ma/csse 474

16
MA/CSSE 474 Theory of Computation Functions, Closure, Decision Problems

Upload: henry-mcgowan

Post on 02-Jan-2016

42 views

Category:

Documents


2 download

DESCRIPTION

MA/CSSE 474. Theory of Computation. Functions, Closure, Decision Problems. Your Questions?. Syllabus Yesterday's discussion Reading Assignments HW1 or HW2 Anything else. Must not be a FSM. Responses to Reading Quiz 1. From #4: ℘(∅) = { ∅ } (not ℘(∅) = ∅ ) What is ℘(℘(∅))? - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: MA/CSSE 474

MA/CSSE 474

Theory of Computation

Functions, Closure, Decision Problems

Page 2: MA/CSSE 474

Your Questions?• Syllabus

• Yesterday's discussion

• Reading Assignments

• HW1 or HW2

• Anything else

Must not be a FSM

Page 3: MA/CSSE 474

Responses to Reading Quiz 1

• From #4: ( ) = { } ℘ ∅ ∅ (not ( ) = ℘ ∅ ∅)What is ( ( ))?℘ ℘ ∅

• From #4: {a, b} X {1, 2, 3} X = ∅ ∅• #10: (representing {1, 4, 9, 16, 25, 36, …}

in the form: {x A : P(x)} {x : x>0 y (y*y = x)}∊ ℕ ∧ ∃ ∊ℕWhy not {x : x>0 sqrt(x) } ∊ ℕ ∧ ∊ ℕ ?

• From #15: x (ℕ y (ℕ y < x)).Why is this not satisfiable? (e, g, by x=3, y=2)

Page 4: MA/CSSE 474

Responses to Reading Quiz 1

#16: Let be the set of nonnegative ℕintegers. Let A be the set of nonnegative integers x such that x 3 0. Show that | | = |ℕ A|.Define a function f : →A by f(n) = 3n.ℕf is one-to-one: if f(n) = f(m), then 3n = 3m, so m=n.f is onto: Let k A. Then k = 3m for some ∊m . So k = f(m).∊ ℕ

Page 5: MA/CSSE 474

Responses to Reading Quiz 1

#18: Prove by induction: n>0 (n! 2n-1). Why is the following "proof" of the induction step shaky at best, perhaps wrong?

(n+1)! 2n what we're trying to show

(n+1)n! 2(2n-1) definitions of ! And exponents

(n+1) 2 induction hypothesis (n! 2n-1)

Since n is at least 1, this statement is true, therefore (n+1)! 2n is true.

Page 6: MA/CSSE 474

Relations on Strings:aaa is a substring of aaabbbaaaaaaaaa is not a substring of aaabbbaaaaaa is a proper substring of aaabbbaaaEvery string is a substring of itself. is a substring of every string.

s is a prefix of t iff: x * (t = sx).s is a proper prefix of t iff: s is a prefix of t and s t.Examples:The prefixes of abba are: , a, ab, abb, abba.The proper prefixes of abba are: , a, ab, abb.Every string is a prefix of itself. is a prefix of every string.

s is a suffix of t iff: x * (t = xs) then continue as above: proper suffix, self,

Page 7: MA/CSSE 474

Defining a Language

A language is a (finite or infinite) set of strings over a finite alphabet .

Examples: Let = {a, b} Some languages over :

, {}, {a, b}, {, a, aa, aaa, aaaa, aaaaa}

If is nonempty, the language * contains an infinite number of strings, including: , a, b, ab, ababaa.

Page 8: MA/CSSE 474

Example Language Definitions 1. L = {x {a, b}* : all a’s precede all b’s}

, a, aa, aabbb, and bb are in L. aba, ba, and abc are not in L.

2. L = {x : y {a, b}* : x = ya}Simple English description:

3. L = {x#y: x, y {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}* and, when x and y are viewed as the decimal representations of natural numbers, square(x) = y}. Examples: 3#9, 12#144, 3#8, 12, 12#12#12, #

4.L = {an : n 0} uses replication, simpler description of L?

5.L = Ø = { }6.L = {ε}

Are the last two different

languages?

Page 9: MA/CSSE 474

Natural Languages are Tricky

L = {w: w is a sentence in English}.

Examples:

Kerry hit the ball.

Colorless green ideas sleep furiously.

The window needs fixed.

Ball the Stacy hit blue.

Page 10: MA/CSSE 474

A Halting Problem Language

L = {w: w is a Java program that, when given any finite input string, is guaranteed to halt}.

•Is this language well specified?

• Can we decide which strings L contains?

Page 11: MA/CSSE 474

Languages and Prefixes

What are the following languages:

L = {w {a, b}*: no prefix of w contains b}

L = {w {a, b}*: no prefix of w starts with a}

L = {w {a, b}*: every prefix of w starts with a}

Page 12: MA/CSSE 474

Sets and Relations

Page 13: MA/CSSE 474

Cardinality of a set.

• a natural number (if S is finite),

• “countably infinite” (if S has the same number of elements as there are integers), or

• “uncountably infinite” (if S has more elements than there are integers).

The cardinality of every set we will consider is one of the following :

Page 14: MA/CSSE 474

Sets of Sets• The power set of S is the set of all subsets of S.

Let S = {1, 2, 3}. Then:

P(S) = {, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

P(S) is a partition of a set S iff:• Every element of is nonempty,• Every pair of elements of is disjoint , and• the union of all the elements of equals S.

Some partitions of S:

{{1}, {2, 3}} or {{1, 3}, {2}} or {{1, 2, 3}}.How many different partitions of S?

Page 15: MA/CSSE 474

Closure• A set S is closed under binary operation op iff

x,yS ( x op y S) ,closed under unary function f iff xS (f(x) S)

• Examples• ℕ+ (the set of all positive integers) is closed under addition and

multiplication but not negation, subtraction, or division.

• What is the closure of N+ under subtraction? Under division?

• The set of all finite sets is closed under union and intersection. Closed under infinite union?

If S is not closed under unary function f, a closure of S is a set S' such thata)S is a subset of S'b)S' is closed under fc)No proper subset of S' contains S and is closed under f

Page 16: MA/CSSE 474

Equivalence RelationsA relation on a set A is any set of ordered pairs of elements of A.

A relation R A A is an equivalence relation iff it is:

•reflexive,

•symmetric, and

•transitive.

Examples of equivalence relations:

•Equality

•Lives-at-Same-Address-As

•Same-Length-As

•Contains the same number of a's as

Show that ≡₃ is an equivalence relation