magnetic dichroism in xas and its...

29
Hercules A15 / Grenoble / 16.3.06 1 Freie Universität Berlin Klaus Baberschke Klaus Baberschke Institut für Experimentalphysik Institut für Experimentalphysik Freie Universität Berlin Freie Universität Berlin Arnimallee 14 D Arnimallee 14 D- 14195 Berlin 14195 Berlin- Dahlem Germany Dahlem Germany 1. Introduction. 2. Element specific magnetizations in trilayers. 3. Determination of orbital- and spin- magnetic moments; XMCD sum rules. Magnetic Anisotropy Energy (MAE) and anisotropic μ L . 4. Induced magnetism at interfaces. 5. New developments, outlook Magnetic dichroism in XAS Magnetic dichroism in XAS and its application and its application

Upload: others

Post on 13-Mar-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Magnetic dichroism in XAS and its applicationusers.physik.fu-berlin.de/~bab/teaching/Hercules2006/Hercules2006.… · K. Baberschke, P. Bencok, and S. Frota-Pessoa Direct observation

Freie Universität Berlin Hercules A15 / Grenoble / 16.3.06 1Freie Universität Berlin

Klaus BaberschkeKlaus Baberschke

Institut für ExperimentalphysikInstitut für ExperimentalphysikFreie Universität BerlinFreie Universität Berlin

Arnimallee 14 DArnimallee 14 D--14195 Berlin14195 Berlin--Dahlem GermanyDahlem Germany

1. Introduction.

2. Element specific magnetizations in trilayers.

3. Determination of orbital- and spin- magnetic moments;XMCD sum rules.Magnetic Anisotropy Energy (MAE) and anisotropic µL.

4. Induced magnetism at interfaces.

5. New developments, outlook

Magnetic dichroism in XASMagnetic dichroism in XASand its applicationand its application

Page 2: Magnetic dichroism in XAS and its applicationusers.physik.fu-berlin.de/~bab/teaching/Hercules2006/Hercules2006.… · K. Baberschke, P. Bencok, and S. Frota-Pessoa Direct observation

Freie Universität Berlin Hercules A15 / Grenoble / 16.3.06 2

1. Introduction: XAS

L3,2 edges of 3d elements

Note: the intensity of the 2p → 3d dipole transitions (E1) is proportional to the number of unoccupied final state (i.e. 3d- holes).

X-ray Absorption Spectroscopy is the most appropriate technique for element specific investigations.

Fe

Co

Ni

Cu

Photon energy (eV)

X-r

ay a

bsor

ptio

n cr

oss

sect

ion

(arb

. uni

ts)

0

100

650 700 750 800 850 900 950 1000

200

300

400

Page 3: Magnetic dichroism in XAS and its applicationusers.physik.fu-berlin.de/~bab/teaching/Hercules2006/Hercules2006.… · K. Baberschke, P. Bencok, and S. Frota-Pessoa Direct observation

Freie Universität Berlin Hercules A15 / Grenoble / 16.3.06 3

Appendices/References

• In this lecture we will not discuss the equipment/apparatus,but rather focus on application of XAS in magnetism.

• Concerning XAS-technique there exist many review articles e.g.J. Stöhr: NEXAFS Spectroscopy, Springer Series in SurfaceScience 25, 1992; H. Wende: Recent advances in the x-ray absorption spectroscopy, Rep. Prog. Physics 67, 2105 (2004).

• See also lectures A13 J. Vogel; A14 Y. Joly;A’15 (Trieste) F. Sirotti; A”15 (Saclay) M. Sacchi.

• In the soft X-ray regime (VUV) one needs to work in vacuum.For nanomagnetism one wants to prepare and work anyway inUHV (in situ experiments).

Page 4: Magnetic dichroism in XAS and its applicationusers.physik.fu-berlin.de/~bab/teaching/Hercules2006/Hercules2006.… · K. Baberschke, P. Bencok, and S. Frota-Pessoa Direct observation

Freie Universität Berlin Hercules A15 / Grenoble / 16.3.06 4

X-ray Magnetic Circular DichroismFaraday – effect in the X-ray regime (Gisela Schütz, 1987)

XMCD signal is a measure of the magnetization

Many Reviews, e.g. H. Ebert Rep. Prog. Phys. 59, 1665 (1996)

0

1

2

3

4

5

6

700 710 720 730 740-3

-2

-1

0

Photon Energy (eV)

Nor

m. X

MC

D (a

rb. u

nits

)N

orm

. XA

S (a

rb. u

nits

)

µ−+

µµ

0

(E)(E)(E)

L2

3L

=µ+ −−µ(E)∆µ

Fe

M

continuum

Spin “up” Spin “down”

EF

2p

2p

left right

L 2

L 3

3d

12

32

+h −h

kM

2p12

2p 32

3d 3 23d 5 2

1 2−3 2−5 2− 1 2+ 3 2+ 5 2+1 2−3 2− 1 2+ 3 2+

1 2−3 2− 1 2+ 3 2+1 2− 1 2+

Page 5: Magnetic dichroism in XAS and its applicationusers.physik.fu-berlin.de/~bab/teaching/Hercules2006/Hercules2006.… · K. Baberschke, P. Bencok, and S. Frota-Pessoa Direct observation

Freie Universität Berlin Hercules A15 / Grenoble / 16.3.06 5

The origin of MCD (after K. Fauth, Univ. Würzburg)

Reviews e.g.: Lecture Notes in Physics Vol. 466 by H. Ebert, G. Schütz

Page 6: Magnetic dichroism in XAS and its applicationusers.physik.fu-berlin.de/~bab/teaching/Hercules2006/Hercules2006.… · K. Baberschke, P. Bencok, and S. Frota-Pessoa Direct observation

Freie Universität Berlin Hercules A15 / Grenoble / 16.3.06 6

2. Element specific magnetizations in trilayers

A trilayer is a prototype to study magnetic coupling in multilayers.

What about element specific Curie-temperatures ?

Two trivial limits: (i) dCu = 0 ⇒ direct coupling like a Ni-Co alloy(ii) dCu = large ⇒ no coupling, like a mixed Ni/Co powder

BUT dCu ≈ 2 ML ⇒ ?

substrate

CoTC

Co CuNi

TCNi

M

M

J int

er

853 eV(L )3 e -e-778 eV(L )3

Page 7: Magnetic dichroism in XAS and its applicationusers.physik.fu-berlin.de/~bab/teaching/Hercules2006/Hercules2006.… · K. Baberschke, P. Bencok, and S. Frota-Pessoa Direct observation

Freie Universität Berlin Hercules A15 / Grenoble / 16.3.06 7

Ferromagnetic trilayers

U. Bovensiepen et al.,PRL 81, 2368 (1998)

760 780 800 820 840 860 880 900

-40

-20

0

336K

336K

290K

290K

x 2

Ni L3,2

Co L3,2

XM

CD

(ar

b.uu

nits

)

Photon energy (eV)

Cu (001)

2.0ML Co

2.8ML Cu

4.3ML Ni

MCo

MNi

290 300 310 320 3300.0

0.1

0.4

0.8

TC

Co = 340 K

T*C

Ni = 308 K

T (K)

M (a

rb. u

nits

)

0

200

400 Ni L3,2Co L3,2

x 1.72

norm

. abso

rptio

n (

a.u

)

760 800 840 880-100

-80

-60

-40

-20

0

20

T = 140K

2.2 ML Co3.4 ML Cu3.6 ML NiCu(001)

Cu(001)

XM

CD

(arb

.uun

its)

h (eV)ν

Page 8: Magnetic dichroism in XAS and its applicationusers.physik.fu-berlin.de/~bab/teaching/Hercules2006/Hercules2006.… · K. Baberschke, P. Bencok, and S. Frota-Pessoa Direct observation

Freie Universität Berlin Hercules A15 / Grenoble / 16.3.06 8

P. Poulopoulos, K. B., Lecture Notes in Physics 580, 283 (2001)

a) J. Lindner, K. B., J. Phys. Condens. Matter 15, S465 (2003)b) A. Ney et al., Phys. Rev. B 59, R3938 (1999)c) J. Lindner et al., Phys. Rev. B 63, 094413 (2001)d) P. Bruno, Phys. Rev. B 52, 441 (1995)

Theory d)

2 3 4 5 6 7 8 9-20

-15

-10

-5

0

5

10

15

20

25

J inte

r (µe

V/a

tom

)d (ML)Cu

FMR / / / /

/ / /

→XMCD / / /→

Cu Cu Cu(001)

Cu Cu(001)Cu Cu(001)

FMR

Ni Ni

NiNiCoCo

a)b)c)

Interlayer exchange coupling

T*Ni

M (a

rb. u

nits

)

TCNi = 275K

2.8 ML Cu4.8 ML Ni

Cu(001)

150 200 250 300 350

2.8 ML Co2.8 ML Cu4.8 ML NiCu(001)

T (K)

0

0.25

0.50

0.75

1.75

2.00

37K

Page 9: Magnetic dichroism in XAS and its applicationusers.physik.fu-berlin.de/~bab/teaching/Hercules2006/Hercules2006.… · K. Baberschke, P. Bencok, and S. Frota-Pessoa Direct observation

Freie Universität Berlin Hercules A15 / Grenoble / 16.3.06 9

C. Sorg et al.,XAFS XII, June 2003Physica ScriptaT115, 638 (2005)

e_

IP

+HV

hνHstatisch

-0.2

-0.1

0.0

0.1

0.2

Mag

net

izat

ion (

arb. units)

Magnetic Field (Oe)-40 -20 0 20 40

281 K

265 K184 K

5 ML Cu

6 ML NiCu (100)

0 50 100 150 200 250 3000.0

0.1

0.2

0.3

0.4

0.5

Temperature (K)

Mag

net

izat

ion (

arb. units)

Remanence and saturation magnetization

M (

kA/m

)

0 30 60 90 120 150 180 210 2400

100

200

300

1200

1600

T (K)

Cu (100)

2.8 ML Ni

3.0 ML Cu

2.0 ML Co

Cu (100)

2.8 ML Ni

3.0 ML Cu

TC,Ni

T*C,Ni

38 KC,Ni∆T

2D

3D0 1 2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

1.0

T / TC,Ni

2.1 2.6 3.1 4.2 4.0

d (ML)Ni

1 2 3 4 5 6

Theory / Experiment

C,N

iM

C,N

iM

/(T

= 0

)

Page 10: Magnetic dichroism in XAS and its applicationusers.physik.fu-berlin.de/~bab/teaching/Hercules2006/Hercules2006.… · K. Baberschke, P. Bencok, and S. Frota-Pessoa Direct observation

Freie Universität Berlin Hercules A15 / Grenoble / 16.3.06 10

J.H. Wu et al. J. Phys.: Condens. Matter 12 (2000) 2847

-0.02

0.00

0.02

EFM2

ENM

EFM1

ETOT

0 1 2 3 4 5 6 7d NM

60

30

0

30

60 T1/ max

FM coupled

AFM coupled

1/m

ax (

arbi

trary

uni

t)

-0.010

-0.005

0.000

0.005

T=0oK

T=250oK

(c)

(a)

(b)

χ

χ

T (

o K)

∆∆∆∆

E=E

AFM

EFM

(eV

/ML)

∆-

+

+

Single band Hubbard model: Simple Hartree-Fock (Stoner) ansatz is insufficientHigher order correlations are needed to explain TC-shift

Enhanced spin fluctuations in 2D (theory)

∆T

/ T

CN

i

3 K

1 K

1 2

Co/Cu/Nitrilayer

d (ML)Ni

J =3 Kinter

MF

0 3 4 5 60.0

0.3

0.6

0.9 Tyablikov (or RPA)decoupling

, mean field ansatz (Stoner model) is insufficientto describe spin dynamics at interfaces of nanostructures S S ⟨ ⟩i j

+z

⟨⟨ ⟩⟩S Si j + −∂

∂t →Spin-Spin correlation function

S i S S S S S S S j i i j i j i≈ − ⟨ ⟩ − ⟨ ⟩ +⟨ ⟩S S i j+ + + + ++− −z z

RPA…

P. Jensen et al. PRB 60, R14994 (1999)

Page 11: Magnetic dichroism in XAS and its applicationusers.physik.fu-berlin.de/~bab/teaching/Hercules2006/Hercules2006.… · K. Baberschke, P. Bencok, and S. Frota-Pessoa Direct observation

Freie Universität Berlin Hercules A15 / Grenoble / 16.3.06 11

FM1 (Ni)

FM2 (Co)

NM (Cu)

IEC ~ 1dNM

2

dNM

dFM1

Jinter

2D sp

in

fluctu

ation

s

∆TC, Ni

Evidence for giant spin fluctuations PRB 72, 054447, (2005)

Page 12: Magnetic dichroism in XAS and its applicationusers.physik.fu-berlin.de/~bab/teaching/Hercules2006/Hercules2006.… · K. Baberschke, P. Bencok, and S. Frota-Pessoa Direct observation

Freie Universität Berlin Hercules A15 / Grenoble / 16.3.06 12

3. Determination of orbital- and spin- magnetic moments

Which technique measures what?

µL , µS in UHV-XMCD

µL + µS in UHV-SQUID

µL / µS in UHV-FMR

per definition:

1) spin moments are isotropic

2) also exchange coupling J S1·S2 is isotropic

3) so called anisotropic exchange is a (hidden)projection of the orbital momentum intospin space

For FMR see: J. Lindner and K. BaberschkeIn situ Ferromagnetic Resonance:An ultimate tool to investigate the coupling in ultrathin magnetic filmsJ. Phys.: Condens. Matter 15, R193 (2003)

Page 13: Magnetic dichroism in XAS and its applicationusers.physik.fu-berlin.de/~bab/teaching/Hercules2006/Hercules2006.… · K. Baberschke, P. Bencok, and S. Frota-Pessoa Direct observation

Freie Universität Berlin Hercules A15 / Grenoble / 16.3.06 13

−≡−−≡ −− 222)2( 2/1

Orbital magnetism in second order perturbation theory

The orbital moment is quenched in cubic symmetry

⟨2- LZ 2-⟩ = 0,

but not for tetragonal symmetry

effective Spin Hamiltonian

L± • S

LZ • SZ

+λL • S +_

d1

W.D. Brewer, A. Scherz, C. Sorg, H. Wende, K. Baberschke, P. Bencok, and S. Frota-PessoaDirect observation of orbital magnetism in cubic solidsPhys. Rev. Lett. 93, 077205 (2004)andW.D. Brewer et al. ESRF – Highlights, p. 96 (2004)

Page 14: Magnetic dichroism in XAS and its applicationusers.physik.fu-berlin.de/~bab/teaching/Hercules2006/Hercules2006.… · K. Baberschke, P. Bencok, and S. Frota-Pessoa Direct observation

Freie Universität Berlin Hercules A15 / Grenoble / 16.3.06 14

Orbital and spin magnetic moments deduced from XMCD

H. Ebert Rep. Prog. Phys. 59, 1665 (1996)

860 880 900

L2 edgeL

µLµS

3 e dge

Ninorm

.XM

CD

(arb

.uni

ts)

Photon Energy (eV)

µLµS

dELL )2( 23 µµ ∆−∆∫

dELL )( 23 µµ ∆+∆∫

?

??

µL

S

Fe40 Fenm Fe 4 /V4 Fe2/V54 / V2

bulk Fe

0

0.06

0.12/FMR: (Fe+V)

XMCD: (Fe)µ µL / S

XMCD(V)µ µL / S

µSµ L

510 520 530 700 720 740-1

0

1

2

FeV

x5

prop. µL

prop. µS

Photon Energy (eV)

g<2 g>2

µS µL µS µ L

L3 L2

XM

CD

Inte

gral

(ar

b. u

nits

)( ) ( )( ) d

Zdh

2L3L

dZ

dZd

h2L3L

L2NN

dE

T7S23N

NdE2

=+

+=⋅−

? µ? µ

? µ? µ

Page 15: Magnetic dichroism in XAS and its applicationusers.physik.fu-berlin.de/~bab/teaching/Hercules2006/Hercules2006.… · K. Baberschke, P. Bencok, and S. Frota-Pessoa Direct observation

Freie Universität Berlin Hercules A15 / Grenoble / 16.3.06 15

Enhancement of Orbital Magnetism at Surfaces: Co on Cu(100)

λ

λλ

/10

/)2(3

/)1(

expnDd

n

nDdn

dD

S

L

eCeBAe

MM

−−=

−−=

−−

Σ+Σ+

=

M. Tischer et al., Phys. Rev. Lett. 75, 1602 (1995)

Page 16: Magnetic dichroism in XAS and its applicationusers.physik.fu-berlin.de/~bab/teaching/Hercules2006/Hercules2006.… · K. Baberschke, P. Bencok, and S. Frota-Pessoa Direct observation

Freie Universität Berlin Hercules A15 / Grenoble / 16.3.06 16

Giant Magn. Anisotropy of SingleCo Atoms and Nanoparticles

P. Gambardella et al., Science 300, 1130 (2003)

Induced magnetism in molecules

n = number of atoms

T. Yokoyama et al., PRB 62, 14191 (2000)

XMCD

XMCD

CO

~531 eV e-

∼10ML NiCu

µ

µL

Page 17: Magnetic dichroism in XAS and its applicationusers.physik.fu-berlin.de/~bab/teaching/Hercules2006/Hercules2006.… · K. Baberschke, P. Bencok, and S. Frota-Pessoa Direct observation

Freie Universität Berlin Hercules A15 / Grenoble / 16.3.06 17

1. Magnetic anisotropy energy = f(T)

2. Anisotropic magnetic moment ≠ f(T)

≈ 1µeV/atom is very small compared to≈ 10 eV/atom total energy but all important

B (G)

100

100 20000

500

300

300

M (G

)

[111]

[100]

Ni[100]

[111]

0.1 G∆µL ~~

Characteristic energies of metallic ferromagnets

binding energy 1 - 10 eV/atom

exchange energy 10 - 103 meV/atom

cubic MAE (Ni) 0.2 µeV/atom

uniaxial MAE (Co) 70 µeV/atom

K. Baberschke, Lecture Notes in Physics, Springer 580, 27 (2001)

anisotropic µL ↔ MAE

ξLSMAE ∝ ∆µL4µB

Bruno (‘89)

g|| - g⊥ = geλ(Λ⊥-Λ||)

D= ∆gλge

MAE = ?M·dB ˜ ½ ?M·?B ˜ ½ 200 · 200 G2

MAE ˜ 2·104 erg / cm3 ˜ 0.2 µeV / atom

Magnetic Anisotropy Energy (MAE) and anisotropic µL

Page 18: Magnetic dichroism in XAS and its applicationusers.physik.fu-berlin.de/~bab/teaching/Hercules2006/Hercules2006.… · K. Baberschke, P. Bencok, and S. Frota-Pessoa Direct observation

Freie Universität Berlin Hercules A15 / Grenoble / 16.3.06 18

O. Hjortstam, K. B. et al. PRB 55, 15026 (’97)

-0.005 0.000 0.005 0.010

-100

0

100

200

α =1α =0.05

Ni

c/a=1.08

c/a=0.69c/a=0.79

K (µ

eV)

V

∆ Orbital moment (µ )B

K(µ

eV

/ato

m)

VO

rbita

l mo

me

nt

B(

/ato

m)

µ

0.75 0.85 0.95 1.05

0.05

0.06

0.07

SO (001] SO+OP [110] SO+OP [001]

SO[110]

bcc fcc

-100

0

100

200

300

400

500

exp.

c/a

Magnetic Anisotropy Energy MAE and anisotropic µL

Page 19: Magnetic dichroism in XAS and its applicationusers.physik.fu-berlin.de/~bab/teaching/Hercules2006/Hercules2006.… · K. Baberschke, P. Bencok, and S. Frota-Pessoa Direct observation

Freie Universität Berlin Hercules A15 / Grenoble / 16.3.06 19

Ni and Pt carry a magnetic moment

No ‘dead’ Ni layers F. Wilhelm et al. PRL 85, 413 (2000) and ESRF Highlights 2000

Magnetic momentprofile for a Ni6/Pt5 ML

Ni

Pt

4. Induced magnetism at interfaces

1 2 3 4 5 6 7 8 9 10 110.0

0.2

0.4

0.6

theory

(b)bulk Ni TB-LMTO

Monolayers

0.0

0.2

0.4

0.6

experiment

(a)bulk Ni

Ni Pt

Mag

net

ic M

om

ent

(µ /

ato

m)

B

Ni

Ni

NiPt

Pt

Pt

Unitcell

PtNi

N

825 850 875 900

-2

0

2

4

(b)

x2 XANES XMCD

Energy (eV)

L 2

L3

Inte

nsi

ty (a

.u.)

Ni L-edgesNi2/Pt2

11.5 11.6 13.2 13.3

-0.4

0.0

0.4

0.8

(a)

x10

x10

L2

L3

XANES

XMCD

Energy (keV)

Inte

nsi

ty (a

.u.)

Pt L-edges

Ni2/Pt2

Page 20: Magnetic dichroism in XAS and its applicationusers.physik.fu-berlin.de/~bab/teaching/Hercules2006/Hercules2006.… · K. Baberschke, P. Bencok, and S. Frota-Pessoa Direct observation

Freie Universität Berlin Hercules A15 / Grenoble / 16.3.06 20

Induced magnetism in 5d-transition metals breakdown of 3rd Hund’s rule ?

F. Wilhelm et al.,Phys. Rev. Lett. 87, 207202 (2001)

alternatively: details of SP-DOS; hybridization

Fe

WλinterSZ LZ

.. Fe WJinterSZ SZ

.. Fe W

µS

µS λintra SZ LZ.. W W µL

Jinter SZ SZ.. Fe W λ interSZ LZ

.. Fe Wλintra SZ LZ

.. W W> >

10.16 10.20 10.24 11.52 11.56 11.60-5

0

5

10

15

mS

Sm Lm

Lm

W

x 2

x 50

L2

x 50

L3

XA

S,X

MC

D(a

rb.u

nits

)

Photon Energy (keV)

XMCD-Integral

Experiment

Expected from3 Hund’s rulerdFe/W interface

Page 21: Magnetic dichroism in XAS and its applicationusers.physik.fu-berlin.de/~bab/teaching/Hercules2006/Hercules2006.… · K. Baberschke, P. Bencok, and S. Frota-Pessoa Direct observation

Freie Universität Berlin Hercules A15 / Grenoble / 16.3.06 21

Fe/V/Fe(110)Trilayer

L 3,2

x 15

V FeL 3,2

µ+

µ

µ - µ (highlighted)+

520 540 700 720 740-2

0

2

4

norm

.XA

S,X

MC

D(a

rb.u

nits

)

Photon Energy (eV)

Advantages:controlable growth

• annealing to reduce surface roughness• preparation at 300 K

In-situ experiment, i.e. no capping layers

XMCD measurements:• BESSY II, third generation

synchrotron source inBerlin

• Newly developed ‘gapscan’mode: High degree ofcircularly polarized lightand high photon flux

5 MLFe

Fe

1< <8 MLn

~50ML

Cu(001)

µS

µS

µL

µL

Page 22: Magnetic dichroism in XAS and its applicationusers.physik.fu-berlin.de/~bab/teaching/Hercules2006/Hercules2006.… · K. Baberschke, P. Bencok, and S. Frota-Pessoa Direct observation

Freie Universität Berlin Hercules A15 / Grenoble / 16.3.06 22

510 520 530 540

-0.1

0.0

0.1

0.2

0.3

x2.23

C

B

A

norm

. XM

CD

(arb

. uni

ts)

Photon Energy (eV)

0

2

4

6

norm

. XA

S (a

rb. u

nits

)

V L3,2 edges

Fe/V3/Fe trilayer Fe90V10 alloy

D

E

E

a)

b)

Energy (eV)

V L3,2 edges

XA

S (a

rb. u

nits

)X

MC

D (

arb.

uni

ts) Fe 90V10 alloy: L 3,2 edge

a)

b)-10 0 10 20 30

-0.2

0.0

0.2

0.40

2

4

6

8

L2 edge Fe/V3/Fe trilayer

x6

A

B

C

D

525 530 5351.0

1.2

1.4

1.6

1.8

2.0 no oxygen !

exp.

theory

ExperimentA. Scherz et al.

TheoryJ. Minar, D. Benea, H. Ebert, LMU

PRB 66, 184401 (2002)

5. Full calculation of µ(E)

Page 23: Magnetic dichroism in XAS and its applicationusers.physik.fu-berlin.de/~bab/teaching/Hercules2006/Hercules2006.… · K. Baberschke, P. Bencok, and S. Frota-Pessoa Direct observation

Freie Universität Berlin Hercules A15 / Grenoble / 16.3.06 23

Sum rules and beyond* Gerrit van der Laan

Daresbury Laboratory ,Warrington WA 4 4AD ,UKAbstractSum rules relate the integrated signals of the spin-orbit split core levels to ground state properties, such as the spin-orbit coupling, magnetic moments and charge distribution. These rules give the zeroth moments of the spectral distribution. It is shown how this can be generalized to higher-moment statistical analysis … .Journal of Electron Spectroscopy and Related Phenomena 101–103 (1999) 859–868

Beyond sum rules: full calculation of µ(E)

Photon Energy (eV)

Nor

mal

ized

XM

CD

(arb

. uni

ts)

510 515 520 525 530-0.25

0.00

0.25

0.50 Fe/V/Fe

experiment

multipole-momentanalysis

SPR-KKR

Page 24: Magnetic dichroism in XAS and its applicationusers.physik.fu-berlin.de/~bab/teaching/Hercules2006/Hercules2006.… · K. Baberschke, P. Bencok, and S. Frota-Pessoa Direct observation

Freie Universität Berlin Hercules A15 / Grenoble / 16.3.06 24

single pole double pole

double pole approximation (time-dependent DFT)

Petersilka et al. PRL (1996) 1212 Atoms ( S )

761 →1P

PhD thesis A. ScherzL edges metals3,2

-5 0 5 10 15 20 25

Relative Photon Energy (eV)

Abs

orpt

ion

(arb

. uni

ts)

-5 0 5 10 15 20 25

L

XA

S (

arb.

uni

ts)

Relative Photon Energy (eV)

2,3

L2L3

0

unperturbed

unperturbed

perturbed perturbed

ground-state density

frequency-dependent perturbation

linear response theory

M11 M22

perturbed resonances shift to higher energies

spectral weight is shifted L L branching ratio3 2→ ⇒

Ti

• energy shift of perturbed resonances• shift of spectral weight L3 → L2(branching ratio)

),,(|'|

),,(2

ωω r'rr'r xcfrr

eK +

−=

double pole approximation (time-dependent DFT)

determinematrix elements

Page 25: Magnetic dichroism in XAS and its applicationusers.physik.fu-berlin.de/~bab/teaching/Hercules2006/Hercules2006.… · K. Baberschke, P. Bencok, and S. Frota-Pessoa Direct observation

Freie Universität Berlin Hercules A15 / Grenoble / 16.3.06 25

6

8

10

12

14

16

6 8 10 12 14 16unperturbed (eV) ∆ω

Ti

V

Cr

Fe

Co

Ni

statistical branching ratio

Ti V Cr Mn Fe Co Ni

Bra

nchi

ng R

atio

0.4

0.5

0.6

0.7

0.8

L2L3

perturbed

∆ω

∆Ω

pert

urbe

d (

)∆

Ω e

V

experiment: L XAS 3,2••

→ ∆Ω binding energies* → ∆ω

∆ω−∆Ω

∆ω−∆ΩnH

≈ 0.125 eV/hole

⇒ double pole model describes branching ratio quite well

⇒ regime where sum rules fail

Ti: M =1.70 eV, M =0.8 eV11 22

experiment

DPA

experiment

DPA

*Fuggle and Mårtensson, J. Electr. Spectr. Relat. Phenom. (1980) 27521

Ti: M11=3.07 eV, M22=-0.56 eV, M12=0.54 eV

double pole model describesbranching ratio for light 3d’sKohn Sham energies → ∆ω

A. Scherz, et al. Measuring the kernel of time-dependent density functionaltheory with X-ray absorption spectroscopy of 3dtransition metalsPhys. Rev. Lett. 95, 253006 (2005)

Page 26: Magnetic dichroism in XAS and its applicationusers.physik.fu-berlin.de/~bab/teaching/Hercules2006/Hercules2006.… · K. Baberschke, P. Bencok, and S. Frota-Pessoa Direct observation

Freie Universität Berlin Hercules A15 / Grenoble / 16.3.06 26

1) intergral SR 2) MMA 3) calculation of full µ(E)

• gap-scan technique ⇒ systematic investigation of XAS, XMCD fine structure• development double pole approximation

⇒ correlation energies (Ti: M11=3.07 eV, M22=-0.56 eV, M12=0.54 eV)

• experiment ⇒ failure of spin sum rule ↔ core-hole interaction • theory ⇒ correlation energies as input for theory

⇒ future ab initio calculations must includecore-hole correlation effects

H. Wende, Rep. Prog. Phys. 67 (2004) 2105-2181

ü

Summary

see: Recent advances in x-ray absorption spectroscopy

Page 27: Magnetic dichroism in XAS and its applicationusers.physik.fu-berlin.de/~bab/teaching/Hercules2006/Hercules2006.… · K. Baberschke, P. Bencok, and S. Frota-Pessoa Direct observation

Freie Universität Berlin Hercules A15 / Grenoble / 16.3.06 27

• All spectroscopic techniques do not restrict themselves tomeasure the intensity (area under the resonance) only. i.e.: integral sum rules.

• A resonance signal contains a resonance position, a width,an asymmetry profile, etc.

• The optimum is given if theory can calculate the full profileof the resonance, in our case µ(E) i.e. the spectral density.

Recent advances in x-ray absorption spectroscopy H. Wende , Rep. Prog. Phys. 67, 2105 (2004)

Page 28: Magnetic dichroism in XAS and its applicationusers.physik.fu-berlin.de/~bab/teaching/Hercules2006/Hercules2006.… · K. Baberschke, P. Bencok, and S. Frota-Pessoa Direct observation

Freie Universität Berlin Hercules A15 / Grenoble / 16.3.06 28

A. Scherz et al., XAFS XII June 2003 Sweden, Physica Scripta T115, 586 (2005)A. Scherz et al., BESSY Highlights p. 8 (2002)

L2,3 XAS and XMCD of 3d TM‘s

450 46 0 470 48 0

-2

0

2

4

510 520 530 540 570 580 590 600

-2

0

2

4

700 720 740

-2

0

2

4

780 800 82 0

norm

aliz

ed X

AS,

XM

CD

(arb

. uni

ts)

840 86 0 880

-2

0

2

4

Ti

Photon Energy (eV)

V Cr

Fe Co Ni

x10 x5x15

Ti V Cr Fe Co NiSc Mn Cu Zn

Page 29: Magnetic dichroism in XAS and its applicationusers.physik.fu-berlin.de/~bab/teaching/Hercules2006/Hercules2006.… · K. Baberschke, P. Bencok, and S. Frota-Pessoa Direct observation

Freie Universität Berlin Hercules A15 / Grenoble / 16.3.06 29

Conclusion, Future

During last few years: enormous progress in

• calculate µ(E), spin dependent spectral distribution

• full relativistic calculations

• real (not ideal) crystallographic structures

• higher ∆E/E, detailed dichroic fine structure

• undulator, gap-scan technique, constant high PC

• element-selective microscopy, probe of “non-magnetic” constituents

• core hole effects:

→ change of branching ratio for early 3d elements

→ effect on XMCD unknown!

• correct determination of ∆ µL and MAE with XMCD (x30)

• correction for spin- and energy-dependence of matrix elements

Theory:

Experiment:

Future: