfollowingMEstimulationweinsertedastereotrodeattached297biphasicMEstimulatordescribedabovewhileweimagedGCaMPactivityusing298fluorescencemicroscopy(Fig.3e-g,Methods).Wechoseneuralstimulation299parameterssimilartothosecommonlyusedfordeepbrainstimulation34:100300biphasicpulsesat200Hzwitheachphaselasting175μs.Whenthemagneticfield301wasonweobservedacorrespondingincreaseinfluorescenceinn=23recordingsin302neocorticallayer5consistentwithactivity-mediatedcalciumincreases303(SupplementaryVideo2).Followingbathapplicationoftetrodotoxin(TTX,500304nM)fluorescenceincreaseswerecompletelyblockedinn=9recordingsconfirming305thatMEstimulationreliablyevokedsodium-channeldependentactionpotentialsin306nearbyneurons.307 308

    not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which wasthis version posted November 5, 2018. ; https://doi.org/10.1101/461855doi: bioRxiv preprint

    https://doi.org/10.1101/461855

  • 309 310

    Figure3|BiphasicMEstimulatorsactivateneuronsinexvivobrainslices(a)SchematicofexperimentalsetupwithtwoMEfilmsforbiphasicstimulation(b)Measuredvoltagewaveformproducedbyourmagneticfieldgenerator.Whencoupledtothemagneticcoils,thiswaveformproducesmagneticfieldsthatalternatebetweentheresonantfrequenciesofthetwoMEfilms(c)Measuredvoltageacrossthestereotrodeshowstheexpectedbiphasicpulseshape(d)Calculatedcurrentbasedonmeasuringthevoltageacrossourloadresistor(VR)showsnearlyperfectchargebalancingwithonly2.3nCaccumulatingontheelectrodeperpulsetrain.(e)Brightfieldimageofstereotrodeinmousecortex(scalebar=1mm)withinsetofGCaMPsignalaveragedovera600μmx600μmregionaroundstereotrodetip.Arrowindicatingafluorescingcellbodynearthestereotrode(f)AverageGCaMPsignalwhenresonantmagneticfieldisappliedbefore(f)andafter(g)addingTTXshowsneuralactivityisinducedbytheMEstimulator.Thingreentracesrepresentseparateexperimentsfromtwodifferentbrainslices,andthickblacktracesrepresentthemeanofallexperiments.

    not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which wasthis version posted November 5, 2018. ; https://doi.org/10.1101/461855doi: bioRxiv preprint

    https://doi.org/10.1101/461855

  • MENeuralStimulationinFreelyMovingRatsShowsBehavioralEfficacy311312AmajoradvantageofourMEstimulatorsisthefactthatremoteactivationenables313experimentswithfreelybehavinganimals.Asaproof-of-principleweadaptedour314biphasicstimulatorfordeepbrainstimulation(DBS)infreelymovingrats(Fig.4).315TotestMEstimulatorefficacy,weusedapreviouslyreportedprotocoltotestDBSin316hemi-parkinsonianrats36.Intheseexperimentsratsareinjectedwith6-OHDAinthe317leftmedialforebrainbundle(MFB)tocreateaunilaterallesionofthesubstantia318nigraparscompacta(SNc).Theanimalsarethenplacedina30cmdiametercircular319enclosure.Followingadoseofmethamphetamine,thehemi-parkinsonianratshave320beenshowntorotateipsilateraltotheinjection(e.g.leftforinjectionintotheleft321MFB).Duringtheserotations,theratprimarilymovesusingitscontralateral(right)322forepaw,rarelyplacingtheipsilateral(left)forepawontotheground.Whena323biphasicstimulusisappliedat200Hzinthesub-thalamicnucleus(STN)usinga324tetheredelectrodearraystimulator,ratstypicallystopturningtotheleftandexhibit325morenormalbehaviorsuchasmovingwithbothforepaws,maintainingasteady326orientation,orturningtothecontralateralside34.327328Tocreateawireless,biphasicMEstimulatorforfreelymovinganimalsweaddeda329smallpermanentmagnettotheMEstimulatortogenerateabiasfield,andwrapped330thebehavioralchamberwith18AWGcopperwiretocreateasolenoid(Fig.4a,S5).331Byintegratingthesmallpermanentmagnet(<0.25g)intotheMEstimulator,we332couldensurethatthebiasfieldwasconstantlyalignedwithMEfilmsastheanimal333movedwithintheenclosure.Wecouldalsoensurethatthepositiveandnegative334stimulihadequalamplitudesbyindependentlyadjustingthedistancebetweeneach335filmandthepermanentmagnet.ThisMEstimulatorwasthenconnectedtoa336commercialelectrodearray(Microprobes)implantedintheSTN(Fig4b,see337Methods).Weensuredthatthestimulationvoltageandcurrentwerewithinthesafe338andtherapeuticrangebymeasuringtheoutputoftheMEstimulatorconnectedto339anequivalentcircuitmodelofthebrain(Fig.4c,seemethods).Specifically,we340observedpeakvoltagesofapproximately+/-1.5Vandpeakcurrentsof341approximately+/-100μAfor400usatapproximatelya50%dutycycle(200μsof342overallcurrentperphase),whichiswithintheeffectivestimulationrangereported343forconventionalwiredstimulators36.Whenwetunethemagneticfieldfrequencyoff344resonanceweobservealmostnogeneratedvoltageorcurrent(Fig.4c).345

    not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which wasthis version posted November 5, 2018. ; https://doi.org/10.1101/461855doi: bioRxiv preprint

    https://doi.org/10.1101/461855

  • 346WethentestedthewirelessversionofourbiphasicMEstimulatormountedtothe347headofafreelybehavingratandfoundthatMEstimulationshowedefficacy348comparabletopreviouslyreportedwiredDBSstimulators(Fig.4).Withamagnetic349fieldappliedatresonance,wefoundthatone-minuteperiodsof200Hzbiphasic350pulsesresultedinasignificantdecreaseintheanimal’srotationrate(Fig.4dgreen351intervals).Thisdecreasedrotationwasnotobservedwhenthemagneticstimulus352frequencywastunedoffresonance(Fig.4dblueintervals).Plotsofthehead353

    Figure4|EffectiveDBSinafreelymovingratusingawirelessMEstimulator(a)Experimentalsetupshowingratinacircularenclosurewrappedwithmagnetwire.InsetshowsabiphasicMEstimulatoronaonecentcoin(b)SchematicofthebiphasicMEstimulatorattachedtotheelectrodearraythatisimplantedintotheSTN(c)MeasuredvoltagegeneratedbytheMEdeviceandthecurrentappliedtothebrainonresonance(green)andoffresonance(blue).Approximately100μAbiphasicstimulationisappliedonlywhenthenthemagneticfieldfrequencymatchestheresonancecondition.(d)Angularvelocityofthehemi-Parkinsonianratovera40minuteDBStrialwithintervalsofresonantandnon-resonantstimulationshowsthatrotationsarereducedonlywhenthestimulatorisactivatedbyaresonantmagneticfield(e)Typicaltrajectoriesshowthelocationoftheanimal’sheadovertwo30-secondintervalsdenotedinc(scalebar=5cm)(f)Averageangularvelocityoftheratduringthe30secondsbeforestimulationandthefirst30secondsofstimulationforeachintervalduringthe40-minexperimentshowsaclearreductioninangularvelocityonlywhentheMEfilmisactivatedonresonance(***P=4x10-7,n.s.=notsignificantP=0.70,pairedt-test)

    not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which wasthis version posted November 5, 2018. ; https://doi.org/10.1101/461855doi: bioRxiv preprint

    https://doi.org/10.1101/461855

  • trajectoriesshowthatthepathologicalrotationsobservedduringoff-resonant354magneticfieldstimulationarenotpresentwhentheMEstimulatorisactiveduring355resonantmagneticfieldstimulation(Fig.4e,Methods).Whenaveragedoverall356trials,averagerotationrateduringthefirsthalfofstimulationfelltoastatistically357significant1.6rotationsperminute(rpm),comparedto9.3rpmintheabsenceof358stimulation,or9.4rpmduringoff-resonantstimulation(pairedt-test,Fig.4f).We359furtherdemonstratedtherepeatabilityofthisstimulatorbyrepeatingthis360stimulationprotocolonasecondratandfoundsimilarresults(FigS5b).361362Withaweightof0.67g,theMEstimulatorsdescribedherearethefirstreported363miniature,magnetic,highfrequencystimulator.Furthermore,bychangingthe364frequencyandtimingoftheexternaldrivecoils,wecangenerateavarietyof365stimulationpatternsthroughoutthetherapeuticwindowof100-200Hzwith366applicationstootherdiseasemodels.Additionally,calculationsofthemagneticfield367strengthssuggestthatwecanreconfigurethedrivecoilsforanumberofbehavioral368experimentsbyplacingcoilsbeneaththefloorofananimalenclosure.Finite369elementsimulationsandmeasurementsshowthatevenatdistance4-5cmabovea370drivecoil,MEfilmsgeneratesufficientvoltageforstimulation(Fig.S6).This371distancecouldbefurtherimprovedbyoptimizingthegeometryofthecoilsor372increasingthepowerofthemagneticfield.373374Demonstrationofmultichanneldeepbrainstimulationinskullphantomusing375rice-sizedMEfilms376377Inadditiontosupportingexperimentsinfreelymovingrodents,MEmaterialscould378enableminiaturizedwirelessstimulatorsthatoperatedeepinthebrainoflarge379animalsorhumanpatientsandareindividuallyactivatedwithanexternal380electromagnet.Toourknowledge,thisisthefirsttechnologythatenables381independentexternalwirelesscontrolofmultipleminiaturestimulatorsdeep382beneathahumanskullphantom.Figure5ashowsthepredicteddepththatvarious383miniatureantennascouldbesafelyimplantedundertheskullandgenerate1mWof384power,whichisintheapproximatemaximumpowerrequiredforhigh-frequency385continuousneuralstimulation31.Asmentionedabove,radio-frequency(RF)386poweredantennasthatoperateatfrequenciesabove~1MHzhavelimitationsinthe387amountofpowerthatcansafelybedeliveredtoanimplanteddevicewithout388causingpotentiallyharmfultissueheating.Simulationsshowthatwhenoperating389withthesafepowerlimits,RF-antennasmustbeplacedonthesurfaceofthebrain390orinveryshallowregionstoharvest1mWofpower.“Mid-field”techniques37,391improvetheRFcouplingefficiencyenablingdeepoperation,butbecausethis392approachoperatesatafixedfrequencytherehaveyettobedemonstrationsof393individuallyaddressablemotesorbiphasicstimulation.Othertechniquesfor394wirelesspowerdeliverydiscussedpreviously,suchmagneticinduction,alsocannot395achievedeepmultichannelstimulation.Forexample,evenusingahigheroperating396frequencyof1MHzaninductivecoilwiththesameorientationandcross-sectional397areaastheMEfilmsshownherewouldrequireaminimumof500turnsofwireto398generate2Vusingthesame0.5mTfieldusedhere(assumingatypicalQ-factorof399

    not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which wasthis version posted November 5, 2018. ; https://doi.org/10.1101/461855doi: bioRxiv preprint

    https://doi.org/10.1101/461855

  • 10).Thus,devicesbasedonmagneticinductorscannotbeminiaturizedwithout400sacrificingavailablepowerasdescribedpreviously9.401402Asaproof-of-conceptdemonstrationweshowthattworice-sizedMEfilmscanbe403individuallyaddressedatthecenterofahumanskullphantomusinganexternal404electromagnet.Thesetwo-filmswithlengthsof8mmand10mmhaveacoustic405resonantfrequenciesof180and200kHz,whicharedeterminedbythefilmlength.406WhenthesefilmsareattachedtoanorangeLED,theiroutputvoltageiscappedat407approximately1.8V,whichhelpstoregulatethestimulationvoltageandallowsus408tovisualizefilmactivation.MEfilmsofthissizearesmallerthancurrentDBSleads409andcouldpotentiallybeimplantedintodeepbrainareasasshowninFig5c.410Additionally,themagneticstimulationcoilissmallenoughtobeincorporatedintoa411stylishhatorvisorthatcouldbeworncomfortablybyapatient.Whenweplaced412

    Figure5|MiniaturizedMultichannelStimulationinHumanSkullPhantom(a)ComparisonofeffectivedepthbeneathahumanskullphantomforMEdevicescomparedtootherminiaturewirelessstimulators.Depthlimitisbasedonsafetylimitstogenerate1mW.(i:Parket.al,ProcNatAcSci,2016,ii:Yazdandoostet.al,AsiaPacMicrowConf,2009,iii:Yazdandoostet.al,Proc37EuropMicrowConf,2007,iv:Agrawalet.al,NatBiomedEng,2017)(b)PhotosofMEfilmsnexttoagrainofriceandthecorrespondingvoltageasafunctionofmagneticfieldfrequency(fieldstrength1mT,scalebars2mm)(c)SchematicofshowingpotentialapplicationoffullyimplantedMEfilmswiththemagneticfieldgeneratedbyanexternalcoilthatcanbeincorporatedintoahatorvisor(d)Frontviewand(e)topviewofskullphantomwiththetopremovedtoviewLEDs(filmlocationsindicatedbyarrows,scalebar1cm)(f)PhotoofLEDsattachedtoMEfilmswiththemagneticfieldsatappliedat180kHzand(g)200kHz.SelectiveilluminationoftheLEDscorrespondingtheresonantfrequenciesofthefilmsdemonstratessuccessfulmultichannelactivationofindividualfilms(scalebars1cm).Magneticfieldstrengthwasmeasuredtobe0.5mTatthelocationoftheMEfilms.

    not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which wasthis version posted November 5, 2018. ; https://doi.org/10.1101/461855doi: bioRxiv preprint

    https://doi.org/10.1101/461855

  • thetwoMEfilmsatthecenterofaskullphantomwefoundthatwecould413individuallyilluminatetheLEDsoneachfilmwhenweappliedamagneticfieldat414theresonantfrequencyoftheselectedfilm(Fig5d-g).Forthisexperimentweuseda415400Wpowersupply,whichproducedafieldofapproximately0.5mTatthecenter416oftheskullphantom.Thetopoftheskullphantomwasremovedforvisualization,417buthadnoaffectonourabilitytodrivetheLEDindicators.Thenumberof418stimulationchannelscouldbeincreasedwiththeadditionofMEfilmswithdifferent419resonantfrequencies.420421Outlook422423Toourknowledge,thisisthefirstdemonstrationofaminiature,magneticneural424stimulatorthat1)operatesinthetherapeuticband(100-200Hz)infreelymoving425animalsand2)enablesindividuallyaddressableminiaturestimulatorsdeepwithin426ahumanskullphantom;however,theadvantagesofMEmaterialsextendbeyond427theseproof-of-principledemonstrations.428429MEstimulatorssuchastheonedescribedintheinvivoratexperimentcouldhave430animmediateimpactonthestudyofDBStherapiesusingrodentdiseasemodels.431BecausetheMEstimulatoriscompatiblewithcommercialimplantedelectrodes,and432themagneticstimulatorscanbeadaptedtoanumberofstandardbehavioral433experimentsoranimalenclosures,ourMEstimulatorscouldreadilyreplacethe434wiredDBSstimulatorscurrentlyinuse.Asaresult,newexperimentscanbe435developedtoprobetheeffectsofchronicandcontinuousDBSorDBSinsocial436contextswherewiredDBSstimulatorswouldbeimpracticable.437438Additionally,MEmaterialshavethepotentialtoenableminiatureneuralstimulators439thatcanbeimplanteddeepinthebrainoflargeanimalsorhumansandaddressed440externallywithasmallelectromagnet.Asshownhere,rice-sizedfilmscanbe441selectivelyactivatedbasedonuniqueresonantfrequencies.Additional442miniaturizationisnotexpectedtoreducethevoltageproducedbythesefilmssince443thevoltagedependsonthethicknessofthepiezoelectricfieldandnotthefilm444length(Fig.S2c),suggestingthatevensmallerfilmscouldserveaseffective445stimulators.446447WealsoforeseeapplicationsforMEmaterialsasawirelesspowertechnologyfor448morecompleximplantablebioelectronicdevices.Forexample,thedemonstrated449abilityofMEfilmstopowerLEDsimpliesthatMEmaterialscouldpower450implantableoptogeneticstimulators,orsmallintegratedcircuitsforphysiological451monitoring.452453Torealizethesefullyimplantablebioelectronicdevices,workisneededtoimprove454MEmaterialsandfabricationprocessestoreliablyproducehigh-qualityminiature455MEfilms,andencapsulatethemforchronicuse.Forwearabletechnologies,itisalso456necessarytofurtherminiaturizemagneticfieldgeneratorssothattheycanbe457

    not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which wasthis version posted November 5, 2018. ; https://doi.org/10.1101/461855doi: bioRxiv preprint

    https://doi.org/10.1101/461855

  • batterypoweredandcomfortablyworn.Theseadvancesmustalsobeaccompanied458byinvivotestingtoshowsafetyandefficiencyforchronicuse.459460Overall,MEmaterialshavethepotentialtofillakeyneedforwirelesspower461deliverytominiaturebiphasicneuralstimulatorsandotherbioelectronicdevices462wherethemajorchallengeistransferringenergyoverdistancesofseveral463centimeterswithoutheatingthetissueorsufferinglossatinterfacesbetweentissue,464bone,andair.465466References467

    1. Hargreaves,D.G.,Drew,S.J.&Eckersley,R.KirschnerWirePinTractInfection468Rates:Arandomizedcontrolledtrialbetweenpercutaneousandburiedwires.469J.HandSurg.Br.Eur.Vol.29,374–376(2004).470

    2. Roy,B.,C.,M.D.&A.,T.P.Thebraintissueresponsetoimplantedsilicon471microelectrodearraysisincreasedwhenthedeviceistetheredtotheskull.J.472Biomed.Mater.Res.PartA82A,169–178(2007).473

    3. Markwardt,N.T.,Stokol,J.&Rennaker,R.L.Sub-meningesimplantation474reducesimmuneresponsetoneuralimplants.J.Neurosci.Methods214,119–475125(2013).476

    4. Sahin,M.&Pikov,V.WirelessMicrostimulatorsforNeuralProsthetics.Crit.477Rev.Biomed.Eng.39,63–77(2011).478

    5. Pinnell,R.C.,Vasconcelos,A.P.De&Cassel,J.C.AMiniaturized,479ProgrammableDeep-BrainStimulatorforGroup-HousingandWaterMaze480Use.Front.Neurosci.12,1–11(2018).481

    6. Nurmikko,A.V.Approachestolargescaleneuralrecordingbychronic482implantsformobileBCIs.in20186thInternationalConferenceonBrain-483ComputerInterface(BCI)1–2(2018).doi:10.1109/IWW-BCI.2018.8311503484

    7. International,I.&Safety,E.IEEEStandardforSafetyLevelswithRespectto485HumanExposuretoRadioFrequencyElectromagneticFields,3kHzto300GHz.4862005,(2006).487

    8. Fotopoulou,K.&Flynn,B.W.WirelessPowerTransferinLooselyCoupled488Links :CoilMisalignmentModel.IEEETrans.Magn.47,416–430(2011).489

    9. Freeman,D.K.etal.Asub-millimeter,inductivelypoweredneuralstimulator.490Front.Neurosci.11,1–12(2017).491

    10. DeHemptinne,C.etal.Therapeuticdeepbrainstimulationreducescortical492

    not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which wasthis version posted November 5, 2018. ; https://doi.org/10.1101/461855doi: bioRxiv preprint

    https://doi.org/10.1101/461855

  • phase-amplitudecouplinginParkinson’sdisease.Nat.Neurosci.18,779–786493(2015).494

    11. Alonso,P.etal.Deepbrainstimulationforobsessive-compulsivedisorder:A495meta-analysisoftreatmentoutcomeandpredictorsofresponse.PLoSOne10,4961–16(2015).497

    12. Theodore,W.H.&Fisher,R.S.ReviewBrainstimulationforepilepsy.Lancet4983,111–118(2004).499

    13. Merrill,D.R.,Bikson,M.&Jefferys,J.G.R.Electricalstimulationofexcitable500tissue:Designofefficaciousandsafeprotocols.J.Neurosci.Methods141,171–501198(2005).502

    14. Parastarfeizabadi,M.&Kouzani,A.Z.Advancesinclosed-loopdeepbrain503stimulationdevices.J.Neuroeng.Rehabil.14,79(2017).504

    15. Montgomery,K.L.etal.Wirelesslypowered,fullyinternaloptogeneticsfor505brain,spinalandperipheralcircuitsinmice.Nat.Methods12,969–974506(2015).507

    16. Ho,J.S.etal.Self-TrackingEnergyTransferforNeuralStimulationin508UntetheredMice.Phys.Rev.Appl.24001,1–6(2015).509

    17. Carrey,J.etal.Simplemodelsfordynamichysteresisloopcalculationsof510magneticsingle-domainSimplemodelsfordynamichysteresisloop511calculationsofmagneticsingle-domainnanoparticles :Applicationto512magnetichyperthermiaoptimization.J.Appl.Phys.83921,(2015).513

    18. Chen,R.,Romero,G.,Christiansen,M.G.,Mohr,A.&Anikeeva,P.Wireless514magnetothermaldeepbrainstimulation.Science347,1477–80(2015).515

    19. Munshi,R.etal.Magnetothermalgeneticdeepbrainstimulationofmotor516behaviorsinawake,freelymovingmice.Elife6,1–26(2017).517

    20. Johnson,B.C.etal.StimDust :A6.5mm3,WirelessUltrasonicPeripheral518NerveStimulatorwith82%PeakChipEfficiency.2018IEEECust.Integr.519CircuitsConf.(2018).520

    21. Seo,D.etal.WirelessRecordinginthePeripheralNervousSystemwith521UltrasonicNeuralDust.Neuron91,529–539(2016).522

    22. Piech,D.K.etal.StimDust:A2.2mm3,precisionwirelessneuralstimulator523withultrasonicpowerandcommunication.1–35524

    23. Nan,T.etal.Acousticallyactuatedultra-compactNEMSmagnetoelectric525

    not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which wasthis version posted November 5, 2018. ; https://doi.org/10.1101/461855doi: bioRxiv preprint

    https://doi.org/10.1101/461855

  • antennas.Nat.Commun.8,1–7(2017).526

    24. O’Handley,R.C.,Huang,J.K.,Bono,D.C.&Simon,J.ImprovedWireless,527TranscutaneousPowerTransmissionforInVivoApplications.IEEESens.J.8,52857–62(2008).529

    25. Yue,K.etal.Magneto-ElectricNano-ParticlesforNon-InvasiveBrain530Stimulation.PLoSOne7,1–5(2012).531

    26. Guduru,R.etal.Magnetoelectric‘spin’onstimulatingthebrain.Nanomedicine53210,2051–2061(2015).533

    27. Ribeiro,C.,Correia,V.,Martins,P.,Gama,F.M.&Lanceros-Mendez,S.Proving534thesuitabilityofmagnetoelectricstimulifortissueengineeringapplications.535ColloidsSurfacesBBiointerfaces140,430–436(2016).536

    28. Zhai,J.,Dong,S.,Xing,Z.,Li,J.&Viehland,D.Giantmagnetoelectriceffectin537Metglas/polyvinylidene-fluoridelaminates.Appl.Phys.Lett.89,8–11(2006).538

    29. Kulkarni,a.etal.Giantmagnetoelectriceffectatlowfrequenciesinpolymer-539basedthinfilmcomposites.Appl.Phys.Lett.104,0–5(2014).540

    30. Wan,C.&Bowen,C.R.Multiscale-structuringofpolyvinylidenefluoridefor541energyharvesting:theimpactofmolecular-,micro-andmacro-structure.J.542Mater.Chem.A5,3091–3128(2017).543

    31. Amar,A.Ben,Kouki,A.B.&Cao,H.Powerapproachesforimplantablemedical544devices.Sensors(Switzerland)15,28889–28914(2015).545

    32. Park,J.etal.Screeningfluorescentvoltageindicatorswithspontaneously546spikingHEKcells.PLoSOne8,1–10(2013).547

    33. Jin,L.etal.SingleActionPotentialsandSubthresholdElectricalEvents548ImagedinNeuronswithaFluorescentProteinVoltageProbe.Neuron75,549779–785(2012).550

    34. So,R.Q.,Mcconnell,G.C.&Grill,W.M.Frequency-dependent,transient551effectsofsubthalamicnucleusdeepbrainstimulationonmethamphetamine-552inducedcirclingandneuronalactivityinthehemiparkinsonianrat.Behav.553BrainRes.320,119–127(2017).554

    35. Sun,Y.etal.WirelesslyPoweredImplantablePacemakerwithOn-Chip555Antenna.IEEE1242–1244(2017).556

    36. Summerson,S.R.,Aazhang,B.&Kemere,C.T.CharacterizingMotorand557CognitiveEffectsAssociatedWithDeepBrainStimulationintheGPiofHemi-558

    not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which wasthis version posted November 5, 2018. ; https://doi.org/10.1101/461855doi: bioRxiv preprint

    https://doi.org/10.1101/461855

  • ParkinsonianRats.IEEETrans.NeuralSyst.Rehabil.Eng.22,1218–1227559(2014).560

    37. Agrawal,D.R.etal.Conformalphasedsurfacesforwirelesspoweringof561bioelectronicmicrodevices.Nat.Biomed.Eng.1,1–16(2017).562

    38. Schabrun,S.M.,Jones,E.,ElguetaCancino,E.L.&Hodges,P.W.Targeting563chronicrecurrentlowbackpainfromthetop-downandthebottom-up:a564combinedtranscranialdirectcurrentstimulationandperipheralelectrical565stimulationintervention.BrainStimul7,451–459(2014).566

    39. Mulpuru,S.,Madhavan,M.,McLeod,C.,Cha,Y.-M.&Friedman,P.Cardiac567Pacemakers :Function,Troubleshooting,andManagement.J.Am.Coll.568Cardiol.69,(2017).569

    40. Kesar,T.M.etal.NovelPatternsofFunctionalElectricalStimulationHavean570ImmediateEffectonDorsiflexorMuscleFunctionDuringGaitforPeople571Poststroke.Phys.Ther.90,55–66(2010).572

    41. Bewernick,B.H.etal.NucleusAccumbensDeepBrainStimulationDecreases573RatingsofDepressionandAnxietyinTreatment-ResistantDepression.Biol.574Psychiatry67,110–116(2010).575

    42. Park,S.Iletal.Stretchablemultichannelantennasinsoftwireless576optoelectronicimplantsforoptogenetics.Proc.Natl.Acad.Sci.113,E8169–577E8177(2016).578

    43. Yazdandoost,K.Y.A2.4GHzantennaformedicalimplantedcommunications.579APMC2009-AsiaPacificMicrow.Conf.20091775–1778(2009).580doi:10.1109/APMC.2009.5384240581

    44. Yazdandoost,K.Y.&Kohno,R.Anantennaformedicalimplant582communicationssystem.Proc.37thEur.Microw.Conf.EUMC968–971(2007).583doi:10.1109/EUMC.2007.4405356584

    585

    586

    not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which wasthis version posted November 5, 2018. ; https://doi.org/10.1101/461855doi: bioRxiv preprint

    https://doi.org/10.1101/461855

  • Methods587588GeneralStatisticalMethods589ErrorbarsinFigureS2fgdenote+/-onestandarddeviationforn=~50datapoints.590WefurthermoreperformedaTukey’sHonestSignificantDifferencetestonthedata591inFigureS2g,whichindicatedthatthevoltageproducedateachdifferentPVDF592thicknessissignificantlydifferent.Pairedt-testswereusedfortherotationtestsin593figure4e.594595FilmFabrication596TofabricateMEfilms,weusedMetglasSA1alloy(MetglasInc)forthe597magnetostrictivelayerandpolyvinylidenefluoride“PVDF”(precisionacoustics)for598thepiezoelectriclayer.ThePVDFfilmsusedfortheseexperimentswerepre-599stretchedandpoledbythemanufacturer.Thetwolayerswerebondedtogether600usinganepoxycapableoftransferringthemechanicalstressbetweenthetwolayers601(Hardmandoublebubbleredepoxy).Priortobondingthetwolayerstogether,we602sputteredathinlayerofplatinum(

  • 633Tomaintainsimplicity,efficiency,andlowcostthecoilsweredrivenwithfullH-634Bridgestyleswitchingcircuits.Thedriversaredesignedtodeliverhighcurrentsto635thedrivecoilsintheformofbi-phasicpulsetrains.Thisreducesthecostand636complexityofthedriveritself,aswellasthepowersupplyandcontrolcircuitry637whencomparedtoarbitraryfunctiongenerators.Thedesignalsohaspotentialfor638improvedoperationalefficiencythroughimpedancematchingwiththedrivecoils.639Furthermore,itisalsopossibletoregulatepowerdeliveredtothedrivecoilsonthe640flybyadjustingthedutycycleofthecurrentpulses,allowingpowerbeingdelivered641totheMEfilmtobeeasilycontrolleddigitallywhilemaintainingtheresonant642carrierfrequency.Theoutputcarrierandpulsefrequenciesofthemagneticfieldare643generatedusingaTeensyLCboardandcustomArduinocodetogeneratethespecific644pulsetimingstodelivercontrolledMEstimulation(Fig.S3c,d).645646Thesecoilsanddriverscanbecombinedindifferentwaystogeneratethe647appropriatefieldforagivenexperiment.Forexample,thesetupusedtogenerate648thealternatingfieldintheinvivorotationexperimentsconsistedoffoursetsofcoils649eachwithfiveturnspoweredbyonedriverwithallfourdriverssyncedtothesame650outputsignal.InthiswaywecangeneratesufficientpowertogenerateamT-scale651magneticfieldsoverthewholebehavioralarea(Fig.S5a).652653CellCulture654Forexperimentsperformedoncoverslips,HEKcellsexpressingsodiumchannel655Na1.3andpotassiumchannelK2.1weregrownon12mmpoly-l-lysinecoated656coverslipstoapproximately30%confluency.Thecellswerethentransfectedwith657thegeneticallyencodedvoltageindicatorArcLightusingLipofectamine(Invitrogen)658followingmanufacturer’srecommendations.Twotothreedaysaftertransfection659thecoverslipswereinvertedontoMEfilmsfortesting.PreparationofGFPcontrols660followedthesameprocedurewiththeexceptionofreplacingtheArcLightvector661(AddGene)withaGFPexpressionvector(AddGene).Forexperimentsperformed662withcellsgrownonthefilms,HEKcellstransfectedwithArcLightwereplacedonto663parylenecoatedpoly-l-lysinetreatedfilms.Thefilmswereplacedincellularmedia664overnightandtestedthefollowingday.665666ArcLightandGFPwereexcitedat460nmwithanLEDlightsource.Fluorescence667imageswerecollectedat33fpsusingaCCDcamera.Imageswereanalyzedusing668Matlabtoquantifyfluorescencechangesinindividualcells.Invitrotestingwas669performedinextracellularbuffer(ECB,inmM:NaCl119,KCl5,Hepes10,CaCl22,670MgCl21;pH7.2;320mOsm)671672FigureS4bwasobtainedbygrowingunmodifiedHEKcellsonafilmsubmergedin673cellularmediaforfivedays.ThecellswerethenstainedwithHoechstandCalcein-674AMtolabelthenucleusandmembranerespectivelyinlivingcells.Thecellswere675thenfixedandimagedusingaconfocalmicroscope.676677678

    not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which wasthis version posted November 5, 2018. ; https://doi.org/10.1101/461855doi: bioRxiv preprint

    https://doi.org/10.1101/461855

  • MouseBrainSliceProcedures679Weused40dayoldGAD2-GCaMP3mice,generatedbycrossingGAD2-Cre(JAX#68010802)withflox-GCaMP3(JAX#14538)animals.Preparationofbrainslices681followedproceduresdescribedbyTingetal.45andwascarriedoutinaccordance682withNationalInstitutesofHealthguidelinesandapprovedbytheUTHealthanimal683welfarecommittee.MiceweredeeplyanesthetizedwithIsofluraneandperfused684withicecoldNMDG-basedsolutionconsistingof(inmM):92NMDG,2.5KCl,1.25685NaH2PO4,10MgSO4,0.5CaCl2,30NaHCO3,20glucose,20HEPES,2thiouera,5Na-686Ascorbate,3Na-pyruvate,saturatedwith95%O2and5%CO2.,atarateof~6687ml/min.Coronalbrainslices(300µm)werecutusingavibratome(LeicaVT1200S),688incubatedfor15minat35°CinNMDGsolution,andthentransferredtoachamber689heldatroomtemperaturecontaining(inmM):92NaCl,2.5KCl,1.25NaH2PO4,2690MgSO4,2CaCl2,30NaHCO3,25glucose,20HEPES,2thiouera,5Na-Ascorbate,3Na-691pyruvate,saturatedwith95%O2and5%CO2.Forexperiments,sliceswereplaced692intoarecordingchamberperfusedwithACSFcontaining(inmM):126NaCl,2.5KCl,6931.25NaH2PO4,2MgCl2,2CaCl2,26NaHCO3,10glucose),heldat32-34°Cusingan694inlineheater.NBQX(10µM)wasincludedinthebathsolutiontoblockAMPA695receptor-mediatedsynaptictransmission.Thestereotrodewasplacedinlayer5of696somatosensory(barrel)cortex.697698GCaMP3wasexcitedat460nmwithanLEDlightsource.Fluorescenceimageswere699collectedat9.8fpsusingaCCDcameraattachedtoanOlympusBX51WImicroscope.700ImageswereanalyzedusingMatlabtoquantifyfluorescencechangesin600x600701μmregionsaroundthestereotrodetips.702703704ImplantDesignandRatSurgicalProcedures705706TwomaleLong-Evansrats(n≈1,400g)wereanesthetizedwithisofluranegas.Five707percentisofluranewasusedtoinduceanesthesiaandtwopercentwasusedto708maintainanestheticdepth.Buprenorphine(0.04mg/kg)wasadministered30709minutespriortoearbarsforanalgesia.5-7skullscrewswereplacedtoanchorthe710electrodearray.SkullscrewswereboundtoskullwithMetabonddentalacrylic.A711craniotomywasmadetoaccommodatethemicroelectrodearrayandexposean712injectionsiteforneurotoxin.A30gaugeneedlebentatthetipcutandpulledaway713theduramatercoveringofthebrain.Desipramine(DMI)reconstitutedinsalineata714concentrationof15mg/mLwasinjectedIPtoprotectnoradrenergnicneurons.The715doseofDMIwasapproximately15mg/kgandinjectedapproximately30minutes716priortoadministrationofneurotoxin.Toinduceahemiparkinsonianlesion,8ugof7176-hydroxydopamine(OHDA)at2ug/uLinsalinewasinjectedat0.2uL/minintothe718midforebrainbundle(MFB-1.2ML,-4AP,and-8.1DV).STNstimulationwas719deliveredviaa2x2platinumiridiummicroelectrodearray(Microprobes)with600x720600μmspacingof75μmelectrodes.Eachelectrodehadanominal10kOhm721impedance.Theelectrodearraywasloweredto-2.6ML,-3.6AP,andapproximately722-8.2DVfrombregma.Thearraywasfixedtotheskullwithdentalacrylic.All723

    not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which wasthis version posted November 5, 2018. ; https://doi.org/10.1101/461855doi: bioRxiv preprint

    https://doi.org/10.1101/461855

  • experimentswereapprovedbytheInstitutionalAnimalCareandUseCommitteeof724RiceUniversity.725726Priortostimulatingeachratwiththemagnetoelectricstimulator,thestimulator727powerwasestimatedviaabenchtopapproximationoftherodentelectrode728impedance.ConstantcurrentstimulationoftherodentbrainwithanA-MSystems7294100stimulatorproducedcharacteristicvoltagewaveformsthatapproximateda730simplifiedparallelRCcircuit.A56kOhmresistor,and440pFcapacitorinparallel731closelyapproximatedtheimpedancecharacteristicsoftheratbrainacrossthe732stimulatingelectrodes.Usingthiscircuitmodel,weestimatedthefieldstrengthsand733pulsedurationsnecessarytoproducethedesiredstimulationeffectsandconfirm734thatthestimulationwaschargebalancedpriortorodentexperimentation.735736RotationTestExperiments737Priortoperformingtherotationteststheratwasbrieflyanesthetizedwith5%738isofluranegasandinjectedintraperitoneally(IP)withmethamphetamine(0.31ml7391.25mg/kg)andthewirelessbiphasicstimulatorwaspluggedintotheimplanted740electrodearray.Aftertheanesthesiahadwornoff(about5-10min)theratwas741placedinthecylindricalbehavioralchamber.Themagneticfieldwasappliedover742thewholebehavioralareatothefilmsonthedevice(FigS5a).743744Themagneticfieldwasappliedonresonanceandoffresonanceforoneminuteat745varioustimesduringthe40-minutetrial.Theresonantfrequencieswere73kHzand74677kHzandtheoffresonantfrequencieswere63kHzand87kHz.747748RodentTracking749Headpositionontherotationtaskwasgeneratedusingaslightlymodifiedversion750ofDeepLabCut46totrackears,snout,andimplant.Adatasettotaling286frames751fromboththeonandoffresonancerotationtaskswashandlabeledandtrainedfor752approximately140,000iterations.753754SkullPhantomDemonstration755Atthemagneticfieldfrequenciesusedforthisexperimentboneandtissueare756effectivelytransparent47,soweselectedalifesizedskullwiththesizeofanaverage757humanadultheadasaphantom(OrientInfinityLimited).Itwaswrappedwith18758AWGmagnetwireasshowninFig5.Thecoilconsistedoffourcoilsinparalleleach759wiredtoanindividualmagneticfielddriver.Alldriverswerewiredtothesame760inputfrequencysignalandpoweredfromthesamepowersupply.Thefilmswere761suspendedatthecenteroftheskullphantom.OrangeLEDs(Chanzon)withadiode762antiparallelwereattachedtothefilmsforwirelessverificationofthevoltage763generatedbythefilms.Forvisualizationpurposestheskulltopwasremovedto764betterphotographtheLED.765766767768769

    not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which wasthis version posted November 5, 2018. ; https://doi.org/10.1101/461855doi: bioRxiv preprint

    https://doi.org/10.1101/461855

  • References77077145. Ting,J.T.,Daigle,T.L.,Chen,Q.&Feng,G.Acutebrainslicemethodsforadult772

    andaginganimals:applicationoftargetedpatchclampanalysisand773optogenetics.MethodsMol.Biol.1183,221–242(2014).774

    46. Mathis,A.etal.Markerlesstrackingofuser-definedfeatureswithdeep775learning.arXiv[cs.CV]1–14(2018).776

    47. Bottomley,P.A.&Andrew,E.R.RFmagneticfieldpenetration,phaseshiftand777powerdissipationinbiologicaltissue:ImplicationsforNMRimaging.Phys.778Med.Biol.23,630–643(1978). 779

    not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which wasthis version posted November 5, 2018. ; https://doi.org/10.1101/461855doi: bioRxiv preprint

    https://doi.org/10.1101/461855

  • SupplementalFigure1|FilmoutputvoltageasafunctionofbiasfieldThepeakresonancevoltageissignificantlyincreasedbyamodestbiasfieldthatcanbeproducedbyapermanentmagnet.

    SupplementalFigure2|MEpropertiesasafunctionoffilmsize(a)Schematicofexperimentalsetupusedtogatherdata.TestingwasperformedforMEfilmswiththreedifferentPVDFthicknesses:28(blue),52(red),and110(yellow)μm(b)Resonantfrequencyasafunctionoffilmlength(c)Outputvoltageasafunctionoffilmlength(d)Outputvoltageasafunctionoffilmsurfacearea(e)Q-factorasafunctionoffilmlength(f)Maximumpoweroutputasafunctionoffilmwidthfor52umPVDFthickness(g)Peakresonantvoltageplottedvs.PVDFthicknessshowsthatthepeakMEvoltageincreaseswiththePVDFthickness.Errorbarsindicate+/-1standarddeviationforn≈50filmsforeachthickness.(h)MEvoltageasafunctionofanglebetweenthefilmandthecoil.Blueregionshowstherangeofoperatinganglesforwhichthevoltageisgreaterthantheexpectedstimulationvoltage

    not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which wasthis version posted November 5, 2018. ; https://doi.org/10.1101/461855doi: bioRxiv preprint

    https://doi.org/10.1101/461855

  • not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which wasthis version posted November 5, 2018. ; https://doi.org/10.1101/461855doi: bioRxiv preprint

    https://doi.org/10.1101/461855

  • not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which wasthis version posted November 5, 2018. ; https://doi.org/10.1101/461855doi: bioRxiv preprint

    https://doi.org/10.1101/461855

  • SupplementalFigure3|MagneticFieldDriver(a)Schematicofthemajorcomponentsofthemagneticfielddriver.Dashedlinedenotescomponentsrenderedin(b).(c)Outputwaveformformonophasicstimulationandtheparametersthatcanbecontrolledbythedrivesoftware(d)Outputwaveformforbiphasicstimulation,andtheparametersthatcanbecontrolledbythedriversoftware.

    not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which wasthis version posted November 5, 2018. ; https://doi.org/10.1101/461855doi: bioRxiv preprint

    https://doi.org/10.1101/461855

  • SupplementalFigure4|MEstimulationofcellsgrowndirectlyonMEfilm(a)Schematicofexperimentalsetup(b)Microscopeimageoffixedcellsadherenttotheregionaroundastampedhole(Hoechst/Calcein-AM,cellslabeledpriortofixing)(c)ArcLightfluorescenceofspikingHEKcellswhenmagneticfieldisonresonanceand(d)offresonance.

    SupplementalFigure5|MagneticFieldforDBSRotationExperiment(a)SchematicshowsthelocationandspacingofwiresandthenumberofdriversusedtogeneratethealternatingmagneticfieldoverlayingaCOMSOLsimulationofmagneticfieldstrengthinthechamber(b)ResultsfromrotationtestinRat2:Angularvelocityinthe30secondsbeforestimulationandthefirst30secondsofstimulationshowsaclearreductioninangularvelocityonlywhentheMEfilmisactivatedonresonance(***P=1.5x10-8,n.s.=notsignificantP=0.27,pairedt-test)

    not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which wasthis version posted November 5, 2018. ; https://doi.org/10.1101/461855doi: bioRxiv preprint

    https://doi.org/10.1101/461855

  • SupplementalFigure6|MEdevicesoperateseveralcentimetersaboveasinglemagneticcoil(a)COMSOLsimulationofmagneticfieldaboveacircularcoiland(b)Measureddeviceoutputvoltageasafunctionofdistanceabovethecoil

    not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which wasthis version posted November 5, 2018. ; https://doi.org/10.1101/461855doi: bioRxiv preprint

    https://doi.org/10.1101/461855