magnetic amplifiers in metering direct current on electrolytic cell lines

4
where and g are both positive real integers. The exact expression for a( ) given in equation 10 is a polynomial, and may be con- sidered as its own Taylor's series expansion in which all coefficients beyond bn are zero. If, in equation 47, is chosen equal to («-hg)/2 and the successive columns of equation 47 are equated to the successive coefficients of equation 10, the following re- sults are obtained BaiT,'-\-Ba2Ti^+ . .,+BaK^b, ] BaKTK2 = {2\)b2 BaETK^'^inDbn'} (48) ;, "+- = | ^ '^' + 2 2''^'+ . . . + ^'-^'^ It is possible to choose any sequence of increasing magnitudes for Ti, Ti . . . , provided only that ^ Td/2. Then, equa- tions 48 may be solved for the Ba/c values. Further, it should be noted that with this procedure the greater the value of K, the better ^( ) will approximate ( ). A procedure exactly analogous to that shown by equations 47 and 48, for producing an .4 ( ) which closely approximates ( ), can be employed to determine ,, 5 ^ . . . Bi,k such thatiS( ) will closely approximate jbM, It should be observed that the multipliers Bak obtained from equations 48 must be used at taps located * above and Tk below the center tap. Similar requirements are placed on the Bbk multipliers which would be ob- tained from the sine terms. If the same taps (not necessarily equally spaced) are used in determining the Bak values and the Bbk values, then the multipliers m a y b e combined at each tap (other than the center tap) exactly as was done for the FSC de- vice. erences 1. TRANSVERSAL FILTERS, H. E. Kallman. Pro- ceedings, Institute of Radio Engineers, New York, N. Y., vol. 28, July 1940, pp. 302-10. 2. A PHASE-PLANE APPROACH TO THE COMPEN- SATION OP SATURATING SERVOMECHANISMS. Arthur M. Hopkin. AIEE Transactions, vol. 70, pt. I, 1951, pp. 631-39. 3. SIGNAL COMPONENT CONTROL, D . J. Gimpel, J. F. Calvert. AIEE Transactions, vol. 71 pt. II, Nov. 1952, pp. 339-43. Di iscussion Abraham M. Fuchs (Westinghouse Electric Corporation, Baltimore, Md.): This paper is interesting for its results a n d t h e impli- cations which can be drawn from the results. Figs. 4 a n d 6 show that the compensated systems have a linear phase lag versus fre- quency characteristic over a wide band- width. If the input signal is limited t o a frequency composition within the region of linear phase lag versus frequency, then the output of the servomechanism will b e a n exact reproduction of the input displaced backwards in time b y t h e reciprocal of t h e phase slope. As the slope is also control- lable (although at the expense of higher gain in the compensator), both the accuracy of reproduction of the input signal a n d t h e time displacement of the output compared to the input can be designed into the system. This bright side of evaluating the merits of this type of open-loop compensation is beclouded by the picture of how well said system will work when the protective coat- ing of "linear operation'* is removed. Assume, for example, that there is a load torque present (or friction on the output). The ability of the system to overcome the load torque (or friction) is not augmented by the compensator. The question arises whether the same effort spent in building the compensator might not be better spent in building the bandwidth (and generally the increased loop gain) into the control sys- tem where it not only improves the follow- ing of the input signal but also makes the control system less sensitive to load torques output friction, etc. D. J. Ford and J. F. Calvert: We wish to thank A. M. Fuchs for his interesting dis- cussion of our paper. As Mr. Fuchs points out, the paper deals exclusively with an open-loop type of system, and as such defi- nitely cannot be expected to exhibit all of the performance characteristics of closed- loop systems. Assume that the system being controlled is in itself a feedback sys- tem having undesirable amplitude and phase characteristics, yet possessing the insensitiv- ity to "nonlinearities" of the form of output friction, load torque, etc., characteristic of such feedback systems. Under these cir- cumstances, the application of the type of compensators described in the paper will improve the over-all system response appre- ciably. Thus, the open-loop compensator takes the place of the elaborate correction and compensating networks in the control system which would be needed to overcome the undesirable amplitude characteristic caused by the introduction of high gain in the feedback loop. In other words, a given system may be designed with a simple high-gain amplifier as a feedback network, thus obtaining the desirable insensitivity to output friction, load torque, etc., with little reference to amplitude and phase response. With this accomplished, the compensator ma}^ be de- signed to operate with this fedback con- trol system, giving it a virtually constant gain and linear phase characteristic over as wide a frequency band as saturation limi- tations will permit. Thus, the combined system will possess the desirable character- istics of the closed-loop error reduction mechanism together with the desirable am- plitude and phase control characteristics of the open-loop type of system described in the paper. Magnetic Amplifiers in Metering Direct, Current on Electrolytic Cell Lines E. A. DOWNING NONMEMBER AIEE S EVERAL months ago every publica- tion devoted to power and those covering industry in general carried articles telling the story of magnetic am- plifiers. They told of using magnetic amplifiers with servomechanisms for auto- matic pilots, to control speeds of large motors, to regulate voltages of large gen- erators, and any number of other applica- tions, in some cases replacing equipment that had been accepted as standard for years. The application descriJDed here is not as dramatic as this but one that is very im- portant in the electrochemical field. That is the measurement of d-c amperes. The particular installation has been in existence for only a matter of m o n t h s b u t it is one of the first installations where magnetic amplifiers have been used in series to measure total d-c amperes from more than one rectifier. (Fig. 1). It is not the intention to discuss the theory of the design of magnetic amplifiers b u t t o review the reasons for magnetic amplifiers being selected for this particular installa- tion, to describe the method of installa- tion, a n d t o report on their performance First, since there is much shnilarity be- tween magnetic amplifiers and saturable reactors, it may be well to define these as listed in the progress report of the AIEE Magnetic Amplifiers Subcommittee: A saturable reactor is an adjustable induc- tor in which the current-versus-voltage rela- tionship is adjusted by control magneto- motive forces applied to the core. A magnetic amplifier is a device using satur- able reactors either alone or in combination Paper 54-178, recommended by the AIEE Chemi- cal, Electrochemical and Electrothermal Applica- tions Committee and approved by the AIEE Committee on Technical Operations for presenta- tion at the AIEE Winter General Meeting, New York, N. Y.. January 18-22, 1954. Manuscript submitted October 22. 1953; made available for printing December 4, 1953. E. A. DOWNING is with the Columbia-vSouthern Chemical Corporation, New Martinsville, W. Va. M.\Y 1954 Downing—Magnetic Amplifiers in Metering Direct Current 93

Upload: e-a

Post on 09-Feb-2017

214 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Magnetic amplifiers in metering direct current on electrolytic cell lines

where η a n d g a r e b o t h pos i t ive real i n t ege r s . The exact express ion for a (ω) given in

equation 10 is a po lynomia l , a n d m a y b e con ­sidered as i t s o w n T a y l o r ' s ser ies e x p a n s i o n in which all coefficients b e y o n d bn a r e zero . If, in equa t ion 47 , Κ is chosen equa l t o («-hg)/2 a n d t h e success ive c o l u m n s of equation 47 a r e e q u a t e d t o t h e successive coefficients of e q u a t i o n 10, t h e fol lowing re ­sults are ob t a ined

BaiT,'-\-Ba2Ti^+ . .,+BaK^b, ]

BaKTK2 = {2\)b2

BaETK^'^inDbn'} (48)

Β α ; , Γ κ " + - = θ |

Βα^Ά'^' + Βα2Τ2''^'+ . . . + ΒακΤκ^'-^'^Ο

It is possible t o choose a n y sequence of increasing m a g n i t u d e s for Ti, Ti . . . Τ κ, provided only t h a t Τκ ^ Td/2. T h e n , e q u a ­tions 48 m a y b e solved for t h e Ba/c v a l u e s . Further, it should b e n o t e d t h a t w i t h t h i s procedure t h e g rea t e r t h e v a l u e of K, t h e better ^ ( ω ) will a p p r o x i m a t e α(ω) .

A procedure exac t ly a n a l o g o u s t o t h a t shown by e q u a t i o n s 47 a n d 48 , for p r o d u c i n g an .4 (ω) which closely a p p r o x i m a t e s α(ω), can be employed t o d e t e r m i n e Βι,ι, 5 ^ . . . Bi,k such t h a t i S ( ω ) will closely a p p r o x i m a t e jbM,

It should b e obse rved t h a t t h e mu l t i p l i e r s Bak obtained f rom e q u a t i o n s 4 8 m u s t b e used at taps located Γ* a b o v e a n d Tk be low t h e center t a p . S imi la r r e q u i r e m e n t s a r e p l aced on the Bbk mu l t ip l i e r s w h i c h w o u l d be o b ­tained from t h e sine t e r m s . If t h e s a m e taps (not necessar i ly equa l l y s p a c e d ) a r e used in de t e rm in ing t h e Bak v a lues a n d t h e Bbk values, t h e n t h e mu l t i p l i e r s m a y b e combined a t each t a p ( o t h e r t h a n t h e c e n t e r tap) exactly a s w a s d o n e for t h e F S C d e ­vice.

erences

1. T R A N S V E R S A L F I L T E R S , H . E . Kal lman. Pro­ceedings, Inst i tute of Radio Engineers, N e w York, N . Y. , vol. 28 , July 1940, pp . 3 0 2 - 1 0 .

2. A P H A S E - P L A N E A P P R O A C H TO T H E C O M P E N ­SATION OP S A T U R A T I N G S E R V O M E C H A N I S M S . Arthur M . Hopkin. AIEE Transactions, vol. 70, pt. I, 1951, p p . 6 3 1 - 3 9 .

3. S I G N A L C O M P O N E N T C O N T R O L , D . J. Gimpel , J. F. Calvert. AIEE Transactions, vol. 71 pt . I I , N o v . 1952, pp . 3 3 9 - 4 3 .

Di iscussion A b r a h a m M . F u c h s ( W e s t i n g h o u s e E lec t r i c C o r p o r a t i o n , B a l t i m o r e , M d . ) : T h i s p a p e r is i n t e r e s t i n g for i t s r e su l t s a n d t h e impl i ­c a t i o n s w h i c h c a n b e d r a w n f rom t h e r e su l t s . F igs . 4 a n d 6 show t h a t t h e c o m p e n s a t e d s y s t e m s h a v e a l inear p h a s e l ag v e r s u s fre­q u e n c y cha rac t e r i s t i c ove r a wide b a n d ­w i d t h . If t h e i n p u t s ignal is l imi ted t o a f requency compos i t i on w i t h i n t h e region of l inear p h a s e l ag ve r sus f requency , t h e n t h e o u t p u t of t h e s e r v o m e c h a n i s m will b e a n exac t r e p r o d u c t i o n of t h e i n p u t d i sp laced b a c k w a r d s in t i m e b y t h e rec iproca l of t h e p h a s e s lope . As t h e s lope is a l so con t ro l ­lab le ( a l t h o u g h a t t h e expense of h ighe r ga in in t h e c o m p e n s a t o r ) , b o t h t h e a c c u r a c y of r e p r o d u c t i o n of t h e i n p u t s ignal a n d t h e t i m e d i s p l a c e m e n t of t h e o u t p u t c o m p a r e d t o t h e i n p u t can b e des igned i n t o t h e s y s t e m .

T h i s b r i g h t s ide of e v a l u a t i n g t h e m e r i t s of th i s t y p e of open- loop c o m p e n s a t i o n is bec louded b y t h e p i c t u r e of h o w well sa id s y s t e m will w o r k w h e n t h e p r o t e c t i v e coa t ­ing of " l i nea r opera t ion '* is r e m o v e d . A s s u m e , for example , t h a t t h e r e is a load t o r q u e p r e s e n t (o r frict ion on t h e o u t p u t ) . T h e ab i l i t y of t h e s y s t e m t o o v e r c o m e t h e load t o r q u e (o r fr ic t ion) is n o t a u g m e n t e d b y t h e c o m p e n s a t o r . T h e ques t ion ar ises w h e t h e r t h e s a m e effort s p e n t in bu i ld ing t h e c o m p e n s a t o r m i g h t n o t b e b e t t e r s p e n t in bu i ld ing t h e b a n d w i d t h ( a n d genera l ly

t h e increased loop ga in ) i n t o t h e con t ro l sys ­t e m where i t n o t only i m p r o v e s t h e follow­ing of t h e i n p u t s ignal b u t a l so m a k e s t h e con t ro l s y s t e m less sens i t ive t o load t o r q u e s o u t p u t friction, e t c .

D . J . F o r d a n d J . F . C a l v e r t : W e wish t o t h a n k A . M . F u c h s for h is in t e r e s t i ng dis­cuss ion of o u r pape r . A s M r . F u c h s p o i n t s o u t , t h e p a p e r deals exclusively w i t h a n open- loop t y p e of sys t em, a n d a s such defi­n i t e ly c a n n o t be expec ted t o exhib i t all of t h e p e r f o r m a n c e charac te r i s t i c s of closed-loop s y s t e m s . A s s u m e t h a t t h e s y s t e m be ing cont ro l led is in itself a feedback sys­t e m h a v i n g undes i r ab l e a m p l i t u d e a n d p h a s e cha rac te r i s t i c s , y e t possessing t h e insens i t iv-i t y t o " n o n l i n e a r i t i e s " of t h e form of o u t p u t friction, load t o r q u e , e tc . , charac te r i s t i c of such feedback s y s t e m s . U n d e r these cir­c u m s t a n c e s , t h e app l i ca t ion of t h e t y p e of c o m p e n s a t o r s descr ibed in t h e p a p e r will i m p r o v e t h e over-al l s y s t e m response a p p r e ­c iab ly . T h u s , t h e open- loop c o m p e n s a t o r t a k e s t h e p lace of t h e e l a b o r a t e correc t ion a n d c o m p e n s a t i n g n e t w o r k s in t h e cont ro l s y s t e m wh ich wou ld be needed t o ove rcome t h e undes i r ab l e a m p l i t u d e cha rac t e r i s t i c c aused b y t h e i n t r o d u c t i o n of h igh gain in t h e feedback loop.

In o t h e r words , a given s y s t e m m a y b e des igned w i t h a s imple h igh-gain amplif ier a s a feedback n e t w o r k , t h u s o b t a i n i n g t h e des i rab le insens i t iv i ty t o o u t p u t friction, load t o r q u e , e tc . , w i t h l i t t l e reference t o a m p l i t u d e a n d p h a s e response . W i t h t h i s accompl i shed , t h e c o m p e n s a t o r ma}^ be de ­signed t o o p e r a t e w i t h t h i s fedback con­t ro l sy s t em, g iv ing i t a v i r t u a l l y c o n s t a n t gain a n d l inear p h a s e cha rac t e r i s t i c over a s wide a f requency b a n d a s s a t u r a t i o n l imi­t a t i o n s will p e r m i t . T h u s , t h e combined s y s t e m will possess t h e des i rab le cha rac t e r ­istics of t h e closed-loop e r ro r r educ t ion m e c h a n i s m t o g e t h e r w i t h t h e des i rab le a m ­p l i t u d e a n d p h a s e con t ro l charac te r i s t i c s of t h e open- loop t y p e of sys t em descr ibed in t h e pape r .

Magnetic Amplifiers in Metering Direct,

Current on Electrolytic Cell Lines

E. A. DOWNING NONMEMBER AIEE

SE V E R A L m o n t h s a g o e v e r y p u b l i c a ­t ion d e v o t e d t o p o w e r a n d t h o s e

covering i n d u s t r y i n g e n e r a l c a r r i e d articles te l l ing t h e s t o r y of m a g n e t i c a m ­plifiers. T h e y t o l d of u s i n g m a g n e t i c amplifiers w i t h s e r v o m e c h a n i s m s for a u t o ­matic p i lo t s , t o c o n t r o l s p e e d s of l a r g e motors , t o r e g u l a t e v o l t a g e s of l a r g e g e n ­erators, a n d a n y n u m b e r of o t h e r a p p l i c a ­tions, in s o m e c a s e s r e p l a c i n g e q u i p m e n t tha t h a d b e e n a c c e p t e d a s s t a n d a r d for years.

T h e a p p l i c a t i o n d e s c r i J D e d h e r e is n o t a s d r a m a t i c a s t h i s b u t o n e t h a t is v e r y i m ­p o r t a n t i n t h e e l e c t r o c h e m i c a l field. T h a t is t h e m e a s u r e m e n t of d -c a m p e r e s .

T h e p a r t i c u l a r i n s t a l l a t i o n h a s b e e n i n e x i s t e n c e for o n l y a m a t t e r of m o n t h s b u t i t is o n e of t h e first i n s t a l l a t i o n s w h e r e m a g n e t i c a m p l i f i e r s h a v e b e e n u s e d i n se r i e s t o m e a s u r e t o t a l d -c a m p e r e s f r o m m o r e t h a n o n e rec t i f i e r . ( F i g . 1 ) . I t is n o t t h e i n t e n t i o n t o d i s c u s s t h e t h e o r y of t h e d e s i g n of m a g n e t i c a m p l i f i e r s b u t t o

r e v i e w t h e r e a s o n s for m a g n e t i c ampl i f i e r s b e i n g s e l e c t e d for t h i s p a r t i c u l a r i n s t a l l a ­t i o n , t o d e s c r i b e t h e m e t h o d of i n s t a l l a ­t i o n , a n d t o r e p o r t o n t h e i r p e r f o r m a n c e

F i r s t , s i n c e t h e r e is m u c h s h n i l a r i t y b e ­t w e e n m a g n e t i c ampl i f i e r s a n d s a t u r a b l e r e a c t o r s , i t m a y b e wel l t o def ine t h e s e a s l i s t ed in t h e p r o g r e s s r e p o r t of t h e A I E E M a g n e t i c A m p l i f i e r s S u b c o m m i t t e e :

A s a t u r a b l e r eac to r is a n a d j u s t a b l e i nduc ­to r in which t h e cu r r en t -ve r sus -vo l t age rela­t i o n s h i p is a d j u s t e d b y c o n t r o l m a g n e t o ­m o t i v e forces app l i ed t o t h e core .

A m a g n e t i c ampl i f ier is a device us ing s a tu r ­ab le r e a c t o r s e i t he r a lone or in c o m b i n a t i o n

Paper 54-178, recommended by the A I E E Chemi­cal, Electrochemical and Electrothermal Applica­tions Commit tee and approved by the A I E E Commit tee on Technical Operations for presenta­tion at the A I E E Winter General Meeting, N e w York, N . Y. . January 18-22, 1954. Manuscript submitted October 22. 1953; made available for printing December 4, 1953.

E. A. D O W N I N G is with the Columbia-vSouthern Chemical Corporation, N e w Martinsville, W . Va.

M. \Y 1 9 5 4 Downing—Magnetic Amplifiers in Metering Direct Current 9 3

Page 2: Magnetic amplifiers in metering direct current on electrolytic cell lines

BUS Fis. 1 (left). Schematic oi current totalizing

Fis. 2 (right). Simple-type magnetic amplifier

with other circuit e lements to secure ampli­fication or control.

S h o w n i n F i g . 2 i s o n e of t h e s m a l l e r m a g n e t i c a mp l i f i e r u n i t s w i t h a n o u t p u t r a t i n g of 4 0 m i l l i w a t t s . T h i s s m a l l u n i t h a s a s a t u r a b l e r e a c t o r w i t h a d - c c o n t r o l w i n d i n g o n t h e c o r e . T h e e n d s a r e c o n ­n e c t e d t o t h r e a d e d s t u d s t o a c c o m m o d a t e c o n n e c t i o n s t o s h u n t s o r o t h e r s o u r c e s of c o n t r o l v o l t a g e . T h e s e c o n d w i n d i n g o n t h e c o r e h a s a l a r g e r n u m b e r of t u r n s , a n d t h e a-c o u t p u t f r o m t h i s w i n d i n g is r e c t i ­fied b y a s m a l l f u l l - w a v e m e t a l U c r ec t i f i e r , a l s o m o u n t e d in t h e c a s e . T h e t w o w i n d ­i n g s a r e e l e c t r i c a l l y i n s u l a t e d f r o m e a c h o t h e r .

Reasons for Using Magnetic Amplifiers

T h e u s e of m a g n e t i c a m p l i f i e r s for m e t e r i n g c u r r e n t i n c h l o r i n e - c a u s t i c s o d a cell l ine w a s e l e c t e d b e c a u s e t h e y w o u l d e l e c t r i c a l l y i s o l a t e t h e r e c o r d i n g i n s t r u ­m e n t s f r o m t h e cell h u e b u s b a r s , a n d b e ­c a u s e t h e y w o u l d e l i m i n a t e t h e c o s t of i n ­s t a l l i n g a l a r g e s h u n t in t h e m a i n b u s b y t o t a H z i n g t h e o u t p u t of i n d i v i d u a l r e c t i ­fiers. A n y n u m b e r of m a g n e t i c - a m p l i f i e r u n i t s m a y b e c o n n e c t e d i n se r ies t o t o t a l ­ize t h e l a r g e s t s y s t e m s .

T h e first-mentioned f u n c t i o n w a s i m ­p o r t a n t b e c a u s e b u s p o t e n t i a l w a s r e ­m o v e d f r o m t h e i n s t r u m e n t s , t h u s e l i m ­i n a t i n g a m a j o r c a u s e of i n s t r u m e n t f a i lu res , a n d r e m o v i n g t h e h a z a r d t o i n ­s t r u m e n t m e c h a n i c s of c o m i n g in c o n t a c t w i t h t h e h i g h v o l t a g e .

I n t h e c a s e of c e r t a i n t y p e s of i n s t r u ­m e n t s i t is n e c e s s a r y t h a t t h e y b e i n s u ­l a t e d f r o m t h e h i g h e r v o l t a g e s . T o c i t e a n

e x a m p l e : A few y e a r s a g o t h e r e w a s a n a u t o m a t i c c o n t r o l a p p l i c a t i o n u s i n g c o n ­t a c t - m a k i n g m i l l i v o l t ( m v ) m e t e r s . T h e first c o n t r o l l e r i n s t a l l e d e m p l o y e d a v a n e a n d o s c i l l a t o r coi l t o d e t e c t a l i g n m e n t of t h e s e t p o i n t e r a n d i n d i c a t o r . A s t h e i n d i c a t o r a p p r o a c h e d t h e s e t p o i n t e r i t w a s r e p u l s e d v i g o r o u s l y , m a k i n g i t i m ­p o s s i b l e t o r e a c h t h e c o n t r o l p o i n t . O t h e r i n s t r u m e n t s fa i led w h e n t h e i n s u l a t i o n b r o k e d o w n t o g r o u n d . All of t h e s e in ­s t r u m e n t s w e r e q u a l i t y i n s t r u m e n t s a n d w o u l d h a v e o p e r a t e d s a t i s f a c t o r i l y if p r o p ­e r l y u s e d . P o s s i b l y t h e s e o p e r a t i n g p r o b l e m s w o u l d h a v e b e e n a v o i d e d b y t h e i s o l a t i o n p r o v i d e d b y m a g n e t i c ampl i f i e r s .

T h e a d v a n t a g e s of e l i m i n a t i n g t h e l a r g e t o t a l i z i n g s h u n t t o m e a s u r e t h e c u r r e n t i n t h e cel l s t r i n g w e r e l a r g e l y e c o n o m i c a l . T h e c o s t of t h e m a g n e t i c amp l i f i e r s a t t h e t i m e w a s l ess t h a n t h e c o s t of a 5 0 - m v t o t a l i z i n g s h u n t of a d e q u a t e c a p a c i t y . I t t u r n e d o u t l a t e r t h a t a g r e a t e r s a v i n g w a s r e a l i z e d b y b e i n g a b l e t o o m i t s e v e r a l f ee t of b u s t o t h e cel l l i n e . I t h a d b e e n t h e p r a c t i c e t o l o c a t e all s h u n t s in t h e r ec t i f i e r r o o m , for t h e p u r p o s e of p l a c i n g t h e m in a l ess c o r r o s i v e a t m o s p h e r e t h a n t h e ce l l r o o m . E l i m i n a t i o n of t h e b u s s e c t i o n t o t h e t o t a l i z i n g s h u n t in t h e r ec t i f i e r r o o m s a v e d n e a r l y 1 t o n of c o p ­p e r . T h i s r e p r e s e n t s a c o n s i d e r a b l e s a v ­i n g s w h e n t h e f a b r i c a t i o n a n d e r e c t i o n c o s t of t h e c o p p e r is i n c l u d e d . A l s o c o p ­p e r w a s o n a l l o c a t i o n a t t h a t t i m e .

A n o t h e r s a v i n g , w h i c h d i d n o t r e c e i v e p r i m e c o n s i d e r a t i o n w a s e f f ec ted b y t h e m a g n e t i c a m p l i f i e r s . T h i s w a s e v i d e n t i n c o m p a r i n g t h e losses i n t h e m a g n e t i c a m p l i f i e r t o t h e lo s ses i n a t o t a l i z i n g s h u n t . T h e t o t a l losses of f o u r m a g n e t i c ampl i f i e r u n i t s w o u l d b e less t h a n I V 2 w a t t s , w h e r e t h e losses i n a 2 0 , 0 0 0 - a m -p e r e 5 0 - m v s h u n t w o u l d b e 1,000 w a t t s , w h i c h a m o u n t s t o m o r e t h a n 8 ,000 k i l o ­w a t t - h o u r s p e r y e a r .

Installation

T o i n s t a l l a c o m p l e t e se t of m a g n e t i c -ampl i f i e r e q u i j n n e n t , o t h e r accesso r i e s a re r e q u i r e d . T h e s e a r e a v o l t a g e regulator . , a n i s o l a t i n g t r a n s f o r m e r , a v o l t a g e s t ep -d o w n t r a n s f o r m e r , a n d a p a n e l w i t h po ­t e n t i o m e t e r s for s e t t i n g t h e r a n g e a n d zero a d j u s t m e n t s . O n e v o l t a g e r e g u l a t o r a n d s t e p - d o w n t r a n s f o r m e r c a n s e r v e severa l m a g n e t i c - a m p l i f i e r u n i t s , t h e r e f o r e , on ly o n e is r e q u i r e d for e a c h i n s t a l l a t i o n .

T h e G-volt i s o l a t i n g t r a n s f o r m e r s were s u p p l i e d m o u n t e d o n t h e p a n e l w i t h cal i­b r a t i n g p o t e n t i o m e t e r s . T h e o t h e r i t e m s w e r e r e c e i v e d a n d m o u n t e d s e p a r a t e l y . T h e m a g n e t i c - a m p l i f i e r u n i t s a r e fur­n i s h e d w i t h a s e t of c a l i b r a t e d s h u n t l e ads w h i c h w e r e i n c l u d e d in t h e i n i t i a l c a l i b r a ­t i o n . T h e s e l e a d s a r e s h o r t , m a k i n g i t n e c e s s a r y t o m o u n t t h e m a g n e t i c - a m ­plif ier u n i t n e a r t h e s h u n t of e a c h r ec t i ­fier. I n t h i s i n s t a l l a t i o n t h e s h u n t s a r e m o u n t e d b e h i n d t h e c a t h o d e b r e a k e r s , so t h e m a g n e t i c - a m p l i f i e r u n i t s were m o u n t e d o n t h e f r a m e in t h e r e a r of t h e c i r c u i t b r e a k e r , F i g . 3 .

All of t h e o t h e r c o m j ^ o n e n t s m a y b e m o u n t e d w h e r e v e r i t is m o s t conv^enient . T h e i r l o c a t i o n h a s n o effect o n t h e pe r ­f o r m a n c e of t h e e q u i p m e n t . Al l of t h e c a l i b r a t i n g p o t e n t i o m e t e r s w e r e m o u n t e d in o n e l a r g e m e t a l b o x w i t h g a s k e t e d c o v e r , b e s i d e t h e c a t h o d e b r e a k e r s . T h e l o c a t i o n m a d e t h e m c o n v e n i e n t for t e s t ­i n g , a n d t h e m e t a l e n c l o s u r e s offers s o m e p r o t e c t i o n f r o m c o r r o s i v e a t m o s p h e r e .

A p p a r e n t l y t h e m a n u f a c t u r e r d i d n o t c o n s i d e r t h e a t m o s p h e r e a r o u n d c h e m i c a l p l a n t s w h e n d e s i g n i n g t h e p o t e n t i o m e t e r p a n e l , b e c a u s e t h e r e w a s n o e n c l o s u r e of a n y k i n d f u r n i s h e d w i t h t h e m , F i g . 4 .

B e c a u s e t h e m a g n e t i c ampHfier h a s t o s o m e d e g r e e t h e c h a r a c t e r i s t i c s of t h e a-c i n s t r u m e n t c u r r e n t t r a n s f o r m e r t o c a r r y a c o n s t a n t c u r r e n t r e g a r d l e s s of t h e r e s i s t ­a n c e in t h e e x t e r n a l c i r c u i t , t h e p o t e n t i o m ­e t e r s a r e p r e c i s i o n - w o u n d w i t h m a n -g a n i n w i r e h a v i n g a low t e m p e r a t u r e co­efficient of r e s i s t a n c e t o e l i m i n a t e e r r o r s f r o m t e m p e r a t u r e c h a n g e s .

T h e s t e p - d o w n t r a n s f o r m e r , v o l t a g e

9 4 Downing—Magnetic Amplifiers in Metering Direct Current M . \ Y 1 9 5 4

Page 3: Magnetic amplifiers in metering direct current on electrolytic cell lines

Fig. 3. Magnetic amplifier and shunt

regulator , a n d r e c o r d i n g i n s t r u m e n t w e r e installed in t h e r e m o t e p a n e l in t h e s t a t i o n control r o o m . T h e w i r i n g b e t w e e n t h e c o m p o n e n t s of t h i s s y s t e m r e q u i r e s v e r y little spec ia l a t t e n t i o n . T h e s h u n t l e a d s mus t b e t i g h t a n d t h e r e s i s t a n c e of l e a d connect ions k e p t a s l o w a s p o s s i b l e . T h e resistance of t h e c o m p l e t e d -c c o n t r o l c i r ­cuit is 0 . 0 5 0 + 5 = 0 .010 o h m . A r e s i s t ­ance c h a n g e of 0 .0001 o h m w o u l d i n ­troduce a 1-per -cent e r r o r . D e p e n d i n g upon t h e i n s t a l l a t i o n , s h i e l d e d l e a d s might b e r e q u i r e d b e t w e e n t h e p o t e n t i o m ­eters a n d r e c o r d e r s t o e l i m i n a t e i n d u c e d voltages in t h e l e a d s .

Performance

T h e p e r f o r m a n c e of s u c h a n i n s t a l l a t i o n is m e a s u r e d l)y t h e m a i n t e n a n c e r e q u i r e d and t h e d e g r e e of a c c u r a c y in r e c o r d i n g current . T o d a t e t h e m a i n t e n a n c e h a s been nil. T h e ec iu i ] )ment is l ess t h a n 1 year old a n d it m a y b e s o m e w h a t j ^ r e m a -ture t o f o r m c o n c l u s i o n s , b u t t h e r e i s a

Fig. 4. Calibrating potentiometers

firm bel ief t h a t i t wi l l r e m a i n v e r y low. T h e s u b j e c t of a c c u r a c y k n i t s i n c lose ly

w i t h t h e s u b j e c t of t e s t i n g a n d c a h b r a -t i o n , s o t h e y wil l b e d i s c u s s e d t o g e t h e r . T h e m a g n e t i c a m p l i f i e r d o e s n o t r e p l a c e a n y e x i s t i n g e q u i p m e n t b u t i s a n o t h e r d e ­v i c e a d d e d t o t h e s y s t e m . I t m a y i m ­p r o v e a c c u r a c y of t h e s y s t e m b y i m p r o v ­i n g o p e r a t i o n of t h e o t h e r i n s t r u m e n t s b e ­c a u s e m a i n t e n a n c e r e q u i r e m e n t s a r e d e ­c r e a s e d . A m a g n e t i c - a m p l i f i e r i n s t a l l a ­t i o n i s n o t a s e a s i l y c a l i b r a t e d a s s o m e o t h e r i n s t a l l a t i o n s b e c a u s e of t h e a d d i ­t i o n a l e q u i p m e n t r e q u i r e d . T h e t e s t s h o u l d b e m a d e o n t h e j o b s i t e b e c a u s e t h e m a g n e t i c ampHf i e r a n d a s s o c i a t e d e q u i p m e n t a r e n o t e a s i l y r e m o v e d .

T h e c o n t r o l c i r c u i t r e q u i r e s a p p r o x i ­m a t e l y 5 a m p e r e s a t 50 m v f r o m t h e s h u n t a t r a t e d m a g n e t i c - a m p l i f i e r i n p u t . S i n c e t h e c u r r e n t m u s t b e v a r i a b l e , i t is n e c e s ­s a r y t o r e m o v e t h e l e a d s f r o m t h e s h u n t . A b a t t e r y a n d v a r i a b l e r e s i s t o r a r e s u b ­s t i t u t e d fo r t h e s h u n t a s a d - c p o w e r s u p ­p l y for t h e c o n t r o l c i r c u i t . I f t h e t e s t is m a d e w i t h t h e m a g n e t i c - a m p l i f i e r e q u i p ­m e n t i n i t s n o r m a l p o s i t i o n , t h e u s u a l a -c p o w e r s o u r c e is u s e d w i t h o u t c h a n g e s i n c o n n e c t i o n s .

S i n c e t h e s h u n t s a r e o u t of t h e c i r c u i t s d u r i n g t e s t i n g , a n y e r r o r s i n t r o d u c e d b y t h e s h u n t s a r e n o t i n c l u d e d i n t h e t e s t . H o w e v e r , i n a c t u a l o p e r a t i o n t h e s h u n t is t h e s o u r c e of d -c c o n t r o l p o w e r a n d t h e r e ­fo re s h u n t e r r o r s a r e i n c l u d e d i n t h e m e a s u r e m e n t . A n y e r r o r s i n t r o d u c e d b y t h e m a g n e t i c - a m p l i f i e r s y s t e m a r e a d d e d t o o r s u b t r a c t e d f r o m t h e s h u n t e r r o r .

T h e p u b l i s h e d a c c u r a c y of c o m m e r c i a l m a g n e t i c - a m p l i f i e r u n i t s is 0 .25 p e r c e n t , a n d i t is u n d e r s t o o d t h a t t h e t e s t s o n s ing le u n i t s a t t h e m a n u f a c t u r e r s ' l a b o r a ­t o r y i n d i c a t e a h i g h e r d e g r e e of a c c u r a c y .

T h e t r a n s f e r o r i n p u t - v e r s u s - o u t p u t c u r v e of t h e m a g n e t i c amp l i f i e r is n o t a s t r a i g h t l i n e b u t r e s e m b l e s a n e l o n g a t e d S, F i g . 5 . If a s t r a i g h t l i ne A - B ( F i g . 5) w e r e s u p e r i m p o s e d o n t h e t r a n s f e r c u r v e , t h e r e is s u p p o s e d l y n o d e v i a t i o n f r o m t h e s t r a i g h t Hue g r e a t e r t h a n 1 / 4 of 1 p e r c e n t . T e s t s m a d e o n u n i t s i n t h e p l a n t s h o w t h e m a g n e t i c - a m p l i f i e r u n i t s we l l w i t h i n t h e s e l i m i t s . W h e n t h e s t r a i g h t l i n e is e x t e n d e d , i t is f o u n d t h a t t h e i n d i c a t e d o u t p u t is 0 .58 m v w i t h n o c u r r e n t i n t h e c o n t r o l c i r c u i t . R e p o r t e d l y t h i s 0 . 5 8 - m v o u t p u t w i t h z e r o c o n t r o l c u r ­r e n t is t r u e fo r a l l m a g n e t i c - a m p l i f i e r u n i t s .

T h e r e is o n l y o n e c a l i b r a t i n g a d j u s t ­m e n t w h i c h is t h e r a n g e a d j u s t m e n t o n t h e m a g n e t i c - a m p l i f i e r e q u i p m e n t . T h i s fixes t h e t r a n s f e r c u r v e a t o n e p o i n t for r e l a t i o n of i n p u t m v . T h e s l o p e of t h e t r a n s f e r c u r v e v a r i e s a s t h e r a n g e is v a r i e d , b u t i t i s

A-OUTPUT OF M-A Β - MEAN SLOPE OF M-A C - INSTRUMENT DESIGN

MILLIVOLTS AT SHUNT

Fig. 5. Transfer curve and receiving-instru­ment design curve

c o n s i d e r e d t h a t i t i n t e r s e c t s t h e axis a t 0 .58 m v for a l l r a n g e s e t t i n g s .

T h e r e w e r e m i n o r d i s c r e p a n c i e s be ­t w e e n field c a l i b r a t i o n s a n d f a c t o r y t e s t s . T h i s w a s e x p l a i n e d b y s t a t i n g t h e t e s t i ng fac i l i t ies a t t h e f a c t o r y w e r e m o r e accu ­r a t e t h a n t h o s e i n o u r p l a n t . N o d o u b t t h e f a c t o r y t e s t i n g fac i l i t i es a r e b e t t e r , b u t a n i n s t r u m e n t t o b e p r a c t i c a l m u s t b e cali­b r a t e d w i t h n o r m a l t e s t i n g e q u i p m e n t . T h e field s e t t i n g s w e r e a c c e p t e d for final c a l i b r a t i o n .

T h e t r u e a c c u r a c y of t h e m a g n e t i c ampl i f i e r is m e a s u r e d b y i t s ab i l i t y t o t r a n s f e r a s i g n a l f r o m t h e s o u r c e t o a r e ­c e i v i n g i n s t r u m e n t . T h i s n o t only re­q u i r e d n e a r l i n e a r c h a r a c t e r i s t i c s of t h e m a g n e t i c - a m p H f i e r u n i t , b u t t h e o u t p u t c h a r a c t e r i s t i c s of t h e m a g n e t i c amplif ier m u s t m a t c h t h e r e c e i v i n g i n s t r u m e n t s . S i n c e all m a g n e t i c ampl i f i e r s h a v e s imilar c h a r a c t e r i s t i c s , t h e d e s i g n specif icat ions of t h e r e c e i v i n g i n s t r u m e n t a r e d u p l i c a t e d for a l l i n s t a l l a t i o n s .

T e s t s c o n d u c t e d on t h e e q u i p m e n t in­s t a l l e d s h o w s t h a t t h e m a x i m u m over-al l e r r o r is 0 .3 p e r c e n t . O v e r a l a rge por ­t i o n of t h e r a n g e t h e e r r o r is m u c h less t h a n t h i s . I t i s a s s u m e d t h a t if t h e u n i t s w e r e c a l i b r a t e d for a n a r r o w e r work ing r a n g e , c o m p a r a b l e t o a c t u a l w o r k i n g con­d i t i o n s , t h e e r r o r c o u l d b e r e d u c e d below 0.2 p e r c e n t .

U p t o t h i s p o i n t al l d i s c u s s i o n h a s been o n t h e b a s i s of u s i n g nu l l b a l a n c e i n s t ru ­m e n t s t o m e a s u r e t h e magne t i c - ampHf ie r o u t p u t . A s a n e x p e r i m e n t , a r egu l a r s w i t c h b o a r d i n s t r u m e n t w a s u s e d a n d t h e r e a d i n g s s h o w e d t h a t t h e m a g n e t i c - a m ­pHfier o u t p u t is l i n e a r w i t h r e s p e c t t o t h e i n p u t . If o n e w a n t e d t o e l i m i n a t e h i g h v o l t a g e c o m p l e t e l y f r o m t h e pane l s , i t

MAY 1 9 5 4 Downing—Magnetic Amplifiers in Metering Direct Current 9 5

Page 4: Magnetic amplifiers in metering direct current on electrolytic cell lines

c o u l d b e d o n e w i t h m a g n e t i c a m p l i f i e r s a n d a s p e c i a l l y c a l i b r a t e d m - v m e t e r t o in ­d i c a t e a m p e r e s .

Conclusion

B y i s o l a t i n g i n s t r u m e n t s f r o m b u s p o t e n t i a l s , t h e m a i n t e n a n c e h a s b e e n r e ­

d u c e d a n d t h e a v e r a g e a c c u r a c y i m p r o v e d o n t h e r e c o r d i n g i n s t r u m e n t s . T h i s h a s b e e n ver i f ied h e r e a n d , a f t e r o n l y a f ew m o n t h s ' o p e r a t i o n of o n e se t , t h e r e w e r e r e q u e s t s t o i n s t a l l t h e m o n o t h e r u n i t s . T h e a c c u r a c y of t h e m a g n e t i c amp l i f i e r is e q u a l t o o r b e t t e r t h a n m o s t c o m m e r c i a l i n s t r u m e n t s o n t h e m a r k e t t o d a y . F o r

l o a d - t o t a l i z i n g t h e i n i t i a l c o s t of t h e m a g ­n e t i c a m p l i f i e r s c a n u s u a l l y b e offset b y e l i m i n a t i n g t h e l a r g e t o t a l i z i n g s h u n t s .

Reference

1. M A G N E T I C - A M P L I F I E R A P P L I C A T I O N S I N D - C C O N V E R S I O N S T A T I O N S , W . A . Derr, E . J . Cham. AIEE Transactions, vol. 72, pt . I l l , April 1953. pp. 2 2 0 - 2 9 .

Di iscussion

E . J . C h a m ( W e s t i n g h o u s e E lec t r i c Cor ­p o r a t i o n , E a s t P i t t s b u r g h , P a . ) a n d R . J . R a d u s ( W e s t i n g h o u s e E lec t r i c C o r p o r a t i o n , P i t t s b u r g h , P a . ) : T h i s p a p e r is a v e r y ab l e c o n t r i b u t i o n t o a n e w field of m a g n e t i c -amplif ier a p p l i c a t i o n . T h e in s t a l l a t i on d e ­scr ibed is one of t h e first t o use sma l l m a g ­ne t i c ampl i f iers c o n n e c t e d t o i n d i v i d u a l rectifier s h u n t s t o to t a l i ze t h e ind iv idua l rectifier c u r r e n t s t o o b t a i n a n ind ica t ion of t h e t o t a l c u r r e n t flowing in a n e lec t ro ly t ic cell l ine.

M r . D o w n i n g h a s p o i n t e d o u t t h e a d v a n ­t ages of t h i s m e t h o d of to t a l i z ing a s com­p a r e d t o a s y s t e m us ing a m a s t e r s h u n t . I t is of i n t e r e s t t h a t t h i s m e t h o d a lso h a s a d v a n t a g e s ove r a s y s t e m u s i n g a single la rge c u r r e n t t r a n s d u c t o r a r o u n d a to t a l i z ­ing b u s . W h e n all of t h e d-c to t a l i z ing b u s passes t h r o u g h a c u r r e n t t r a n s d u c t o r , i t s size becomes a large factor in a n in s t a l l a t i on . I n add i t i on , field ca l ib ra t ion o r field checks a r e imprac t i c a l because of t h e difficulty in­vo lved in o b t a i n i n g an a c c u r a t e m e a s u r e of t h e t o t a l c u r r e n t wh ich usua l ly invo lves

t h o u s a n d s of a m p e r e s . A s t h e a u t h o r p o i n t e d o u t , t h e ind iv idua l

sma l l m a g n e t i c ampl i f iers c a n b e checked in t h e field q u i t e r ead i ly . T h e e lec t r ica l q u a n ­t i t i e s i nvo lved can b e m e t e r e d easi ly a n d a c c u r a t e l y w i t h s t a n d a r d i n s t r u m e n t s a n d e q u i p m e n t .

I t will b e well t o p o i n t o u t t h a t t h e lower p o r t i o n of t h e t r ans fe r c u r v e of F ig . 5 is non l inea r in excess of 1/4 p e r cen t . T h i s n o n l i n e a r i t y of o p e r a t i o n is of n o conse ­q u e n c e i n t h e in s t a l l a t i on desc r ibed b y M r . D o w n i n g , s ince t h e rectifier u n i t s a r e oper­a t e d a t a p p r o x i m a t e l y full load. T h i s m e a n s t h a t t h e m a g n e t i c amplif iers a r e oper ­a t e d a t all t i m e s in t h e l inear sec t ion of t h e i r t r ans fe r c u r v e s .

L a t e r d e v e l o p m e n t h a s p r o d u c e d a p u s h -pu l l t y p e of u n i t w h i c h exh ib i t s a t r ans fe r c u r v e t h a t is l i nea r for t h e full r a n g e of s h u n t mi l l ivol t s , t h u s e l i m i n a t i n g non l inea r o p e r a t i o n for t h e lower va lues of s h u n t mil l i ­volts .^ M o s t r e c e n t d e v e l o p m e n t h a s p r o ­duced a new t y p e of u n i t w h i c h c o m b i n e s t h e " t o - z e r o " c h a r a c t e r i s t i c of t h e p u s h - p u l l t y p e of u n i t a n d t h e c o n s t a n t c u r r e n t c h a r ­ac te r i s t i c of t h e t y p e desc r ibed in M r . D o w n i n g ' s p a p e r .

REFERENCE

1. I N D U S T R I A L A P P L I C A T I O N S OF T R A N S D U C T O R S , R. J. Radus . Proceedings, National Electronics

<:onference, Chicago, 111., 1953.

E . A. D o w n i n g : T h e discussion presen ted b y M r . C h a m a n d M r . R a d u s is g rea t ly a p ­p rec i a t ed , p a r t i c u l a r l y since i t br ings ou t t h e app l i c a t i on of large c u r r e n t t r a n s d u c ­t o r s .

I h a v e n o t h a d t h e o p p o r t u n i t y of work­ing w i t h t r a n s d u c t o r s w h e r e tens-of-t h o u s a n d s of a m p e r e s a r e h a n d l e d , b u t it is n o t difficult t o imag ine t h e p rob lem of ob­t a i n i n g t h e l a rge c u r r e n t s for ca l ib ra t ion , or in d e t e r m i n i n g a c c u r a t e l y t h e va lue of t he t e s t c u r r e n t s .

T h e " t o - z e r o " t y p e of m a g n e t i c amplifier is r e q u i r e d for some appHca t ions , b u t i t has l i t t l e a d v a n t a g e w i t h ch lor ine cell lines o t h e r t h a n t h e fact t h a t t h e rece iv ing ins t ru­m e n t s a r e n o t c a l i b r a t e d w i t h a zero bias. T h e s imple t y p e of m a g n e t i c amplif iers a re a c c u r a t e a n d easi ly ca l i b ra t ed . I n m y opin ion t h e s e fea tu res a r e preferred if it is necessa ry t o select be tween these a n d " t o -z e r o " cha rac te r i s t i c s .

9 6 Downing—Magnetic Amplifiers in Metering Direct Current M A Y 1 9 5 4