lyophilization of proteinslyophilization of proteins ...presentation – 5th islfd annual meeting...

33
Lyophilization of Proteins Lyophilization of Proteins Lyophilization of Proteins Lyophilization of Proteins FTIR FTIR-Guided Formulation Development Guided Formulation Development Dr Heiko Dr Heiko A Schiffter A Schiffter Dr. Heiko Dr. Heiko A. Schiffter A. Schiffter [email protected] [email protected] http:// http://www.ibme.ox.ac.uk www.ibme.ox.ac.uk (until 30 (until 30 th th April 2012) April 2012) Dr. Heiko A. Schiffter – IBME Oxford Presentation – 5 th ISLFD Annual Meeting – 30 th March 2012

Upload: others

Post on 28-Jan-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Lyophilization of ProteinsLyophilization of Proteins ––Lyophilization of Proteins Lyophilization of Proteins ––FTIRFTIR--Guided Formulation DevelopmentGuided Formulation Development

    Dr HeikoDr Heiko A SchiffterA SchiffterDr. Heiko Dr. Heiko A. SchiffterA. [email protected]@gmail.comhttp://http://www.ibme.ox.ac.ukwww.ibme.ox.ac.uk (until 30(until 30thth April 2012)April 2012)

    Dr. Heiko A. Schiffter – IBME OxfordPresentation – 5th ISLFD Annual Meeting – 30th March 2012

    pp (( p )p )

  • Table Table ofof contentscontentsTable Table ofof contentscontents

    Part 1: FTIR Microscopy and Chemical Imaging• Idea and Objective• FTIR protein spectrum and analysisp p y• Multivariate data analysis• In situ freeze-drying formulation development• In situ study of phase separationIn situ study of phase separation

    Part 2: Multiphoton MicroscopyMPM d FD Mi S t• MPM and FD Microscopy Setup

    • 3D Imaging of FD stage samples using MPM• 3D Imaging of Phase Separation using MPM• In-situ Study of Phase Separation using MPM

    Summary and ConclusionsSummary and Conclusions

    Dr. Heiko A. Schiffter – IBME OxfordPresentation – 5th ISLFD Annual Meeting – 30th March 2012

  • Part IPart I ::Part IPart I ::Part IPart I ::

    FTIR FTIR MicroscopyMicroscopy andand Chemical ImagingChemical ImagingPart IPart I ::

    FTIR FTIR MicroscopyMicroscopy andand Chemical ImagingChemical Imaging

    • Idea and Objective

    • FTIR protein spectrum and analysisp p y

    • Multivariate data analysis

    • In situ freeze-drying formulation development• In situ freeze-drying formulation development

    • In situ study of phase separation

    Dr. Heiko A. Schiffter – IBME OxfordPresentation – 5th ISLFD Annual Meeting – 30th March 2012

  • Th B k d IdTh B k d IdTh B k d IdTh B k d Id

    Part 1: FTIR spectroscopyPart 1: FTIR spectroscopy

    The Background IdeaThe Background IdeaThe Background IdeaThe Background Idea

    • Spray-drying is a complex drying process in regards to the drying kinetics and product g y g pmorphology

    • Single Droplet Drying of proteins and protein formulations via acoustic levitation for theformulations via acoustic levitation for the determination of drying kinetics and product characteristics in spray-drying

    • What is acoustic levitation?

    Dr. Heiko A. Schiffter – IBME OxfordPresentation – 5th ISLFD Annual Meeting – 30th March 2012

  • Th B k d IdTh B k d IdTh B k d IdTh B k d Id

    Part 1: FTIR spectroscopyPart 1: FTIR spectroscopy

    The Background IdeaThe Background IdeaThe Background IdeaThe Background Idea• Single Droplet Drying using acoustic levitationSingle Droplet Drying using acoustic levitation

    • for drying kinetics analysis• A better understanding for the product at hand g p

    micrometerscrew

    transducer

    piezo-crystallevitation chamber

    CCD-camera

    micrometersample

    back lightillumination

    bellows macrolens

    reflector

    micrometerscrew Controlled

    evaporationmixer

    CEM

    air flow

    liquid flow

    to PC withimaging software

    Today used by GEA NiroGEA Niro

    Dr. Heiko A. Schiffter – IBME OxfordPresentation – 5th ISLFD Annual Meeting – 30th March 2012

  • F l i f Bi h i lF l i f Bi h i lF l i f Bi h i lF l i f Bi h i l

    Part 1: FTIR spectroscopyPart 1: FTIR spectroscopy

    Formulation of BiopharmaceuticalsFormulation of BiopharmaceuticalsFormulation of BiopharmaceuticalsFormulation of Biopharmaceuticals

    McNally, E.J. and Lockwood, C.E., The importance of a thorough

    Dr. Heiko A. Schiffter – IBME OxfordPresentation – 5th ISLFD Annual Meeting – 30th March 2012

    y, , , p gpreformulation study (illustrated by Leigh Rodano, BI Pharmaceuticals, Inc.)

  • Part 1: FTIR spectroscopyPart 1: FTIR spectroscopy

    FreezeFreeze--drying basicsdrying basicsFreezeFreeze--drying basicsdrying basics

    • Freeze-drying is a complex multistage process

    • Risk of product instability during each process step!(Freeze-concentration, phase separation, interfacial adsorption, dehydration)(Freeze concentration, phase separation, interfacial adsorption, dehydration)

    • Objective:To develop a tool for the in-situ study of product stability and excipient behaviour at the small scale during freeze-drying

    Dr. Heiko A. Schiffter – IBME OxfordPresentation – 5th ISLFD Annual Meeting – 30th March 2012

  • FPAFPA FTIR fFTIR f d id i ii

    Part 1: FTIR spectroscopyPart 1: FTIR spectroscopy

    FPAFPA--FTIR freezeFTIR freeze--drying drying mmicroscopy icroscopy ssystemystem

    ObjectiveSample & Spacer CaF2 window

    • FTIR microscope with focal plane array (FPA, 64 x 64) detector

    CasingCaF2CoverSlips

    Vacuum

    • Integrated miniature freeze-drying system

    Thermal Stage

    Slips

    CaF2 window

    Dr. Heiko A. Schiffter – IBME OxfordPresentation – 5th ISLFD Annual Meeting – 30th March 2012

  • FTIRFTIR iiFTIRFTIR ii

    Part 1: FTIR spectroscopyPart 1: FTIR spectroscopy

    FTIR FTIR proteinprotein spectrumspectrumFTIR FTIR proteinprotein spectrumspectrumQualitative and quantitative information about the protein secondary structure isQualitative and quantitative information about the protein secondary structure is obtained from the Amide bands of the infrared spectrum

    α helix

    0.12

    α-helix

    0.08

    0.10

    e

    0 04

    0.06A

    bsor

    banc

    e

    + further vibrationsβ-sheet

    0.02

    0.04A

    1900 1800 1700 1600 1500 1400 1300 1200

    0.00

    Wavenumber [cm-1]

    Dr. Heiko A. Schiffter – IBME OxfordPresentation – 5th ISLFD Annual Meeting – 30th March 2012

    Wavenumber [cm ]

  • FTIRFTIR ii l il iFTIRFTIR ii l il i

    Part 1: FTIR spectroscopyPart 1: FTIR spectroscopy

    FTIR FTIR proteinprotein spectrumspectrum analysisanalysisFTIR FTIR proteinprotein spectrumspectrum analysisanalysisAnalysis methods:Analysis methods:

    • Subtraction spectrum

    A f l• Area of overlap

    • 2nd derivative spectrumNo quantitative secondary structure data

    • Peak fitting (Gaussian curve fitting)

    Time intensive and highly subjective( g)

    0.025

    0.030 Amide I band observed Amide I band generated Peak 1Peak 2

    Structure Wavenumber [cm-1]

    0.010

    0.015

    0.020

    sorb

    ance

    [AU

    ] Peak 3 Peak 4 α-helix 1648 – 1657β-sheet 1623 – 1641

    1674 – 1695

    1720 1700 1680 1660 1640 1620 1600 1580

    0.000

    0.005

    Abs 1674 1695

    unordered 1642 – 1657turn 1662 – 1686

    Dr. Heiko A. Schiffter – IBME OxfordPresentation – 5th ISLFD Annual Meeting – 30th March 2012

    1720 1700 1680 1660 1640 1620 1600 1580

    Wavenumber [cm-1]

  • Part 1: FTIR spectroscopyPart 1: FTIR spectroscopy

    FTIRFTIR-- spectra evaluationsspectra evaluationsusing multivariate data analysisusing multivariate data analysis

    FTIRFTIR-- spectra evaluationsspectra evaluationsusing multivariate data analysisusing multivariate data analysisg yg yg yg y

    • Objective and fast approach towards spectra evaluation by multivariate data analysis using a partial least square (PLS) algorithmy g p q ( ) g

    Relates a known concentration (here amount of secondary structure) to absorbencies to generate a calibration curve

    Quantitative decomposition technique

    Decomposes spectral data and structural content into two sets of vectors (variance spectra – eigenvectors) and scores (critical shapes – loading factors)

    As spectral information and secondary structure are connected, the two sets of scores can be related to each other by regression and a calibration model canscores can be related to each other by regression and a calibration model can be constructed.

    Spectral decomposition and regression are performed in one stepSpectral decomposition and regression are performed in one step

    Dr. Heiko A. Schiffter – IBME OxfordPresentation – 5th ISLFD Annual Meeting – 30th March 2012

  • Part 1: FTIR spectroscopyPart 1: FTIR spectroscopy

    Multivariate Multivariate datadata analysisanalysis -- pure pure componentcomponent spectraspectraMultivariate Multivariate datadata analysisanalysis -- pure pure componentcomponent spectraspectraαα--helix (1660helix (1660 –– 1650 cm1650 cm--11))αα helix (1660 helix (1660 1650 cm1650 cm ))

    Intramolecular Intramolecular ββ--sheet (1695 sheet (1695 –– 1683 cm1683 cm--11 and 1644 and 1644 –– 1620 cm1620 cm--11))

    Intermolecular Intermolecular ββ--sheet (1620 sheet (1620 –– 1595 cm1595 cm--11))

    0.4

    0.6 α−helix intramol. β-sheet intermol. β-sheet0.025

    0.030 Carboxypeptidase A Concanavalin A HSA Chymotrypsin

    0.0

    0.2

    orba

    nce

    0.015

    0.020

    sorb

    ance

    Insulin

    0 4

    -0.2

    0.0

    Abso

    0.005

    0.010Abs

    1720 1700 1680 1660 1640 1620 1600 1580-0.6

    -0.4

    Wavenumber

    1720 1700 1680 1660 1640 1620 1600 1580

    0.000

    Wavenumber

    Dr. Heiko A. Schiffter – IBME OxfordPresentation – 5th ISLFD Annual Meeting – 30th March 2012

    WavenumberWavenumber

  • Part 1: FTIR spectroscopyPart 1: FTIR spectroscopy

    Protein α-helix (actual)α-helix

    (calculated)intra β-sheet

    (actual)intra β-sheet (calculated)

    inter β-sheet (actual)

    inter β-sheet (calculated)

    alkaline phosphatase 36.21% 37.68% 34.49% 35.15% 4.26% 4.66%

    bovine serum albumin 69.64% 71.19% 17.39% 13.95% 1.78% 2.28%

    carbonic anhydrase 14.05% 15.99% 46.29% 47.59% 7.15% 6.44%

    carboxypeptidase A 35.04% 37.45% 28.18% 27.74% 6.56% 6.03%

    catalase 35.86% 32.32% 38.91% 36.55% 6.64% 6.69%

    concanavalin A 0.00% 0.00% 60.45% 63.89% 9.45% 9.70%concanavalin A 0.00% 0.00% 60.45% 63.89% 9.45% 9.70%

    α-chymotrypsin 10.00% 13.61% 49.00% 52.47% n/a 5.59%

    β-galactosidase 42.78% 39.51% 36.05% 35.47% 3.63% 4.72%

    glucagon 59.12% 57.15% 15.88% 17.05% 0.42% 0.23%

    haemoglobin 74.68% 79.59% 10.63% 10.64% 2.79% 2.09%

    human serum albumin 74 48% 77 62% 13 81% 10 76% 0 57% 1 00%human serum albumin 74.48% 77.62% 13.81% 10.76% 0.57% 1.00%

    insulin 56.14% 51.23% 23.92% 22.46% 5.00% 4.79%

    lactate dehydrogenase 56.81% 61.39% 25.32% 23.46% 2.92% 1.94%

    lysozyme 51.92% 49.57% 21.84% 21.84% 4.17% 4.03%

    myoglobin 80.71% 78.04% 9.68% 12.56% 2.25% 2.28%

    ib l A 24 78% 23 39% 40 26% 42 09% 2 92% 3 65%

    Dr. Heiko A. Schiffter – IBME OxfordPresentation – 5th ISLFD Annual Meeting – 30th March 2012

    ribonuclease A 24.78% 23.39% 40.26% 42.09% 2.92% 3.65%

  • Part 1: FTIR spectroscopyPart 1: FTIR spectroscopy

    Multivariate Multivariate datadata analysisanalysis -- FTIR FTIR calibrationcalibration curvescurvesMultivariate Multivariate datadata analysisanalysis -- FTIR FTIR calibrationcalibration curvescurves8090

    α-helix 70 Intramolecular β-sheet

    50607080

    d [%

    ]

    α e

    40

    50

    60

    d [%

    ]

    β

    10203040

    calc

    ulat

    ed

    10

    20

    30

    calc

    ulat

    ed

    0 10 20 30 40 50 60 70 80

    0

    actual [%]

    r = 0.992

    10 20 30 40 50 60 700

    10 r = 0.992

    actual [%]

    8

    10 intermolecular β-sheet

    2

    4

    6

    calc

    ulat

    ed

    0 2 4 6 8 10

    0

    2

    r = 0.979

    Dr. Heiko A. Schiffter – IBME OxfordPresentation – 5th ISLFD Annual Meeting – 30th March 2012

    actual

  • II ii ff d id i ff l il i dd ll

    Part 1: FTIR spectroscopyPart 1: FTIR spectroscopy

    InIn--situsitu freezefreeze--drying drying fformulation ormulation ddevelopmentevelopment40°C 2nd Drying20°C

    30mins-40°C

    60mins100mTorr

    2nd Drying20°C 60mins

    100mTorrFreezing 1°C/min 1°C/min 1°C/min1st Drying

    –27°C 60mins

    Chymotrypsin (unformulated) 20 mg/ml; freezing rate: 0 250 25°°C/minC/min andChymotrypsin (unformulated) 20 mg/ml; freezing rate: 0.250.25 C/minC/min and 11°°C/minC/min; Sample volume: 2.5 μl

    αα--helixhelix IntramolIntramol IntermolIntermol αα--helixhelix ββ--sheetsheet ββ--sheetsheet

    UnprocessedUnprocessed 13.6%13.6% 52.5%52.5% 5.6%5.6%0.020

    unprocessed cooled at 0°C frozen at 1°C/min frozen at 0.25°C/min

    CooledCooled –– 0.2%0.2% + 0.3%+ 0.3% +/+/–– 0%0%

    FrozenFrozen atat(1(1°°C/ i )C/ i ) –– 3.2%3.2% –– 2.9%2.9% + 4.2%+ 4.2%0.010

    0.015

    freeze-thawed

    banc

    e [A

    U]

    (1(1°°C/min)C/min) %% %% %%

    Frozen at Frozen at (0.25(0.25°°C/min)C/min) –– 4.8%4.8% –– 3.0%3.0% + 5.9%+ 5.9%0.005

    Abso

    rb

    After freezeAfter freeze--thawing at thawing at 0.250.25°°C/minC/min

    –– 1.9%1.9% –– 1.1%1.1% + 1.9%+ 1.9%1700 1680 1660 1640 1620 1600

    0.000

    Wavelenth [cm-1 ]

    Dr. Heiko A. Schiffter – IBME OxfordPresentation – 5th ISLFD Annual Meeting – 30th March 2012

    Wavelenth [cm ]

  • II ii ff d id i ff l il i dd ll

    Part 1: FTIR spectroscopyPart 1: FTIR spectroscopy

    InIn--situsitu freezefreeze--drying drying fformulation ormulation ddevelopmentevelopment40°C 2nd Drying20°C

    30mins-40°C

    60mins100mTorr

    2nd Drying20°C 60mins

    100mTorrFreezing 1°C/min 1°C/min 1°C/min1st Drying

    –27°C 60mins

    Chymotrypsin (unformulated) 20 mg/ml; freezing rate: 0.250.25°°C/minC/min;

    y yp ( ) g ; g ;sample volume: 2.5 μl

    0 015

    0.020 unprocessed frozen at -40°C freeze-dried rehydrated

    αα--helixhelix IntramolIntramolββ--sheetsheet

    IntermoIntermoll ββ--sheetsheet

    0.010

    0.015

    rban

    ce [A

    U]

    UnprocessedUnprocessed 13.6%13.6% 52.5%52.5% 5.6%5.6%

    Frozen atFrozen at

    0 000

    0.005Abs

    or Frozen at Frozen at 0.250.25°°C/minC/min –– 4.8%4.8% –– 3.0%3.0% + 5.9%+ 5.9%

    FreezeFreeze--drieddried –– 6.6%6.6% –– 3.1%3.1% + 8.2%+ 8.2%

    1700 1675 1650 1625 1600

    0.000

    Wavelength [cm-1 ]RehydratedRehydrated –– 3.2%3.2% –– 2.1%2.1% + 4.1%+ 4.1%

    Dr. Heiko A. Schiffter – IBME OxfordPresentation – 5th ISLFD Annual Meeting – 30th March 2012

    g [ ]

  • II ii ff d id i ff l il i dd ll

    Part 1: FTIR spectroscopyPart 1: FTIR spectroscopy

    InIn--situsitu freezefreeze--drying drying fformulation ormulation ddevelopmentevelopment40°C 2nd Drying20°C

    30mins-40°C

    60mins100mTorr

    2nd Drying20°C 60mins

    100mTorrFreezing 1°C/min 1°C/min 1°C/min1st Drying

    –27°C 60mins

    Chymotrypsin (formulated) 20 mg/ml; concentration excipients:y yp ( ) g ; p30 mg/ml; freezing rate: 0.250.25°°C/minC/min and 11°°C/minC/min;sample volume: 2.5 μl

    IntramolIntramol IntermoIntermo αα--helixhelix IntramolIntramolββ--sheetsheet ll ββ--sheetsheet

    UnprocessedUnprocessed 13 6%13 6% 52 5%52 5% 5 6%5 6%

    0.020 unprocessed cooled at 0°C frozen at 1°C/min frozen at 0.25°C/minf th UnprocessedUnprocessed 13.6%13.6% 52.5%52.5% 5.6%5.6%

    CooledCooled –– 0.2%0.2% + 0.2%+ 0.2% +/+/–– 0%0%

    FF tt0.010

    0.015

    banc

    e [A

    U] freeze-thaw

    FrozenFrozen at at 11°°C/minC/min –– 1.9%1.9% + 0.3%+ 0.3% + 0.4%+ 0.4%

    Frozen at Frozen at 0 250 25°°C/ iC/ i –– 2.9%2.9% –– 1.61.6%% + 3.1%+ 3.1%

    0.005

    Abs

    orb

    0.250.25°°C/minC/min 2.9%2.9% 1.61.6%% 3.1% 3.1%

    After freezeAfter freeze--thawing at thawing at

    °°C/C/–– 0.5%0.5% –– 0.2%0.2% + 0.7%+ 0.7%1700 1680 1660 1640 1620 1600

    0.000

    Wavelength [cm-1 ]

    Dr. Heiko A. Schiffter – IBME OxfordPresentation – 5th ISLFD Annual Meeting – 30th March 2012

    0.250.25°°C/minC/minWavelength [cm ]

  • II ii ff d id i ff l il i dd ll

    Part 1: FTIR spectroscopyPart 1: FTIR spectroscopy

    InIn--situsitu freezefreeze--drying drying fformulation ormulation ddevelopmentevelopment40°C 2nd Drying20°C

    30mins-40°C

    60mins100mTorr

    2nd Drying20°C 60mins

    100mTorrFreezing 1°C/min 1°C/min 1°C/min1st Drying

    –27°C 60mins

    Chymotrypsin (formulated) 20 mg/ml; concentration excipients:

    Chymotrypsin (formulated) 20 mg/ml; concentration excipients:30 mg/ml; freezing rate: 0.250.25°°C/minC/min; sample volume: 2.5 μl

    αα--helixhelix IntramolIntramolββ--sheetsheet

    IntermoIntermoll ββ--sheetsheet

    0.020 unprocessed frozen at 0.25°/min freeze-dried rehydrated

    UnprocessedUnprocessed 13.6%13.6% 52.5%52.5% 5.6%5.6%

    Frozen atFrozen at0.010

    0.015

    rban

    ce [A

    U]

    Frozen at Frozen at 0.250.25°°C/minC/min –– 2.9%2.9% –– 1.61.6%% + 3.1%+ 3.1%

    FreezeFreeze--drieddried –– 3.5%3.5% –– 2.1%2.1% + 4.5%+ 4.5%0.005

    Abso

    RehydratedRehydrated –– 1.1%1.1% –– 0.4%0.4% + 1.0%+ 1.0%1700 1675 1650 1625 16000.000

    Wavelength [cm-1 ]

    Dr. Heiko A. Schiffter – IBME OxfordPresentation – 5th ISLFD Annual Meeting – 30th March 2012

    g [ ]

  • II ii ff d id i ff l il i dd ll

    Part 1: FTIR spectroscopyPart 1: FTIR spectroscopy

    InIn--situsitu freezefreeze--drying drying fformulation ormulation ddevelopmentevelopment40°C 2nd Drying20°C

    30mins-40°C

    60mins100mTorr

    2nd Drying20°C 60mins

    100mTorrFreezing 1°C/min 1°C/min 1°C/min1st Drying

    –27°C 60mins

    20mg/ml rh albumin in 145 mM NaCl solution at pH 7 120mg/ml rh albumin in 145 mM NaCl solution at pH 7 120mg/ml rh albumin in 145 mM NaCl solution at pH 7 1

    Solution at 20°C 100% 20mg/ml rh albumin in 145 mM NaCl solution20mg/ml rh albumin in 145 mM NaCl solution with 15µg/L T80 & 30mM Octanoate

    20mg/ml rh albumin in 145 mM NaCl solution at pH 7.120mg/ml rh albumin in 145 mM NaCl solution at pH 7.1,with 30mM Octanoate, 15µg/L Polysorbate 8020mg/ml rh albumin in 145 mM NaCl solution at pH 7.1,with 5% w/w Sucrose

    Solution at 20 C 100% Frozen at -40°C 89.36% Dried at 20°C 91.82%

    Solution at 20°C 100% Frozen at -40°C 90.70% Dried at 20°C 92.37%

    Solution at 20°C 100% Frozen at -40°C 95.46% Dried at 20°C 95.10% 10

    20mg/ml rh albumin in 145 mM NaCl solution, with 15µg/L T80 & 30mM Octanoate 20mg/ml rh albumin in 145 mM NaCl solution, with 5% w/wSucrose

    th

    6

    8

    ge C

    ompa

    red

    wit

    20 D

    egre

    e C

    (%)

    2

    4

    Stuc

    ture

    Cha

    ngS

    olut

    ion

    at 2

    Frozen (at -40 Degree C) Dried (at 20 Degree C)0

    Physical States

    Dr. Heiko A. Schiffter – IBME OxfordPresentation – 5th ISLFD Annual Meeting – 30th March 2012

  • Part 1: FTIR spectroscopyPart 1: FTIR spectroscopy

    C i f f l ti b f & ft FDC i f f l ti b f & ft FDComparison of formulations before & after FDComparison of formulations before & after FD

    7.0

    Loss of alpha-helix structure (%) Shift in fluorescence emision (nm)Increase in agregate conten (%)7.0

    Loss of alpha-helix structure (%) Shift of fluorescence emission (nm)I i t t t (%)

    1 5

    2.0

    6.5

    7.0 Increase in agregate conten (%)

    1 5

    2.0

    6.5

    7.0 Increase in aggregate content (%)

    0 0

    0.5

    1.0

    1.5

    0 0

    0.5

    1.0

    1.5

    20 (f) rhA 50 (f) rhA 50 (f) rhA+Suc 50 (f) rhA+Treh-1.0

    -0.5

    0.0

    20 rhA 50 rhA 20 rhA+Suc 50 rhA+Treh-1.0

    -0.5

    0.0

    Comparison of defatted rh albumin at 20 mg/ml, Comparison of formulated rhA at 20 mg/ml 50 mg/mlp g ,50 mg/ml, 50 mg/ml with 5% (w/v) sucrose, and50 mg/ml with 5% (w/v) trehalose, (alpha-helix, fluorescence emission and aggregate, before and after freeze-drying)

    Comparison of formulated rhA at 20 mg/ml, 50 mg/ml, 50 mg/ml with 5% (w/v) sucrose, and 50 mg/ml with 5% (w/v) trehalose, (alpha-helix, fluorescence emission and aggregate, before and after freeze-drying)

    Dr. Heiko A. Schiffter – IBME OxfordPresentation – 5th ISLFD Annual Meeting – 30th March 2012

  • TT dd TT ’ D i i’ D i i

    Part 1: FTIR spectroscopyPart 1: FTIR spectroscopy

    TTCC and and TgTg’ Determination’ Determination– 28.7°C Example:

    – 25.9°C

    Example:50 mg/ml rh albumin formulatedwith 50 mg/ml trehalose

    – 23.8°C

    – 21.2°C

    Tg‘-25.24°C

    Dr. Heiko A. Schiffter – IBME OxfordPresentation – 5th ISLFD Annual Meeting – 30th March 2012

  • Part 1: FTIR spectroscopyPart 1: FTIR spectroscopy

    II itit t d f ht d f h ti d i l hili titi d i l hili ti

    2nd Drying1st Drying

    InIn--situ situ study of phase study of phase sseparation during lyophilizationeparation during lyophilization

    20°C30mins

    -40°C60mins

    2nd Drying20°C 60mins

    100mTorrFreezing 1°C/min 1°C/min 1°C/min

    1st Drying -27°C 60mins

    100mTorr

    5% (w/w) PEG 4000 and 5% (w/w) Dextran 500 kDa5% (w/w) PEG 4000 and 5% (w/w) Dextran 500 kDain 145 mM NaCl solution at pH 7.1

    Visible light image of freeze-dried mixture of PEG

    4000 and Dextran 500

    FPA-FTIR image ofDextran 500 distribution

    within the freeze-dried mixture

    FPA-FTIR image ofPEG 4000 distribution

    within freeze-dried mixture

    Dr. Heiko A. Schiffter – IBME OxfordPresentation – 5th ISLFD Annual Meeting – 30th March 2012

  • Part 1: FTIR spectroscopyPart 1: FTIR spectroscopy

    II itit t d f ht d f h ti d i l hili titi d i l hili ti

    2nd Drying1st Drying

    InIn--situ situ study of phase study of phase sseparation during lyophilizationeparation during lyophilization

    20°C30mins

    -40°C60mins

    2nd Drying20°C 60mins

    100mTorrFreezing 1°C/min 1°C/min 1°C/min

    1st Drying -27°C 60mins

    100mTorr

    20 mg/ml rh albumin in 145 mM NaCl solution at pH 7.1,5% (w/w) PEG 4000 and 5% (w/w) Dextran 500 kDa

    e of

    re

    of

    an50

    0

    of

    4000

    m

    ixtu

    re

    ble

    light

    imag

    ee-

    drie

    d m

    ixtu

    r00

    and

    Dex

    tra

    A-F

    TIR

    imag

    e ut

    ion

    of P

    EG4

    reez

    e-dr

    ied

    m

    PEG rich area

    Visi

    bfr

    eeze

    PEG

    400

    0 e

    FPA

    dist

    ribu

    with

    in fr

    Dextran rich area

    R im

    age

    of

    f Dex

    tran

    500

    drie

    d m

    ixtu

    re

    R im

    age

    of

    utio

    n of

    m

    in®

    with

    in

    ed m

    ixtu

    re

    Mix area

    FPA

    -FTI

    Rdi

    strib

    utio

    n o

    with

    in fr

    eeze

    -

    FPA

    -FTI

    Rdi

    strib

    uR

    ecom

    bum

    free

    ze-d

    rieDr. Heiko A. Schiffter – IBME OxfordPresentation – 5th ISLFD Annual Meeting – 30th March 2012

    d w

  • Part 1: FTIR spectroscopyPart 1: FTIR spectroscopy

    II itit t d f ht d f h ti d i l hili titi d i l hili ti

    2nd Drying1st Drying

    InIn--situ situ study of phase study of phase sseparation during lyophilizationeparation during lyophilization

    20°C30mins

    -40°C60mins

    2nd Drying20°C 60mins

    100mTorrFreezing 1°C/min 1°C/min 1°C/min

    1st Drying -27°C 60mins

    100mTorr

    20 mg/ml rh albumin in 145 mM NaCl solution at pH 7.1,

    PEG rich area

    5% (w/w) PEG 4000 and 5% (w/w) Dextran 500 kDa

    PEG rich area

    Dextran rich area

    Mix areaMix area

    A id 1 i f h lb iAmide 1 region of rh albumin at different sample position

    Dr. Heiko A. Schiffter – IBME OxfordPresentation – 5th ISLFD Annual Meeting – 30th March 2012

  • Part 1: FTIR spectroscopyPart 1: FTIR spectroscopy

    II itit t d f ht d f h ti d i l hili titi d i l hili tiInIn--situ situ study of phase study of phase sseparation during lyophilizationeparation during lyophilization

    20°C10mins

    -40°C60mins

    2nd Drying20°C 60mins

    10mTorrFreezing 1°C/min 1°C/min 1°C/min

    1st Drying -27°C 60mins

    10mTorr

    Dextran ProteinDextran ProteinDextran ProteinDextran Protein

    PEG VisiblePEGProtein 2nd Structural Change DistributionPEG

    Protein 2nd Structural Change DistributionPEGProtein 2nd Structural Change Distribution

    Dr. Heiko A. Schiffter – IBME OxfordPresentation – 5th ISLFD Annual Meeting – 30th March 2012

    20°C-20°C-40°C20°C

  • Part IIPart II ::Part IIPart II ::Part IIPart II ::

    MPM MPM MicroscopyMicroscopyPart IIPart II ::

    MPM MPM MicroscopyMicroscopy

    • MPM and FD Microscopy Setup

    • 3D Imaging of FD stage samples using MPM3D Imaging of FD stage samples using MPM

    • 3D Imaging of Phase Separation using MPM

    I it St d f Ph S ti i MPM• In-situ Study of Phase Separation using MPM

    Dr. Heiko A. Schiffter – IBME OxfordPresentation – 5th ISLFD Annual Meeting – 30th March 2012

  • M l i hM l i h Mi &Mi &

    Part 2: Part 2: MultiphotonMultiphoton MicroscopyMicroscopy

    MultiphotonMultiphoton Microscopy &Microscopy &FreezeFreeze--Drying Microscopy System SetDrying Microscopy System Set--upup

    Laser Adjust SystemMPM

    Laser Control System

    y

    CyrostageControl SystemControl System

    Cyrostage

    MPM ControlSystem

    LN2 Tank

    Dr. Heiko A. Schiffter – IBME OxfordPresentation – 5th ISLFD Annual Meeting – 30th March 2012

  • 3D I i f l i3D I i f l i

    Part 2: Part 2: MultiphotonMultiphoton MicroscopyMicroscopy

    3D Imaging of samples in a 3D Imaging of samples in a cryostagecryostageusing MPMusing MPM

    33µm33µm

    3D MPM images of freeze-dried mixture of10% w/v FITC-PEG5000 and 10% w/v Cascade Blue dextran (10 kDa)

    (size 207 μm × 207 μm resolution 0 2 μm × 0 2 μm × 0 5μm)

    3D MPM images of freeze-dried mixture of10% w/v FITC-PEG5000 and 10% w/v Cascade Blue dextran (10 kDa)

    (size 207 μm × 207 μm resolution 0 2 μm × 0 2 μm × 0 5μm)

    Dr. Heiko A. Schiffter – IBME OxfordPresentation – 5th ISLFD Annual Meeting – 30th March 2012

    (size 207 μm × 207 μm, resolution 0.2 μm × 0.2 μm × 0.5μm).(size 207 μm × 207 μm, resolution 0.2 μm × 0.2 μm × 0.5μm).

  • 3D I i f Ph S i3D I i f Ph S i

    Part 2: Part 2: MultiphotonMultiphoton MicroscopyMicroscopy

    3D Imaging of Phase Separation3D Imaging of Phase Separationduring Freezeduring Freeze--DryingDrying

    Freeze-Dried Sample10% w/v FITC-PEG5000 + 10% w/v TRITC-dextran155,000(Size 621μm×621μm,

    Freeze-Dried Sample10% w/v FITC-PEG5000 + 10% w/v TRITC-dextran155,000(Size 621μm×621μm,

    Frozen and annealed for 240mins at -40°C 10% w/v FITC-PEG5000 + 10% w/v Cascade Blue dextran 10,000 + 20mg/ml Texas Red BSA

    Frozen and annealed for 240mins at -40°C 10% w/v FITC-PEG5000 + 10% w/v Cascade Blue dextran 10,000 + 20mg/ml Texas Red BSA

    Frozen and annealed for 240mins at -40°C 10% w/v FITC-PEG5000 + 10% w/v Cascade Blue dextran 10,000 + 20mg/ml Texas Red BSA(Size 621μm×621μm,

    Frozen and annealed for 240mins at -40°C 10% w/v FITC-PEG5000 + 10% w/v Cascade Blue dextran 10,000 + 20mg/ml Texas Red BSA(Size 621μm×621μm,

    resolution 0.6 μm×0.6μm×1.5μm)resolution 0.6 μm×0.6μm×1.5μm) (Size 148μm×148μm,resolution 0.145μm×0.145μm)(Size 148μm×148μm,resolution 0.145μm×0.145μm)

    resolution 0.6 μm×0.6μm×1.5μm)resolution 0.6 μm×0.6μm×1.5μm)

    Dr. Heiko A. Schiffter – IBME OxfordPresentation – 5th ISLFD Annual Meeting – 30th March 2012

  • S f SS f S

    Part 2: Part 2: MultiphotonMultiphoton MicroscopyMicroscopy

    InIn--situsitu Study of Phase Separation using MPMStudy of Phase Separation using MPM

    Freeze-Drying Cycle with Annealing at -9°C for 240 mins10% w/v FITC-PEG5000 + 10% w/v Cascade Blue dextran 10,000 + 20mg/ml Texas Red BSA

    Freeze-Drying Cycle with Annealing at -9°C for 240 mins10% w/v FITC-PEG5000 + 10% w/v Cascade Blue dextran 10,000 + 20mg/ml Texas Red BSA

    Dr. Heiko A. Schiffter – IBME OxfordPresentation – 5th ISLFD Annual Meeting – 30th March 2012

    Visible Light Pictures 1000μm×1000μm (Resolution 1μm×1μm)Visible Light Pictures 1000μm×1000μm (Resolution 1μm×1μm)

  • S f SS f S

    Part 2: Part 2: MultiphotonMultiphoton MicroscopyMicroscopy

    InIn--situsitu Study of Phase Separation using MPMStudy of Phase Separation using MPM

    Freeze-Drying Cycle with Annealing at -9°C for 240 mins10% w/v FITC-PEG5000 + 10% w/v Cascade Blue dextran 10,000 + 20mg/ml Texas Red BSA

    Freeze-Drying Cycle with Annealing at -9°C for 240 mins10% w/v FITC-PEG5000 + 10% w/v Cascade Blue dextran 10,000 + 20mg/ml Texas Red BSA

    Dr. Heiko A. Schiffter – IBME OxfordPresentation – 5th ISLFD Annual Meeting – 30th March 2012

    3D MPM Images 621μm×621μm (Resolution 0.6 μm×0.6μm×1.5μm)3D MPM Images 621μm×621μm (Resolution 0.6 μm×0.6μm×1.5μm) Zoom-In MPM Slice Images 148μm×148μm (Resolution 0.145μm×0.145μm)Zoom-In MPM Slice Images 148μm×148μm (Resolution 0.145μm×0.145μm)

  • SSSummary and conclusionsSummary and conclusions• FTIR spectroscopy can be used for a range of protein applications including the• FTIR spectroscopy can be used for a range of protein applications including the

    formulation development for freeze-drying

    • Multivariate data analysis by PLS algorithm provides a rapid and objective way ofMultivariate data analysis by PLS algorithm provides a rapid and objective way of quantitative evaluation of protein FTIR spectra

    • The combination of FTIR and freeze-drying microscopy enables the in-situ study of protein stability during lyophilization in the small scale

    • MPM enables to look into the pore formation and structure during freeze-drying

    • Both, FTIR microscopy and MPM are expensive specialist techniques and l ti l li t d d t l i t h irelatively complicated data analysis techniques are necessary

    • Only ultra small scale analysis possible and the question in regards to scalability is so far unansweredis so far unanswered

    Final question: Will this ever be used wide spread?

    Dr. Heiko A. Schiffter – IBME OxfordPresentation – 5th ISLFD Annual Meeting – 30th March 2012

    • Final question: Will this ever be used wide spread?

  • AcknowledgementsAcknowledgementsAcknowledgementsAcknowledgements

    • Dr. Renchen Liu

    • Mr Vivasvat Kaul

    Institute of Biomedical Engineering,University of Oxford

    • Prof. Geoffrey Lee

    • Prof. Zhanfeng Cui

    • Dr. Sebastian Vonhoff

    • Mr Felix Wolf Division of Pharmaceutics University of Erlangen• Phil Morton

    Division of Pharmaceutics, University of Erlangen

    Thank you very much for your attentionThank you very much for your attentionThank you very much for your attentionThank you very much for your attention

    Dr. Heiko A. Schiffter – IBME OxfordPresentation – 5th ISLFD Annual Meeting – 30th March 2012

    y y yy y yy y yy y y