magnetic nanoclusters

18
1 Magnetic Nanoclusters By: Adam Krause 2/27/07 Physics 672

Upload: dima

Post on 10-Feb-2016

72 views

Category:

Documents


0 download

DESCRIPTION

Magnetic Nanoclusters. By: Adam Krause 2/27/07 Physics 672. Nanocluster Quick Introduction. From a few atoms to several thousand atoms High fraction of atoms on the surface Different elements form different bonds and different nanocluster structures. A Few Types of Nanoclusters. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Magnetic Nanoclusters

1

Magnetic Nanoclusters

By: Adam Krause2/27/07

Physics 672

Page 2: Magnetic Nanoclusters

2

Nanocluster Quick Introduction

From a few atoms to several thousand atoms

High fraction of atoms on the surfaceDifferent elements form different bonds

and different nanocluster structures

Page 3: Magnetic Nanoclusters

3

A Few Types of Nanoclusters

Van der Waals Nanoclusters

Figure above from: Alonso, J. A., Structure and Properties of Atomic Nanoclusters, 2005

Binding energy: < 0.3 eV / atom

Balance between induced dipole force and quantum closed shell interaction

Noble gases form icosahedral Van der Waals clusters

Page 4: Magnetic Nanoclusters

4

A Few Types of Nanoclusters

Van der Waals Nanoclusters

Figure above from: Echt, O., et al., J. Chem. Soc. Faraday Trans., 86 (1990) 2411

The drops at 148 and 309 atoms correspond to completed icosahedra.

Page 5: Magnetic Nanoclusters

5

A Few Types of Nanoclusters

Ionic Nanoclusters

NaCl Cluster

Graph above from: Martin, T. P., Physics Reports, 273 (1996) 199

Bond Strength: 2-4 eV / atom Tend to form boxes

Page 6: Magnetic Nanoclusters

6

A Few Types of Nanoclusters

Metal clusters have complicated bonding that varies from metal to metal

Due to this variation the bond strength varies from around 0.5 eV to 3 eV per atom

Metal Nanoclusters

Page 7: Magnetic Nanoclusters

7

Laser Vaporization

Figure above from: Billas et al., J. Magn. Magn. Mater. 168 (1997) 64

Metal Nanoclusters Produced By Laser Vaporization

Page 8: Magnetic Nanoclusters

8

Stern-Gerlach Apparatus

Figure above from: Billas et al., J. Magn. Magn. Mater. 168 (1997) 64

Page 9: Magnetic Nanoclusters

9

Description of magnetic particles

Page 10: Magnetic Nanoclusters

10

Band Structure Evolution

Figure above from: Billas et al., J. Magn. Magn. Mater. 168 (1997) 64

Increasing Coordination Number

Page 11: Magnetic Nanoclusters

11

Magnetic Moment vs. Cluster Size

Figure above from: Billas et al., J. Magn. Magn. Mater. 168 (1997) 64

Page 12: Magnetic Nanoclusters

12

Closed Shell Cluster Size vs. Magnetic Moment Minima.

Table above from: Jensen, P. J., and K. H. Bennemann, Z. Phys. D. 35 (1995) 273

Page 13: Magnetic Nanoclusters

13

Magnetic Shell Model

bulk

bulkbulk

NNNxNNNN

100

1100)( (1)

ci

ciii qq

qqq

,,

)(2

1

(2)

Graphs from: Jensen, P. J., and K. H. Bennemann, Z. Phys. D. 35 (1995) 273

Page 14: Magnetic Nanoclusters

14

Magnetic Moment vs. Temperature

Fe

Ni

Co

Graphs from: Billas, M. L., A. Chatelain, and W. A. de Heer, Science 265 (1994) 1682

Page 15: Magnetic Nanoclusters

15

Monte Carlo Simulation of Magnetization vs. 1/Temp

Graph from: Binder, K., et al., J. Phys. Chem. Solids, 31 (1970) 391

Page 16: Magnetic Nanoclusters

16

Superparamagnetism

Magnetization Loops of Fe Nanoclusters

Graph from: Jackson, T. J., et al., J. Phys.: Condens. Matter, 12 (2000) 1399

Page 17: Magnetic Nanoclusters

17

Summary

Metal nanoclusters of an element behave differently than bulk matter of the same element.

d-orbital overlap reduces magnetic moment per atom. Metal nanoclusters exhibit magnetic shell phenomenon Metal nanoclusters do not lose their magnetization as

quickly above the Curie temp. Metal nanoclusters exhibit superparamagnetic

behavior. Superparamagnetism provides a theoretical minimum

size per bit in magnetic moment based memory systems.

Page 18: Magnetic Nanoclusters

18

References1. Alonso, J. A., Structure and Properties of Atomic Nanoclusters (Imperial College

Press, London, 2005).2. Echt, O., et al., J. Chem. Soc. Faraday Trans., 86 (1990) 24113. Martin, T. P., Physics Reports, 273 (1996) 1994. Dietz, T. G., et al., J. Chem. Phys., 74 (1981) 65115. Bondybey, V. E., and J. H. English, J. Chem. Phys., 76 (1982) 21656. Billas, M. L., A. Chatelain, and W. A. de Heer, J. Magn. Magn. Mater. 168

(1997) 647. Cox, D. M., et al, Phys. Rev. B., 32 (1985) 72918. Billas, M. L., A. Chatelain, and W. A. de Heer, Science 265 (1994) 16829. Jensen, P. J., and K. H. Bennemann, Z. Phys. D. 35 (1995) 27310. Billas, M. L., et al., Phys. Rev. Lett., 71 (1993) 406711. Binder, K., et al., J. Phys. Chem. Solids, 31 (1970) 39112. Jackson, T. J., et al., J. Phys.: Condens. Matter, 12 (2000) 1399