lysozyme and its crystalline polymorphs: the effects of

17
Lysozyme and its Crystalline Polymorphs: the Effects of different substrates on Lysozyme Crystallization By Dean Sage and Shane Matthews Written by Dean Sage Young Scholars Program 2011 Sponsored by: Dr. Thayumanasamy Somasundaram

Upload: others

Post on 24-May-2022

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lysozyme and its Crystalline Polymorphs: the Effects of

Lysozyme and its Crystalline Polymorphs: the Effects of different substrates on Lysozyme

Crystallization By Dean Sage and Shane Matthews

Written by Dean Sage

Young Scholars Program 2011

Sponsored by: Dr. Thayumanasamy Somasundaram

Page 2: Lysozyme and its Crystalline Polymorphs: the Effects of

Abstract: Most simply, proteins are linear strands of amino acids that glob

together in a specific form, but more importantly they all perform a specific

function. Many, but far from all protein structures and even fewer functions

are currently known. Aside from pure science, pharmaceutical companies

have great use for knowing protein structure and function so they can be

modified to help treat disorders and create more efficient drugs. The

question soon becomes how, and the answer is X- Ray crystallography. In

order to do this, however, the proteins must be crystallized: this project is a

study on the polymorphs a single protein can form when in the presence of

different ions. Additionally, the different crystals were then X- Rayed to

create a diffraction pattern that can later be used to create an electron density

model of the protein, which is crucial to coming up with the specific

structure.

Introduction:

Lysozyme is a simple protein found in saliva and tears, but most

commonly extracted from hen egg whites. It was discovered in 1922 by

Alexander Flemming, and through X- Ray diffraction its structure was

uncovered in 1965 by David Chilton Phillips. The protein protects the body

by damaging bacterial cell walls (via a system that allows it to hydrolyze

vital linkages in the cell wall). Chosen because it is readily available from

2

Page 3: Lysozyme and its Crystalline Polymorphs: the Effects of

chicken (Gallus gallus domesticus) eggs, lysozyme also tends to produce

high resolution diffractions and is relatively easy to crystallize, which was

ideal for a first time experiment.

In order to help determine the structure of lysozyme, three biophysical

tests were performed (circular dichroism, UV- visual spectrophotometer, and

fluorospectrophotometer) prior to actually crystallizing the protein to

confirm the source of lysozyme was actually uncontaminated lysozyme.

Finally the crystals grown in the presence of different ions were X- Rayed

and their respective diffractions processed and analyzed to determine the

crystals’ space groups, which, given more time, could have been used to

create a three dimensional model of lysozyme.

Procedure:

To begin with, 500mL of 0.1M sodium acetate buffer was created, and

with acetic acid the pH was brought from 8 to 4.8- this will simply be

referred to as the buffer. In addition, the buffer was used to create 50mL

each of 10% (w/v) Sodium Chloride, Sodium Iodide, Sodium Nitrate, and

Potassium Thiocyanate solutions by adding in amounts respective to the

compunds’ formula weights. The final set of solutions were lysozyme in

buffer at various concentrations (45, 40, 30, 20, 15, 10)mg/mL, made one

3

Page 4: Lysozyme and its Crystalline Polymorphs: the Effects of

mL at a time in microfuge tubes. Another sample was created with

potassium nitrate at a very low concentration for the biophysical tests.

Three trays were set up in total using the hanging drop method, which

entails a drop of 2 μL lysozyme solution + 2 μL buffer suspended over 600

μL well solution (10% of the indicated compound dissolved in buffer).

45mg/mL lysozyme + NaCl

45mg/mL lysozyme + NaCl

45mg/mL lysozyme + NaCl

45mg/mL lysozyme + NaI

45mg/mL lysozyme + NaI

45mg/mL lysozyme + NaI

20mg/mL lysozyme + NaCl

20mg/mL lysozyme + NaCl

20mg/mL lysozyme + NaCl

20mg/mL lysozyme + NaI

20mg/mL lysozyme + NaI

20mg/mL lysozyme + NaI

10mg/mL lysozyme + NaCl

10mg/mL lysozyme + NaCl

10mg/mL lysozyme + NaCl

10mg/mL lysozyme + NaI

10mg/mL lysozyme + NaI

10mg/mL lysozyme + NaI

40mg/mL lysozyme + NaCl

40mg/mL lysozyme + NaCl

40mg/mL lysozyme + NaCl

40mg/mL lysozyme + NaI

40mg/mL lysozyme + NaI

40mg/mL lysozyme + NaI

30mg/mL lysozyme + NaCl

30mg/mL lysozyme + NaCl

30mg/mL lysozyme + NaCl

30mg/mL lysozyme + NaI

30mg/mL lysozyme + NaI

30mg/mL lysozyme + NaI

15mg/mL lysozyme + NaCl

15mg/mL lysozyme + NaCl

15mg/mL lysozyme + NaCl

15mg/mL lysozyme + NaI

15mg/mL lysozyme + NaI

15mg/mL lysozyme + NaI

4

Page 5: Lysozyme and its Crystalline Polymorphs: the Effects of

40mg/mL lysozyme +NaNO3

40mg/mL lysozyme + NaNO3

40mg/mL lysozyme + NaNO3

40mg/mL lysozyme +KSCN

40mg/mL lysozyme + KSCN

40mg/mL lysozyme + KSCN

30mg/mL lysozyme + NaNO3

30mg/mL lysozyme + NaNO3

30mg/mL lysozyme + NaNO3

30mg/mL lysozyme + KSCN

30mg/mL lysozyme + KSCN

30mg/mL lysozyme + KSCN

15mg/mL lysozyme + NaNO3

15mg/mL lysozyme + NaNO3

15mg/mL lysozyme + NaNO3

15mg/mL lysozyme + KSCN

15mg/mL lysozyme + KSCN

15mg/mL lysozyme + KSCN

While the crystals were forming, the biophysical tests were carried out

on a single, low concentration of lysozyme in buffer. First the Circular

Dichroism, followed by spectrophotometer UV- visual, and lastly the

fluorospectrophotometer.

The next step was to observe the new crystals under a microscope and

select the best candidates for diffraction:

Good crystal: all in one piece

Needle crystal: too fragile to harvest for diffraction, which renders it useless.

In order to diffract the crystals, they had to be removed from the tray

and prepared. For cryo temperature samples, this was done with a wire loop.

5

Page 6: Lysozyme and its Crystalline Polymorphs: the Effects of

The cover slip over the well was removed, and under a microscope, a loop

used to pick up the crystal along with a thin film of buffer. The newly

suspended crystal is then inserted in the X- Ray machine

while the liquid nitrogen stream is interrupted by a brass

plate. Once the loop is secure, the brass plate is removed

as quickly as possible and the 100K stream of nitrogen flash freezes the

crystal and solution to prevent the ice interference

An unfrozen crystal mounted in a loop

that would accompany slower freezing.

The cryo samples yielded less than desirable diffractions, so an

attempt was made at 20 degrees Celsius. Because freezing isn’t an option, a

loop would quickly dry and render the crystal either lost or useless. To solve

this problem the cover slip

containing the crystal was again

removed from the well, placed

under a microscope, and instead

of being scooped up with the

loop, a glass capillary was used to trap the crystal. Once it held the crystal

and some buffer, the capillary was broken off with forceps and sealed with

capillary wax on both ends. Mounted in modeling clay, the capillary was

inserted into the X- Ray machine and diffracted.

6

Page 7: Lysozyme and its Crystalline Polymorphs: the Effects of

Regardless of temperature or suspension method within the machine,

the actual X- Raying process was very much the same. Given the negative

effects of being exposed to X – rays, everything after locking the sample in

the machine was performed remotely from a section of the lab protected by

glass infused with lead to block any scattered X rays. The computers open

the shutters, bombarding the sample with X- Rays. Behind the sample is a

digital detector, which translates the intensity picked up onto the computer

screen, thus converting X- Rays into visible light. The angles of diffraction

reveal the inner structure of the crystal.

Results:

The first usable results were the observations of the crystals, which at first

glance, revealed different structures, implying different space groups from

the same protein only due to the

different ions in solution.

Although not all of the

diffractions turned out great, some

were more than usable:

7

Page 8: Lysozyme and its Crystalline Polymorphs: the Effects of

8

Through computer analysis this diffraction confirmed the P 4 3 1 symmetry

of this crystal that was previously hypothesized, the other diffractions

provided conclusive evidence that P1 and P1 21 1 symmetry had been

achieved as well.

Acknowledgements:

We would like to thank FSU and all those who helped make it

possible, through the Young Scholars Program, for us to study in an

esteemed research facility. Also to Claudius Mundoma for guiding us

through the Physical Biochemistry Facility. Special thanks to our sponsor,

Thayumanasamy Somasundaram, for not only putting up with us for an

entire six weeks but showing us through the whole process of X- ray

crystallography and what really goes into making scientific research happen.

References:

"Lysozyme." Lysozyme. 2006. Web. 14 July 2011. <http://lysozyme.co.uk/>. PDB. "RCSB PDB." Protein Data Bank. RCSB. Web. 14 July 2011. <http://www.pdb.org/pdb/results/results.do?outformat=>. "X-RAY Crystallography." St. Olaf College—A Private Liberal Arts

College of the Lutheran Church in Minnesota. St. Olaf College. Web. 14

July 2011. <http://www.stolaf.edu/people/hansonr/mo/x-ray.html>.

Page 9: Lysozyme and its Crystalline Polymorphs: the Effects of

Shane Matthews Space Groups of Lysozyme 

  1

            

X­Ray Crystallography: The Effect of Different Substrat ozyme 

 es on the Crystalline Structure of Lys

by S ge  

hane Matthews and Dean Sa 

Written by Shane Matthews  

FSU Young Scholars Program, Summer 2011  

Sponsor: Dr. Thayumanasamy Somasundaram 

Page 10: Lysozyme and its Crystalline Polymorphs: the Effects of

Shane Matthews Space Groups of Lysozyme 

  2

Abstract 

  X‐ray crystallography is a science that can be used to solve the 

structure of any molecule that will crystallize. After analyzing the 

diffraction pattern that results from diffracting a crystal, a 

crystallographer can determine the electron density of the molecule, 

and by extension, the structure of the molecule.  

Lysozyme, an enzyme found in chicken egg whites as well as 

various human secretions, is a protein which readily crystallizes and 

diffracts. Lysozyme has various crystalline arrangements, known as 

space groups, which can be achieved through the use of differing 

substrates during the crystallization process. A space group is an 

expression of the symmetry within the unit cell of the crystal. The unit 

cell is the smallest repeating structure inside the crystal.  

The property of having more than one possible crystalline 

arrangement is known as polymorphism. When the differing space 

groups are achieved through solvation, this quality is known as 

pseudopolymorphism. Lysozyme crystals were grown using the hanging 

drop method. 

Page 11: Lysozyme and its Crystalline Polymorphs: the Effects of

Shane MSpace Groups of L

  Confirmation of differing crystalline arrangements can be 

achieved through x‐ray diffraction. Analysis of the diffraction pattern 

will indicate the space group of the diffracted crystal. 

atthews ysozyme 

  3

 

Introduction 

Since the early 1950s, X‐Ray Crystallography has been the chief 

technique used in solving the structure of atoms and molecules. 

Crystallographers can solve the structure of any molecule that will form 

a crystal, and because numerous organic, inorganic, and biological 

molecules will crystallize in the right condition. After beaming 

concentrated x‐rays through the crystal, a diffraction pattern is 

produced. After extensive analysis of dozens of diffraction pattern 

produced from the crystal at various angles, the electron density of the 

molecule in question can be determined, and from this, the structure of 

the molecule. 

  X‐ray crystallography has been used extensively to solve the 

structures of thousands of proteins, as well as other molecules. Because 

the structure of a protein and the function of a protein are closely 

related, solving the structure of a protein or other biological molecule 

can be useful in the fields of pharmaceuticals, medicine, biology, and 

Page 12: Lysozyme and its Crystalline Polymorphs: the Effects of

Shane MatthewSpace Groups of Lysozym

chemistry. Knowing the structure and the function of a protein makes 

manipulation of the protein possible. Understanding a protein can help 

produce new drugs in order to treat diseases. Understanding the 

structure and function of molecules in general helps further scientific 

esearch and development. 

s e 

  4

r

 

Procedure and Methods 

  Three trays of crystals were prepared using the hanging drop 

method, with 600 mL of 10% w/v sodium acetate buffer. Several μL of 

protein solution is  

The substrates used during preparation of the first and second 

trays were sodium chloride and sodium iodide. Although the substrates 

used for the first and second crystal trays were identical, each tray had 

several different concentratio sozyns of ly me.   

  Tray 1  Tray 2  Tray 3 Solutes  NaCl, NaI  NaCl, NaI  NaNO3, KSCN Lysozyme concentrations (mg/mL) 

45, 30, 15 40, 20, 10  40, 20, 10 

 

  The crystals were diffracted using both the loop method and the 

capillary method. 

Page 13: Lysozyme and its Crystalline Polymorphs: the Effects of

Shane MatthewsSpace Groups of Lysozyme

  In the loop method, a crystal is plucked from the glass slide, flash 

  

  5

frozen at 100 Kelvin, and then diffracted.  

  In the capillary method, a crystal is manually sucked into a glass 

or quartz capillary. The capillary is then sealed with wax on either side. 

The benefit to this method is that liquid nitrogen is not necessary; 

however, the capillary itself does produce interference during 

diffraction. 

 

Results 

In terms of crystal quality, the second and third trays were much 

more successful than the first, which produced only spiny crystals, 

which cannot be diffracted with any meaningful results. 

  However, the second and third trays both produced crystals 

hich were diffracted successfully. w

 

 

 

 

Page 14: Lysozyme and its Crystalline Polymorphs: the Effects of

Shane Matthews Space Groups of Lysozyme 

  6

 

 

Lysozyme crystals achieved in the second and third crystal trays. 

Substrates used in the crystallization process, clockwise starting from 

the top right: Potassium thiocyanate, sodium iodide, sodium chloride, 

nd sodium nitrate. a

 

 

 

Page 15: Lysozyme and its Crystalline Polymorphs: the Effects of

Shane Matthews Space Groups of Lysozyme 

  7

 

 

These crystals were diffracted with some success. 

 

 

Substrates used to crystallize the crystal that produced each respective 

diffraction, clockwise starting from the top right: Potassium thiocyanate, 

sodium iodide, sodium chloride, and sodium nitrate. The best diffraction 

Page 16: Lysozyme and its Crystalline Polymorphs: the Effects of

Shane MattheSpace Groups of Lysozy

was produced by the crystal crystallized using NaCl; the resolution of 

the diffraction is the highest. 

ws me 

  8

Cys g d trates talline arrangements achieved usin ifferent subs

Substrate used during crystallization  Space Group NaCl  P4 32 12 NaI  P1 NaNO3  P1 KSCN  P1 21 1 

 

  Using four different substrates, three unique space groups of 

lysozyme were achieved; this is a perfect example of 

pseudopolymorphism. 

Conclusion 

  The protein lysozyme crystallized successfully using different 

substrates, including sodium chloride, sodium iodide, sodium nitrate, 

and potassium thiocyanate. The use of different substrates during the 

crystallization process of lysozyme produced crystals of varying space 

groups. 

  X‐ray crystallography is a very valuable science, in that it has 

solved the structure of thousands of molecules. Because the structure of 

a molecule and function of a molecule are related, knowledge of the 

Page 17: Lysozyme and its Crystalline Polymorphs: the Effects of

Shane Matthews Space Groups of Lysozyme 

structure is very valuable in that it can be used to manipulate molecules 

for use in pharmaceuticals. 

  9