macrocyclization and baeyer-villiger oxidation...diverse applications of macrocycles macrocycles in...

35
Macrocyclization and Baeyer-Villiger Oxidation Greg Lackner Overman Group Topics Presentation June 18, 2012

Upload: others

Post on 31-Jan-2021

10 views

Category:

Documents


0 download

TRANSCRIPT

  • Macrocyclization

    and

    Baeyer-Villiger Oxidation

    Greg Lackner

    Overman Group Topics Presentation

    June 18, 2012

  • Diverse Applications of Macrocycles

    azithromycin

    Macrocycles as drug candidates

    “Compromise between structural organization and flexibility”

    Candidates typically contain little modification of natural macrocycles

    amphotericin B

    cyclosporin

    rifampicin

    Driggers, E.; Hale, S.; Lee, J.; Terrett, N. Nat. Rev. Drug Discov. 2008, 7, 608-624

  • Diverse Applications of Macrocycles

    Macrocycles in nature

    Macrocycles in chelation chemistry

    chlorin

    heme B

    macrocycle shown to coordinate Cu2+

    10,000 times more strongly!

    Cabbiness, D.; Margerum, D. J. Am. Chem. Soc. 1969, 91, 6540-6541

    Cabbiness, Margerum, 1969

  • Macrolactonization

    Parenty, A.; Moreau, X.; Campagne, J.-M. Chem. Rev. 2006, 106, 911-939

    Simple disconnection in macrolide synthetic targets

    May require alcohol protecting groups, dilute conditions

    Alcohol epimerization and olefin isomerization may occur under

    activation conditions

    Requires activation of alcohol or carboxylic acid

  • Macrolactonization: Ring Size and

    Reactive Conformation

    Substituents play an important role in directing cyclization

    Andrus et al., 1996

    Parenty, A.; Moreau, X.; Campagne, J.-M. Chem. Rev. 2006, 106, 911-939

  • Macrolactonization: Ring Size and

    Reactive Conformation

    Mulzer et al. J. Am. Chem. Soc. 1991, 113, 910

    White et al. J. Am. Chem. Soc. 2001, 123, 8593

    Reactive conformation can provide regioselective cyclization

    Mulzer, 1991

    White, 2001

  • Carboxylic Acid Activation

    Corey & Nicolau, 1974 (biomimetic) Yamaguchi, 1979 (>200 refs!)

    Yamamoto, 1996

    a “diolide”

    Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. Bull. Chem. Soc. Jpn. 1979, 52, 1989

    Corey, E. J.; Nicolaou, K. C. J. Am. Chem. Soc. 1974, 96, 5614

    Ishihara, K.; Kubota, M.; Kurihara, H.; Yamamoto, H. J. Org. Chem. 1996, 61, 4560

  • Alcohol Activation

    Mitsunobu conditions,

    (Steglich operational

    modification, 1991)

    Evans, 2002

    Justus, K.; Steglich, W. Tetrahedron Lett. 1991, 32, 5781

    Evans, D.A.; Hu, E.; Burch, J.D.; Jaeschke, G. J. Am. Chem. Soc. 2002, 124, 5654

  • Iodonium- And Epoxide-Mediated

    Lactonizations

    Competing cyclization pathways can make

    these strategies problematic

    Rousseau, 2004 Hoye, 2003

    Simonot, B.; Rousseau, G. J. Am. Chem. Soc. 1993, 58, 4

    Hoye, T.R.; Hu, M. J. Am. Chem. Soc. 2003, 125, 9576

  • Translactonization

    Corey & Nicolau, 1977

    “Interconversion rate decreases as ring size increases”

    Vedejs, 1987

    Corey, E. J.; Brunelle, D. J.; Nicolaou, K. C.; J. Am. Chem. Soc. 1997, 99, 7359

    Vedejs, E.; Powell, D. W. J. Am. Chem. Soc. 1982, 104, 2046

  • Macrolactamization

    Almost exclusively via carboxylic acid activation

    Many peptide coupling reagents suitable for macrolactamization

    Often accelerated by metal ions

    Boger, 2003

    Chlorofusin

    Lee, S. Y.; Clark, R. C.; Boger, D. L. J. Am. Chem. Soc. 2007, 129, 9860

  • Macrolactamization

    Phosphonium-type reagents – more resistant to α-epimerization

    than carbodiimides

    PyBop

    VanNieuwenhze, 2007

    Patellamide A

    Garcia-Reynaga, P.; VanNieuwenhze, M. S. Org. Lett. 2008, 10 (20), 4621-4623

  • Diels-Alder and NHK Macrocyclizations

    Advantage over macrolactonization/macrolactamization:

    Generation of skeletal bonds and stereochemical information

    Sorensen, 2005

    1

    2

    Kishi, 2005

    Zapf, C. W.; Harrison, B. A.; Drahl., C.; Sorensen, E. J. Angew. Chem., Int. Ed. 2005, 44, 6533-6537

    Namba, K.; Kishi, Y. J. Am. Chem. Soc. 2005, 127, 15382-15383

  • Prins-Driven Macrocyclization

    Wender, P. A. et al. J. Am. Chem. Soc. 2002, 124, 13648-13649

    Wender, P. A.; DeChristopher, B. A.; Schrier, A. J. J. Am. Chem. Soc. 2008, 130, 6658-6659

    Wender, 2002 and 2008

  • Alkyne Haloallylation Macrocyclization

    Hoye, 2005

    A proposed mechanism:

    Hoye, T. R.; Wang, J. J. Am. Chem. Soc. 2005, 127, 6950-6951

  • Olefination/Macrocyclization

    Phillips, 2006

    Velazquez, 2007

    • RCM macrocyclizations common and reliable

    88% (2 steps)

    O’Neil, G. W.; Phillips, A. J. J. Am. Chem. Soc. 2006, 128, 5340-5341

    Velazquez, F. et al. Org. Lett. 2007, 9, 3061-3064

  • Multicomponent Macrocyclizations

    Wessjohann, 2007

    Michalik, D.; Schaks, A.; Wessjohann, L. A. Eur. J. Org. Chem. 2007, 149-157

  • Wessjohann, 2007

    Multicomponent Macrocyclizations

    Michalik, D.; Schaks, A.; Wessjohann, L. A. Eur. J. Org. Chem. 2007, 149-157

  • Macrocyclic Ketone Oxidation

    Clyne, D. S.; Weiler, L. Tetrahedron 1999, 55, 13659-13682

    Weiler, 1999

  • 1899: An Unexpected Discovery

    Adolf von Baeyer, Victor Villiger

    Examining ring cleavage of cyclic ketones

    Many experiments established composition of Caro’s reagent

    Search for comparable oxidants led to first synthesis of organic peracids

    Baeyer, A.; Villiger, V. Ber. Dtsch. Chem. Ges. 1899, 32, 3625

  • Determining the Mechanism

    Baeyer and Villiger believed their oxidation to be mechanistically similar to the

    Beckmann rearrangement (dioxirane intermediate?) at that time

    Dilthey, Inkel, Stephan, 1940

    *Dimer must be a byproduct, not an intermediate

    Dilthey, W.; Inckel, M.; Stephan, H. J. Prakt. Chem. 1940, 154, 219-237

  • Labeling Experiments

    Doering & Dorfman, 1953

    only product observed

    Doering, W. v. E.; Dorfman, E. J. Am. Chem. Soc. 1953, 75, 5595-5598

  • Determining The Stereochemical Outcome

    Turner, 1950

    Products saponified and derivitized to phthalates

    Mixed with natural phthalate samples and melting point measured

    Migration occurs with retention of stereochemistry

    Mislow & Brenner, 1953 Rozzell & Benner, 1983

    Turner, R. B.; J. Am. Chem. Soc. 1950, 72, 882-885

    Mislow, K.; Brenner, J. J. Am. Chem. Soc. 1953, 75, 2318-2322

    Rozzell, J. D. Jr.; Benner, S. A. J. Org. Chem. 1983, 48, 1190-1193

  • Migrating Group Preference

    Migratory aptitude has largely been elucidated experimentally

    Directly related to positive charge-stabilizing ability

    3o alkyl > cyclohexyl > 2o alkyl > benzyl > phenyl

    > primary alkyl > cyclopropyl ≈ cyclopentyl > methyl

    Hawthorne, 1957

    Doering & Speers, 1950

    Hawthorne, M. F.; Emmons, W. D.; McCallum, K. S. J. Am. Chem. Soc. 1958, 80, 6393-6398

    Doering, W. v. E.; Speers, L. J. Am. Chem. Soc. 1950, 72, 5515-5518

  • Peracid oxidant can influence migration

    Hawthorne, 1957

    Murray, Johnson, Pederson, Ott, 1958

    Migrating Group Preference: Inconsistencies

    Baeyer & Villiger, 1899

    Migratory aptitudes are strong predictions, not rigid laws

    Baeyer, A.; Villiger, V. Ber. Dtsch. Chem. Ges. 1899, 32, 3625

    Hawthorne, M. F.; Emmons, W. D.; McCallum, K. S. J. Am. Chem. Soc. 1958, 80, 6393-6398

    Murray, M. F. Johnson, B. A.; Pederson, R. L.; Ott, A. C. J. Am. Chem. Soc., 1956, 78, 981-984

  • Oxidant Considerations

    Peracids are effective oxidants, but too unstable for large-scale applications

    Noyori, 1983

    Thompson, 1987

    Newer peroxide reagents less chemoselective;

    alkenes, amines, phosphines, sulfides incompatible

    Suzuki, M.; Takada, H.; Noyori, R. J. Org. Chem. 1982, 47 (5), 902-904

    Brougham, P.; Cooper, M. S.; Cummerson, D. A.; Heaney, H.; Thompson, N. Synthesis, 1987, 11, 1015-1017

    cyclohexanone to caprolactone: 76%

    cyclohexanone to caprolactone: 57%

  • Hydrogen Peroxide As The Oxidant

    Cheaper, greener reagent than peracids

    Water byproduct simplifies purification

    but,

    Water can hydrolyze ester/lactone product

    Hydrogen peroxide is relatively unreactive; requires activation

    Williams, 1961

    Brinck, 2001

    McClure, J. D.; Williams, P. H. J. Org. Chem. 1962, 27 (1), 24-26

    Carlqvist, P.; Eklund, R.; Brinck, T. J. Org. Chem. 2001, 66, 1193

  • “Aerobic” Baeyer-Villiger Reaction

    Ishii, 2001

    H2O2 (the true oxidant) generated in situ

    Caprolactone is a desirable intermediate for polymer production

    Fukuda, O.; Sakaguchi, S.; Ishii, Y. Tetrahedron Lett. 2001, 42, 3479

  • Transition Metal Catalysis

    Early transition metals form electrophilic peroxo complexes

    MTO shows promise; catalyzes both epoxidations and Baeyer-Villiger

    Jacobsen, 1978

    Jacobsen, S. E.; Tang, R.; Mares, F. J. Am. Chem. Soc., Chem. Commun. 1978, 888

    Hermann, W. A.; Fischer, R. W.; Correia, J.D.G. J. Mol. Catal. 1994, 94, 213

    Herrmann, 1994

  • Asymmetric Variants

    Strukul, 1993

    Bolm, 1994

    (±)

    4

    (±)

    Seebach, 2001

    (±)

    D. T. Frisone, M.; Pinna, F.; Strukul, G. Organometallics, 1993, 12, 148-156

    Bolm, C.; Schlingloff, G.; Weikhardt, K. Angew. Chem. 1994, 106, 1944

    Aoki, M.; Seebach, D.Helv. Chim. Acta 2001, 84, 187

  • Biocatalytic Variants

    Baeyer-Villiger Monooxygenases (BVMOs) are selective

    enzyme catalysts from many yeasts and E. coli

    Require NADPH as a cofactor; O2 is oxidant

    t. Brink, G.-J.; Arends, I. W. C. E.; Sheldon, R. A. Chem. Rev., 2004, 104, 4105-4123

    Cyclohexane monooxygenase (CHMO)

  • BVMOs In Synthesis

    Mihovilovic, 2006

    Mihovilovic, Marko D.; Bianchi, D. A.; Rudroff, F. Cheminform, 2006, 37

  • Baeyer-Villiger In Total Synthesis

    Demnitz, 1995

    Demnitz, F. W. J.; Philippini, C.; Raphael, R. A. J. Org. Chem. 1995, 60, 5114-5120

  • Baeyer-Villiger In Total Synthesis

    Iwata, 1994

    Iwata, 1997

    Iwata, C. et al. Tetrahedron Lett. 1994, 35 (24) 4125-4128

    Iwata, C. et al. Tetrahedron Lett. 1997, 38 (10) 1801-1804

  • Summary

    Macrocyclizations efficiently construct large, biologically relevant molecules

    Macrolactonizations and macrolactamizations are the most straightforward

    and most common, but introduce little structural complexity compared to

    other methods

    Molecular preorganization will determine macrocyclization success

    The Baeyer-Villiger reaction uses a peroxide reagent to oxidize ketones to esters

    In general, the most substituted carbon atom migrates in the rate-determining step

    Enzymes can be used for selective, green Baeyer-Villiger reactions