lp 3 greenhouse gases - stanford earth · a. short‐wave radiation b. long‐wave radiation c....

53
LP 3 # of Days 3 Prior Knowledge Students will have heard of greenhouse gases. They probably will know very little about energy balance. California English- Language Arts Content Standards Reading 2.5 Listening and Speaking 1.1, 2.2 (b,c) Lesson Objective Students will be able to identify greenhouse gases and their sources and apply the properties of these gases and radiative forcing to model Earth's energy budget. Language Goals/Demands Lesson Assessment Concept map on days 2-3, formative - connection of sources and sinks, Lab activity California State Science Standards Earth Science 4.c, 4.d, 6.a, 7.b, 8.b; Investigation 1 a, b, c, d, and k Materials Needed Powerpoint, Materials for greenhouse gas effect activity; Resonance models with tennis balls, etc.; Gas Files Activity What Worked Well Time Learning Task or Activity Day 1 3 min BW: Study for the Quiz over LP 1 & 2 - Check HW problems on the overhead 15 min Quiz 7 minutes What do you already know? What are the greenhouse gases? Where do they come from? How do they work? 10 minutes Greenhouse Gas Presentation - If the amount of energy that comes in is the same amount of energy that goes out, how can our planet stay warm? - The answer is greenhouse gases. - Show pictures of a greenhouse and describe their properties. OR show this 6 minute video that is quite entertaining http://www.youtube.com/watch?v=AIBk0pGV_BQ LECTURE/DISCUSSION See 3.1.3 Greenhouse Gases Slides #3-5 Use 3.1.4 Student Notes Handout Students should use the notetaking page 3.1.4 to record notes during the lecture. There are also a few questions on the back to use during the resonance model activity or demonstration. Greenhouse Gases INDIVIDUAL SEAT WORK INDIVIDUAL SEAT WORK 3.1.2 QUIZ KWL Chart See 3.1.3 Greenhouse Gases Slides #2 Activating prior knowledge. Before naming the greenhouse gases ask what students already know. Changes for Next Time Method & Notes

Upload: others

Post on 03-Jul-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: LP 3 Greenhouse Gases - Stanford Earth · a. Short‐wave radiation b. Long‐wave radiation c. Non‐wave radiation 3. The energy that is emitted from the Earth travels in the form

LP 3# of Days 3

Prior Knowledge

Students will have heard of greenhouse gases. They probably will know very little about energy balance.

California English-Language Arts

Content Standards

Reading 2.5Listening and Speaking 1.1, 2.2 (b,c)

Lesson Objective

Students will be able to identify greenhouse gases and their sources and apply the properties of these gases and radiative forcing to model Earth's energy budget.

Language Goals/Demands

Lesson Assessment

Concept map on days 2-3, formative - connection of sources and sinks, Lab activity

California State Science

StandardsEarth Science 4.c, 4.d, 6.a, 7.b, 8.b; Investigation 1 a, b, c, d, and k

Materials Needed

Powerpoint, Materials for greenhouse gas effect activity; Resonance models with tennis balls, etc.; Gas Files Activity What Worked Well

Time Learning Task or ActivityDay 1

3 min BW: Study for the Quiz over LP 1 & 2- Check HW problems on the overhead

15 minQuiz

7 minutes

What do you already know? What are the greenhouse gases? Where do they come from? How do they work?

10 minutes

Greenhouse Gas Presentation- If the amount of energy that comes in is the same amount of energy that goes out, how can our planet stay warm?- The answer is greenhouse gases.- Show pictures of a greenhouse and describe their properties.OR show this 6 minute video that is quite entertaining http://www.youtube.com/watch?v=AIBk0pGV_BQ

LECTURE/DISCUSSIONSee 3.1.3 Greenhouse Gases Slides #3-5 Use 3.1.4 Student Notes Handout Students should use the notetaking page 3.1.4 to record notes during the lecture. There are also a few questions on the back to use during the resonance model activity or demonstration.

Greenhouse Gases

INDIVIDUAL SEAT WORK

INDIVIDUAL SEAT WORK3.1.2 QUIZKWL ChartSee 3.1.3 Greenhouse Gases Slides #2 Activating prior knowledge. Before naming the greenhouse gases ask what students already know.

Changes for Next Time

Method & Notes

Page 2: LP 3 Greenhouse Gases - Stanford Earth · a. Short‐wave radiation b. Long‐wave radiation c. Non‐wave radiation 3. The energy that is emitted from the Earth travels in the form

17 min

Resonance Model Demonstration - Show students different models of gas compounds and how they resonate. Have students connect the different wavelengths with resonance. What would happen without greenhouse gases? Goldilocks slide.Use this website to show different resonance patterns of vibrations http://chemtube3d.com/vibrationsCO2.htm

3 min + HW Preparation for Greenhouse Gas Lab Activity - Students wil think about and prepare for the lab activity tomorrow. Show the materials.

Day 2

3 minBW: What would happen if there were no greenhouse gases? Review your lab set up for today's lab.

35 min

The Greenhouse Gas Effect Activity-Either students test their experimental design (inquiry-based) or they all follow the same procedures (written directions).-Students should work in groups to set up their labs. They might have different set ups and results if doing their own design. If they are sucessful at trapping CO2 they should see a change in temperature between the two bottles.

7 min

Debrief Lab and Discussion- Debrief the lab, discuss the greenhouse effect and how the gas in the atmosphere does cause an increase in temperature.

5 min

Energy Balance Diagram or Review of Resonance- Teachers and students will step through the different parts of the energy balance diagrams with students providing explanations for each of the arrows

INDIVIDUAL SEAT WORK

HANDS-ON LAB See 3.2.1a Greenhouse Gas Lab – Inquiry, self guidedOR 3.2.1b Greenhouse Gas Lab – specific directionsStudents will need some time to discuss their experimental set up and to decide on a plan as groups. They will need about 20 minutes to collect data.

DISCUSSION/LECTURE/Q&ASee 3.1.3 Greenhouse Gases Slides #12 or 13Either review resonance or review the more complicated energy balance as a wrap up for the lab. This is a complicated model of the greenhouse gases and the energy balance. Use it to step through the process and show all the different processes that are working together.

LECTURE/DEMONSTRATIONSee 3.1.3 Greenhouse Gases Slides #6-9Show the types of gases in our atmosphere and what the temperature of the earth would be without GHGs. DEMONSTRATION - Follow notes on 3.1.4 Collect data with different groups on the board or any way you want. 3.1.4a Task Card for student investigation 3.1.5 RESONANCE MODEL MAKING (Optional) students make their own models- will take an entire class period 3.1.6 GOLDILOCKS ACTIVITY (Optional) Creation of atmospheric bean models to compare Earth, Mars and Venus

3.1.7 HOMEWORK

DISCUSSION/LECTURE/Q&ASee 3.1.3 Greenhouse Gases Slides #10-11

Page 3: LP 3 Greenhouse Gases - Stanford Earth · a. Short‐wave radiation b. Long‐wave radiation c. Non‐wave radiation 3. The energy that is emitted from the Earth travels in the form

5 minConcept Map- Students will add to the concept map they started on the first day. Hand out the new words to be added.

HW Work on concept map

Day 3

3 min BW: What do you think are the sources of greenhouse gases?

7 min

Intrduction to today's activity: Sources and Sinks - Thought question about bathtub. - Refer back to the Dynamic Balance Model in LP2, yet the water is represents carbon here, rather than energy in the Energy Budget unit.

25 min

Gas Files Activity- Students look at data and graphs to determine the quantities and sources of the different greenhouse gases- Examples will deal with CO2, methane, nitrous oxide, and water vapor

15 min

Mitigation Strategies- Students now need to start to make the connection between carbon dioxide and reducing carbon emissions (mitigation)- Show the wedge diagram that will be used with the final assessment showing increases in carbon dioxide- Talk about three or four wedges - ways to mitigate more carbon emissions

HW

Concept Map - Students will add to the concept map they started on the first day. Hand out the new words they should add to their maps.

LECTURESee 3.3.3 Mitigation Strategies SlidesSee 3.3.5 Pictures of Power Plants - OPTIONAL

HOMEWORKUse 3.3.4 Concept Map Homework

INDIVIDUAL SEAT WORK, Check Concept Map

THINK/PAIR/SHAREUse 3.3.1 Bathtub Thoughts HandoutWHOLE CLASS DISCUSSION

GROUP WORKUse 3.3.2 Gas Files Activity

INDIVIDUAL SEAT WORKUse 3.2.2 Concept Map Homework

Page 4: LP 3 Greenhouse Gases - Stanford Earth · a. Short‐wave radiation b. Long‐wave radiation c. Non‐wave radiation 3. The energy that is emitted from the Earth travels in the form

GreenhouseGasesandEnergyBalanceLP33.0ListofResources3.1.1blank3.1.2QuizLP1&LP23.1.3GreenhouseGasesSlides3.1.4StudentNotesHandout(foruseduringslidesandresonancemodelactivity)3.1.4aTaskCardforResonanceModels3.1.5ResonanceModelMakingOPTIONAL(ifyouwantstudentstomaketheirownresonancemodels)3.1.6GoldilocksActivityOPTIONAL3.1.7Homework–LabSetUp3.2.1aGreenhouseGasLabINQUIRY3.2.1bGreenhouseGasLabWRITTEN3.2.2ConceptMapHomework3.3.1BathtubThoughtsHandout3.3.2GasFilesActivity3.3.3MitigationStrategiesSlides3.3.4ConceptMapHomework3.3.5PicturesofPowerPlantsOPTIONALSuppliesMaterialsforGHGeffectactivity 2Lsodabottles thermometers 2waystomakecarbondioxide Alka‐seltzertablets+water=carbondioxide Vinegar+bakingsoda=carbondioxide Aheatsource(lightbulbs)Resonancemodelswithtennisballs

Page 5: LP 3 Greenhouse Gases - Stanford Earth · a. Short‐wave radiation b. Long‐wave radiation c. Non‐wave radiation 3. The energy that is emitted from the Earth travels in the form

3.1.2QuizLP1&LP2Questionsandanswers.

1. Youhaveafriendthatlivesinthedesertwhereitalmostneverrains.Youtalktohimonthephoneandhesaysthatithasrainedforthelastthreedays.Hesaysthattheclimatemustbechanging.Howdoyourespond?

Iwouldtellmyfriendthatclimateisweatherthathappensoveralongperiod,often30years.Heexperiencedsomeoddweather,butthisisnotevidencefororagainstclimatechange.

2. TheenergythatisemittedfromtheSuntravelsintheformof:

a. Short‐waveradiationb. Long‐waveradiationc. Non‐waveradiation

3. TheenergythatisemittedfromtheEarthtravelsintheformof:

a. Short‐waveradiationb. Long‐waveradiationc. Non‐waveradiation

4. AvolcanoinHawaiieruptedandshotoutalotofash.Thisashformedhuge

thickcloudsoverHawaii.WhatdidthisvolcaniceruptiondotothealbedooverHawaii?

a. Increasethealbedob. Decreasethealbedoc. Keepthealbedothesame

5. IfthesolarconstantoftheSundoubledwhatwouldhappentothetemperature

oftheEarthifallelsewaskeptconstant?

a. Thetemperaturewouldgodownb. Thetemperaturewouldstayexactlythesamec. Thetemperaturewouldincrease

Page 6: LP 3 Greenhouse Gases - Stanford Earth · a. Short‐wave radiation b. Long‐wave radiation c. Non‐wave radiation 3. The energy that is emitted from the Earth travels in the form

Name________________________________________________________

1. Youhaveafriendthatlivesinthedesertwhereitalmostneverrains.Youtalktohimonthephoneandhesaysthatithasrainedforthelastthreedays.Hesaysthattheclimatemustbechanging.Howdoyourespond?

2. TheenergythatisemittedfromtheSuntravelsintheformof:

a. Short‐waveradiationb. Long‐waveradiationc. Non‐waveradiation

3. TheenergythatisemittedfromtheEarthtravelsintheformof:

a. Short‐waveradiationb. Long‐waveradiationc. Non‐waveradiation

4. AvolcanoinHawaiieruptedandshotoutalotofash.Thisashformedhuge

thickcloudsoverHawaii.WhatdidthisvolcaniceruptiondotothealbedooverHawaii?

a. Increasethealbedob. Decreasethealbedoc. Keepthealbedothesame

5. IfthesolarconstantoftheSundoubledwhatwouldhappentothetemperature

oftheEarthifallelsewaskeptconstant?

a. Thetemperaturewouldgodownb. Thetemperaturewouldstayexactlythesamec. Thetemperaturewouldincrease

Page 7: LP 3 Greenhouse Gases - Stanford Earth · a. Short‐wave radiation b. Long‐wave radiation c. Non‐wave radiation 3. The energy that is emitted from the Earth travels in the form

!"#$%$&'()*+$,-.$

%$

!/0$%$123$45/67$

89*:$;<*$=*>;$?*@$)"#+$@*$@(''$A*$(=9*+BC"B=C$;<*$)(D*:*=;$C:**=<EF+*$C"+*+$"=)$

@<*:*$;<*#$":*$?:EGH$$&;":;$@(;<$"$123$I<":;$(=$E:)*:$;E$)*;*:G(=*$@<";$+;F)*=;+$

"':*")#$J=E@H$

,$

Page 8: LP 3 Greenhouse Gases - Stanford Earth · a. Short‐wave radiation b. Long‐wave radiation c. Non‐wave radiation 3. The energy that is emitted from the Earth travels in the form

K$

/$C:**=<EF+*$(=$;<(+$)*L=(BE=$(+$"$<EF+*$F+*)$;E$;:"M$;<*$+F=N+$*=*:C#$(=$E:)*:$;E$

*>;*=)$;<*$C:E@(=C$+*"+E=$E:$C:E@$M'"=;+$(=$":*"+$;<";$@EF')$E;<*:@(+*$A*$;EE$IE')H$$

2*$F+*$;<(+$()*"$"+$"$@"#$;E$;<(=J$"AEF;$<E@$+F=N+$*=*:C#$(+$;:"MM*)$(=$EF:$

";GE+M<*:*H$$7<*$)(D*:*=I*$(+$;<";$;<*$O":;<$(+$=E;$+F::EF=)*)$A#$C'"++P$AF;$A#$

(=9(+(A'*$C"+$;<";$(+$"'+E$"A'*$;E$;:"M$*=*:C#$"=)$<*";H$

Q$

Page 9: LP 3 Greenhouse Gases - Stanford Earth · a. Short‐wave radiation b. Long‐wave radiation c. Non‐wave radiation 3. The energy that is emitted from the Earth travels in the form

&;F)*=;+$G(C<;$"'+E$<"9*$*>M*:(*=I*)$;<(+$?**'(=C$@<*=$;<*#$C*;$(=;E$"$I":$E=$"$<E;$

)"#H$$R;$?**'+$GFI<$@":G*:$(=+()*$;<*$I":$A*I"F+*$E?$;<*$;:"MM*)$"(:H$$&EP$(;$(+$)(D*:*=;$

;<"=$;<*$C:**=<EF+*$*D*I;$AF;$"$IE==*IBE=$;E$;<*(:$*>M*:(*=I*H$$&;F)*=;+$G(C<;$A*$

"A'*$IEG*$FM$@(;<$E;<*:$*>"GM'*+$"+$@*''H$

/(:$(=$;<*$I":$(+$;:"MM*)$"=)$I"=N;$C*;$EF;H$$8=$O":;<P$;<*:*$(+$=E$M<#+(I"'$AEF=)":#P$+E$

(;$(+$;<*$C"+*+$;<";$"I;F"''#$@E:J$;E$<E')$;<*$<*";H$/S*:$;<*+*$;<:**$+'()*+$+;F)*=;+$

+<EF')$A*$"A'*$;E$L''$EF;$;<*$C:"M<(I$E:C"=(T*:$IEGM":(=C$"=)$IE=;:"+B=C$"$

C:**=<EF+*$@(;<$;<*$UC:**=<EF+*$*D*I;V$$$

W$

!/0$%-$6O&8X/X4O$Y8!O3&$

YE+;$E?$EF:$";GE+M<*:*$(+$=(;:EC*=$"=)$E>#C*=P$=*(;<*:$E?$@<(I<$(+$"$C:**=<EF+*$C"+H$$

4EGM":*$;<(+$;E$;<*$ZE')('EIJ+$*D*I;H$$7<*$C:**=<EF+*$C"+*+$(=$EF:$";GE+M<*:*$":*$

'*++$;<"=$[H%\$E?$;<*$;E;"'$"GEF=;$E?$C"+$(=$;<*$";GE+M<*:*H$$0*;$;<*#$":*$@<";$G"J*$

EF:$M'"=*;$(=<"A(;"A'*H$$2(;<EF;$;<*$+G"''$"GEF=;$E?$C:**=<EF+*$C"+*+P$;<*$"9*:"C*$

;*GM*:";F:*$E=$;<*$M'"=*;$@EF')$A*$[$)*C:**+$]$

7<*:*$(+$"$G"^E:$G(+IE=I*MBE=$;<";$;<*$<E'*$(=$;<*$ETE=*$'"#*:$(+$;<*$M:(G":#$:*"+E=$

?E:$I'(G";*$I<"=C*H$R;$(+$IE::*I;$;E$+"#$;<";$;<*$ETE=*$<E'*$<"+$"$+G"''$*D*I;$E=$

I'(G";*$I<"=C*P$AF;$(+$=E;$;<*$G"(=$I"F+*H$$7<*$E;<*:$IE==*IBE=$A*;@**=$;<*+*$

(++F*+$(+$;<";$4<'E:E_FE:EI":AE=+$`4]4+a$"=)$;<*(:$=E=-ETE=*-)*+;:E#(=C$

:*M'"I*G*=;+$":*$9*:#$ME;*=;$C:**=<EF+*$C"+*+P$@<(I<$"'+E$IE=;:(AF;*$;E$I'(G";*$

I<"=C*H$&;F)*=;+$G"#$E:$G"#$=E;$A:(=C$FM$;<*+*$()*"+$(=$;<*(:$)(+IF++(E=H$

b$

Page 10: LP 3 Greenhouse Gases - Stanford Earth · a. Short‐wave radiation b. Long‐wave radiation c. Non‐wave radiation 3. The energy that is emitted from the Earth travels in the form

6O&8X/X4O$Y8!O3&-$$&<E@$;<*$;*==(+$A"''$GE)*'+$E?$;<*$C"+*+$

2<('*$;<(+$+'()*$(+$FMP$+;F)*=;+$@(''$IEGM'*;*$;<*$;"+J$I":)$;E$F+*$;<*$GE)*'+$"=)$

)(+IF++$;<*$?E''E@(=C$cF*+BE=+H$$!*M*=)(=C$E=$#EF:$+;F)*=;+$(;$@EF')$"'+E$A*$

ME++(A'*$;E$)E$;<(+$*=B:*'#$"+$"$)*GE=+;:"BE=H$

R+$;<*:*$"$?:*cF*=I#$";$@<(I<$(;$(+$GFI<$*"+(*:$;E$J**M$;<*$GE)*'$9(A:"B=Cd$/;$;<(+$

?:*cF*=I#$#EF:$GE)*'$GE'*IF'*$A*e*:$"A+E:A+$"=)$:*;"(=+$#EF:$*=*:C#$EF;MF;H$R?$

;<*:*$(+$+FI<$"$?:*cF*=I#P$)*;*:G(=*$@<";$(;$(+$(=$9(A:"BE=+$M*:$+*IE=)$A#$IEF=B=C$

;<*$=FGA*:$E?$9(A:"BE=+$(=$"$W-+*IE=)$(=;*:9"'$"=)$)(9()(=C$A#$WH$!E$";$'*"+;$;<:**$

;:("'+P$'*f=C$)(D*:*=;$G*GA*:$E?$#EF:$C:EFM$*>M*:(G*=;$"=)$EA;"(=$;<*$:"=C*$E?$

?:*cF*=I(*+$";$@<(I<$;<*$G">(GFG$*=*:C#$(+$"A+E:A*)H$6*M*";$;<(+$M:EI*)F:*$?E:$"''$

;<:**$GE)*'+H$

%H$5E@$)E$;<*$:*+E="=;$?:*cF*=I(*+$E?$;<*$K$GE)*'+$IEGM":*d$

,H$2<";$<#ME;<*+(+$I"=$#EF$?E:GF'";*$;E$*>M'"(=$#EF:$EA+*:9"BE=+d$

KH$g<#+(I(+;+$;*''$F+$;<";$;<*$A*<"9(E:$E?$;<*$GE)*'+$AF(';$?:EG$;<*$;*==(+$A"''+$(+$"$

CEE)$"="'EC#$E?$;<*$A*<"9(E:$E?$:*"'$GE'*IF'*+$E?$I":AE=$)(E>()*P$G*;<"=*P$"=)$

=(;:EC*=H$]:EG$;<*$EA+*:9"BE=+$E?$#EF:$GE)*'+P$I"=$#EF$*>M'"(=$@<#$+EG*$C"+*+$(=$

;<*$";GE+M<*:*$"A+E:A$(=?:":*)$:")("BE=$"=)$E;<*:+$)E$=E;d$

QH$2<#$)E$#EF$;<(=J$C:**=<EF+*$C"+*+$"A+E:A$(=?:":*)$:")("BE=$"=)$)E$=E;$"A+E:A$

9(+(A'*$'(C<;d$

h$

2<#$(+$;<*$C:**=<EF+*$*D*I;$+E$(GME:;"=;d$$7<(+$+'()*$IEGM":*+$;<*$;*GM*:";F:*+$E=$

;<:**$M'"=*;+$@(;<$"=)$@(;<EF;$C:**=<EF+*$C"+*+H$$/''$E?$;<*G$)E$*>M*:(*=I*$@":G*:$

;*GM*:";F:*+$@(;<$;<*$C:**=<EF+*$C"+*+H$$7<*$=*>;$+'()*$(+$+M*I(LI"''#$;<*$O":;<$"=)$

;*GM*:";F:*+$":*$:*ME:;*)$(=$]"<:*=<*(;$`@<(I<$G(C<;$A*$GE:*$?"G('(":$;E$;<*$

+;F)*=;+aH$

6*I*=;$I"'IF'"BE=+$A#$X/&/$"I;F"''#$MF;$;<*$;*GM*:";F:*$I<"=C*$)F*$;E$Z5Z+$";$

E='#$,[$)*C:**+P$=E;$;<*$KK$)*C:**+$(=$;<*$I<":;H$$7<(+$(+$GE+;'#$A*I"F+*$E?$F+(=C$"$

)(D*:*=;$"'A*)E$=FGA*:$;E$IE=+()*:$;<*$*D*I;+$E?$+E'":$"=)$'E=C@"9*$:")("BE=$E=$

;<*$M'"=*;":#$"'A*)EH$$7<*$I<"=C*)$=FGA*:$(+$`-%i$;E$-Wa$"=)$(+$I"''*)$;<*$

U";GE+M<*:*$*D*I;V$E?$C:**=<EF+*$C"+*+P$"+$EMME+*)$;E$;<*$U*=<"=I*)$";GE+M<*:(I$

;*+;V$"++EI(";*)$A#$;<*$(=I:*"+*$(=$C:**=<EF+*$C"+*+$)F*$;E$<FG"=$"IB9(B*+H$

i$

Page 11: LP 3 Greenhouse Gases - Stanford Earth · a. Short‐wave radiation b. Long‐wave radiation c. Non‐wave radiation 3. The energy that is emitted from the Earth travels in the form

7<(+$(+$"=$*>"GM'*$E?$@<#$@*$@"=;$;E$<"9*$C:**=<EF+*$C"+*+H$$7<*#$G"J*$EF:$M'"=*;$

(=<"A(;"A'*$"=)$A:(=C$;<*$;*GM*:";F:*$FM$;E$"$'*9*'$<FG"=+$I"=$'(9*$(=H$$R;$)E*+$=E;$

G*"=$;<";$;<*$;*GM*:";F:*$*9*:#@<*:*$E=$*9*:#)"#$(+$*cF"'$;E$W.$)*C:**+P$AF;$^F+;$

;<";$;<*:*$(+$"$):"G"BI$I<"=C*$A*I"F+*$E?$;<*$Z5ZH$$2*$J=E@$;<(+$A*I"F+*$@*$I"=$

'EEJ$";$E;<*:$M'"=*;+$`Y":+$"=)$j*=F+$F+F"''#a$$"=)$IEGM":*$;<*(:$;*GM*:";F:*+$"=)$

";GE+M<*:*+$;E$EF:+H$

.$

k+*$;<(+$+'()*$;E$:*'";*$A"IJ$;E$"=)$)*A:(*?$;<*$'"AH$$2<";$":*$;<*$IEGM":(+E=+$

A*;@**=$;<*$C:**=<EF+*$C"+$'"A$"=)$;<(+$M(I;F:*d$$$

/+J$+;F)*=;+$?E:$+(G('":(B*+$"=)$)(D*:*=I*+H$$7<*:*$(+$+M"I*$E=$;<*(:$'"A$=E;*+$;E$

@:(;*$;<*(:$IEGG*=;+H$

!"#$%&'()#**+%,-'*(*.*/$(

&EG*$C"+*+$M:*?*:*=B"''#$"A+E:A$I*:;"(=$@"9*'*=C;<+$E?$:")("BE=$"=)$":*$

;:"=+M":*=;$;E$E;<*:+H$$7<(+$(+$A*I"F+*$E?$:*+E="=I*H$$/+$@*$^F+;$+"@$@(;<$;<*$"GEF=;$

E?$+<"J(=C$(=$;<*$C"+$GE)*'+P$;<*#$+<"J*$GE:*$E:$'*++$)*M*=)(=C$E=$<E@$GFI<$*=*:C#$

#EF$MF;$(=;E$;<*GH$$7<*$'E=C$@"9*$:")("BE=$(+$;<*$:*+E="=I*$@"9*'*=C;<$E?$;<*$

C:**=<EF+*$C"+*+H$

%[$

Page 12: LP 3 Greenhouse Gases - Stanford Earth · a. Short‐wave radiation b. Long‐wave radiation c. Non‐wave radiation 3. The energy that is emitted from the Earth travels in the form

7<(+$(+$"$M(I;F:*$E?$;<*$=FGA*:+$;<";$C(9*$F+$;<*$C:**=<EF+*$*D*I;H$$7<(+$C(9*+$"$GE:*$

*=*:C#$AF)C*;$*>"GM'*$E?$;<*$M:*9(EF+$M(I;F:*H$$O>M'"(=$;<";$GE+;$E?$;<*$+E'":$

(::")("BE=$:*"I<(=C$;<*$'E@*:$";GE+M<*:*$(+$9(+(A'*$'(C<;P$AF;$;<*:*$":*$E;<*:$

@"9*'*=C;<+$M:*+*=;$"+$@*''H$&EG*$E?$;<*$C"+*+$`(=I'F)(=C$@";*:$9"ME:a$(=$;<*$

";GE+M<*:*$:*_*I;$(=IEG(=C$+E'":$(::")("BE=P$+EG*$"''E@$(;$;E$M"++$;<:EFC<$;E$;<*$

O":;<N+$+F:?"I*$`@<*:*$(;$(+$"A+E:A*)aP$"=)$+EG*$"A+E:A$(;H$$

7<*$:")("BE=$`GE+;'#$9(+(A'*$'(C<;a$;<";$(+$"A+E:A*)$(=$;<*$";GE+M<*:*$E:$A#$;<*$

O":;<N+$+F:?"I*$(+$:*-*G(e*)$"+$'E=C$@"9*$(=?:":*)$*=*:C#$`<*";aH$2<*=$'E=C$@"9*$

:")("BE=$(=;*:"I;+$@(;<$;<*$";GE+M<*:*P$)(D*:*=;$GE'*IF'*+$@(''$:*_*I;P$"A+E:AP$E:$

"''E@$(;$;E$M"++$;<:EFC<$;E$+M"I*H$gE(=;$EF;$;<";$;<*$M"++(=C$E?$'E=C$@"9*$:")("BE=$

?:EG$;<*$O":;<N+$+F:?"I*$;E$;<*$";GE+M<*:*P$A"IJ$;E$;<*$O":;<N+$+F:?"I*$"=)$+E$E=$(+$

;<*$?";*$E?$'":C*$cF"=BB*+$E?$+E'":$(::")("BE=$"=)$"$G"^E:$ME+(B9*$?E:I(=CH$&E$;<*$

";GE+M<*:(I$C"+*+$;<";$"''E@$9(+(A'*$'(C<;$;E$M"++$;<:EFC<$AF;$;<*=$"A+E:A$"=)$:*-

*G(;$'E=C$@"9*$:")("BE=$":*$E?$<FC*$(=;*:*+;$;E$F+$`;<*#$I"=$A*$;<EFC<;$E?$"+$'(J*$;<*$

I":N+$@(=)+<(*')aP$@*$I"''$;<*+*$UC:**=<EF+*$C"+*+V$A*I"F+*$;<*#$I:*";*$"$

UC:**=<EF+*$*D*I;V$(=$;<*$O":;<N+$";GE+M<*:*H$$

%%$

8g7R8X/3l$

7<(+$+'()*$(+$=E;$:*cF(:*)H$$R?$#EF$<"9*$BG*$"=)$(=I'(="BE=$";$;<(+$ME(=;P$#EF$IEF')$

:*M*";$;<*$:EM*$*>M*:(G*=;$?:EG$;<*$E;<*:$)"#H$$&;F)*=;+$@(''$+**$;<";$)(D*:*=;$

"GEF=;+$E?$*=*:C#$I"F+*+$;<*$:EM*$;E$:*+E=";*$";$)(D*:*=;$?:*cF*=I(*+H$

m/41Z68kX!$

O9*:#$EA^*I;$;<";$(+$?:**$;E$9(A:";*$<"+$(;+$E@=$=";F:"'$?:*cF*=I#H$R?$#EF$9(A:";*$"=$

EA^*I;$=*":$E=*$E?$(;+$=";F:"'$?:*cF*=I(*+P$(;+$GEBE=$G"#$C:E@$;E$cF(;*$'":C*$9"'F*+P$

"$M:EI*++$J=E@=$"+$:*+E="=I*H$YE'*IF'*+$A*<"9*$(=$;<*$+"G*$G"==*:l$;<*#$"A+E:A$

*=*:C#$=*":$;<*(:$:*+E="=;$?:*cF*=I(*+$"=)$9(A:";*P$I:*"B=C$<*";H$R=$;<(+$

)*GE=+;:"BE=$E?$GE)*'$GE'*IF'*+$E?$";GE+M<*:(I$C"+*+P$+;F)*=;+$I"=$G"J*$

EA+*:9"BE=+$"AEF;$:*+E="=;$?:*cF*=I(*+H$

m*$I":*$;<";$;<*$+;F)*=;+$)E$=E;$IE=?F+*$;<*$@"9*'*=C;<$E?$;<*$:")("BE=$`'E=C$"=)$

+<E:;$@"9*a$@(;<$;<*$:*+E="=I*$?:*cF*=I#P$"';<EFC<$;<*#$":*$I'E+*'#$:*'";*)H$$/$

GE'*IF'*$GE9*+$";$"$I*:;"(=$?:*cF*=I#$"=)$(;$(+$"$I*:;"(=$@"9*'*=C;<$E?$'(C<;$;<";$(+$

"A+E:A*)$A#$"$+M*I(LI$GE'*IF'*H$$$

%,$

Page 13: LP 3 Greenhouse Gases - Stanford Earth · a. Short‐wave radiation b. Long‐wave radiation c. Non‐wave radiation 3. The energy that is emitted from the Earth travels in the form

8g7R8X/3l$

7<(+$(+$"$GFI<$GE:*$IEGM'(I";*)$)("C:"GH$$7<*$()*"$(+$;E$?E''E@$;<*$*=*:C#$E=$;<*$'*S$

@<(I<$(+$;<*$(=IEG(=C$+E'":$:")("BE=$"=)$;<*=$?E''E@$;<*$*=*:C#$`EF;CE(=C$:")("BE=a$

EF;$E=$;<*$:(C<;H$$7<*$()*"$(+$;E$+<E@$;<";$;<*:*$":*$G"=#$GE:*$;<(=C+$CE(=C$E=$AF;$

;<";$;<*#$<"9*$;<*$C*=*:"'$()*"H$$!8$X87$&gOX!$788$Yk45$7RYO$5O6Onnnn$

%K$

Page 14: LP 3 Greenhouse Gases - Stanford Earth · a. Short‐wave radiation b. Long‐wave radiation c. Non‐wave radiation 3. The energy that is emitted from the Earth travels in the form

3.1.4StudentNotesHandoutName Period Date Whatarethepercentagesofdifferentcomponentsoftheatmosphere?

Nitrogen

Oxygen

Argon

GreenhouseGases

Whataresomegreenhousegases?WhatwouldhappentotheEarthifwewerenotexperiencingtheGreenhouseEffect?Whyisthesmall(lessthan1%)amountofgreenhousegasessoimportanttotheaveragetemperatureoftheEarth?Whereisoneplacegreenhousegasesareproduced?

Page 15: LP 3 Greenhouse Gases - Stanford Earth · a. Short‐wave radiation b. Long‐wave radiation c. Non‐wave radiation 3. The energy that is emitted from the Earth travels in the form

AFTERRESONANCEMODELACTIVITY:Recordeitheryourgrouporclassdata.DATAGreenhouseGas Frequencyatwhichresonanceisgreatest(record#ofvibrations

in5secondsdividedby5seconds)CarbonDioxide

Methane

Nitrogen

Whydoesthegreenhouseeffecthappen?Thinkabouttheresonantmodelsofthegases?

Page 16: LP 3 Greenhouse Gases - Stanford Earth · a. Short‐wave radiation b. Long‐wave radiation c. Non‐wave radiation 3. The energy that is emitted from the Earth travels in the form

TASKCARD:ResonanceModels–CarbonDioxide,MethaneandNitrogenYouwillbeexploringthreedifferentgreenhousegases,eachonerepresentedbyamodel.YourgroupwillusethemodelstomakeobservationsabouttheRESONANTFREQUENCYofeachgas.WHATTODOHoldyourmodelbythecenteratomandshakeit(fornitrogen,holdoneoftheends).Keeptheamplitudeofvibration(theshakingdistance)lessthan6inches.Besuretotryveryslowfrequencies(~2/second)aswellasfastones.OBSERVATIONSIsthereafrequencyatwhichitismucheasiertokeepthemodelvibrating?Atthisfrequencyyourmodelmoleculebetterabsorbsandretainsyourenergyoutput.Ifthereissuchafrequency,determinewhatitisinvibrationspersecondbycountingthenumberofvibrationsina5‐secondintervalanddividingby5.Whentoldrotatethroughdifferentstationsorswitchmodelswithothergroups.Repeatthisprocedureforallthreemodels.DATARecordyourdataonthebackofyourgreenhousegasnotesinthetableprovided.DISCUSSION:Asagroup,discussthefollowingquestions.1.Howdotheresonantfrequenciesofthe3modelscompare?2.Whathypothesiscanyouformulatetoexplainyourobservations?3.Physiciststellusthatthebehaviorofthemodelsbuiltfromthetennisballsisagoodanalogyofthebehaviorofrealmoleculesofcarbondioxide,methane,andnitrogen.Fromtheobservationsofyourmodels,canyouexplainwhysomegasesintheatmosphereabsorbinfraredradiationandothersdonot?4.Whydoyouthinkgreenhousegasesabsorbinfraredradiationanddonotabsorbvisiblelight?INDIVIDUALLY,recordyourgroupdataandanswerthefollowingquestionsonthebackofyournotetakingsheet.1.Whydoesthegreenhouseeffecthappen?Thinkabouttheresonantmodelsofthegases?

Page 17: LP 3 Greenhouse Gases - Stanford Earth · a. Short‐wave radiation b. Long‐wave radiation c. Non‐wave radiation 3. The energy that is emitted from the Earth travels in the form

3.1.5ResonanceModelMaking

ResonanceandGreenhouseGasesBackgroundEveryobjectthatisfreetovibratehasitsownnaturalfrequency.Ifyouvibrateanobjectnearoneofitsnaturalfrequencies,itsmotionmaygrowquitelarge,aprocessknownasresonance.Moleculesbehaveinthesamemanner:theyabsorbenergyneartheirresonantfrequenciesandvibrate,creatingheat.Inthisactivity,youaregoingtobuildmodelmoleculesofatmosphericgasesandmakeobservationsabouttheirresonantfrequencies.AdaptedfromOperationChemistryandGlobalWarmingActivitiesforHighSchoolScienceClasses,RosenthalandGolden,1991

DirectionstoBuildGasModelsYourteamwillbuildthreemolecules:carbondioxide,methane,andnitrogen.Thesethreegasesarefoundintheatmosphereatdifferentconcentrations.Youwillusethesemodelstofigureouttheirresonancefrequencywhichrelatestothewavelengthoflightthattheyabsorb.Carbondioxidemodel

1. Insertone10‐inchhacksawbladethroughacarbonatomwithtwoslits.Letitstickoutaboutoneinchontheotherside.

2. Repeattheprocedurewithanotherhacksawbladefromtheotherside.3. Addanoxygenatomtoeachendsothatthedistancebetweeneachoxygenandthe

centercarbonis5inches.Methanemodel

1. Insertone10‐inchhacksawbladethroughthecarbonatomwithfourslitssotheendsticksoutaboutoneinchontheotherside.

2. Repeattheprocedurewithanotherhacksawbladefromtheotherside.3. Repeatsteps1and2throughtheotherpairofslits.Youshouldnowhaveacarbonatom

with4arms.4. Addonehydrogenatomtoeachofthearmssothatthedistancebetweeneach

hydrogenandthecentralcarbonis5inches.Nitrogenmodel

1. Insertoneshortpieceofhacksawbladeintoeachofthe3slitsinoneofthenitrogenatoms.

2. Addtheremainingnitrogenatombyinsertingthe3bladeendsintoitsslits.

Page 18: LP 3 Greenhouse Gases - Stanford Earth · a. Short‐wave radiation b. Long‐wave radiation c. Non‐wave radiation 3. The energy that is emitted from the Earth travels in the form

WhattoDoHoldagasmodelbythecenteratomandshakeit(fornitrogen,holdoneoftheends).Keeptheamplitudeofvibration(theshakingdistance)lessthan6inches.Firsttryveryslowshaking(~2/second)andincreasethespeedofshaking.Youarelookingforthespeedofshaking(frequency)thatmakesthemoleculemovetheeasiest,withtheleastjerkymovements.Dothiswithallthreegases.ObservationsIsthereafrequencyatwhichitismucheasiertokeepthemodelvibrating?Atthisfrequencythemodelmoleculeabsorbsandretainsyourenergyoutputbetter.Lessenergyislosttorandommovements.Ifthereissuchafrequency,determinewhatitisinvibrationspersecondbycountingthenumberofvibrationsina5‐secondintervalanddividingby5.Doatleastthreetrials,lettingdifferentmemberofyourgroupexperimentandobtaintherangeoffrequenciesatwhichthemaximumenergyisabsorbed.Repeatthisprocedureforallthreemodels.

Frequency(#ofvibrationspersecond)Gas Trial1 Trial2 Trial3

CO2–carbondioxide

CH4–methane

N2–nitrogen

Recordyourgroup’sresultsontheboard.Lookattheresultsobtainedbyothergroupsanddiscusshowyourresultscomparetothoseobtainedbyothermembersoftheclass.1.Comparetheresonantfrequenciesofthe3models.2.Whathypothesiscanyouformulatetoexplainyourobservations?3.Physiciststellusthatthebehaviorofthemodelsbuiltfromthetennisballsisagoodanalogyofthebehaviorofrealmoleculesofcarbondioxide,methane,andnitrogen.Fromtheobservationsofyourmodels,canyouexplainwhysomegasesintheatmosphereabsorbinfraredradiationandothersdonot?4.Nitrogenisnotagreenhousegas,andcarbondioxideandmethanearegreenhousegases.Whydoyouthinkgreenhousegasesabsorbinfraredradiationandnitrogendoesn’t?

Page 19: LP 3 Greenhouse Gases - Stanford Earth · a. Short‐wave radiation b. Long‐wave radiation c. Non‐wave radiation 3. The energy that is emitted from the Earth travels in the form

3.1.6 Goldilocks Activity

THE “GOLDILOCKS” PRINCIPLE Materials: Atmosphere models in baggies Resource Cards 1-5 Task Card Recording Sheets (one per student) Background On earth, two elements, nitrogen (N2) and oxygen (O2), make up almost 99% of the volume of clean, dry air. Most of the remaining 1% is accounted for by the inert gaseous element, argon (Ar). Argon and the tiny percentage of remaining gases are referred to as trace gases. Certain trace atmospheric gases help to heat up our planet because they appear transparent to incoming visible (shortwave) light but act as a barrier to outgoing infrared (longwave) radiation. These special trace gases are often referred to as "greenhouse gases" because a scientist in the early 19th century suggested that they function much like the glass plates found on a greenhouse used for growing plants.

The earth's atmosphere is composed of gases (for example, CO2 and CH4) of just the right types and in just the right amounts to warm the earth to temperatures suitable for life. The effect of the atmosphere to trap heat is the true "greenhouse effect."

We can evaluate the effect of greenhouse gases by comparing Earth with its nearest planetary neighbors, Venus and Mars. These planets either have too much greenhouse effect or too little to be able to sustain life as we know it. The differences between the three planets have been termed the "Goldilocks Principle" (Venus is too hot, Mars is too cold, but Earth is just right).

Mars and Venus have essentially the same types and percentages of gases in their atmosphere. The atmospheres of both of them are primarily CO2 and they are very different from the Earth. However, they have very different atmospheric densities.

Venus has an extremely dense atmosphere, so this density combined with the concentration of

CO2 (96.5% of the atmosphere) is responsible for a "runaway" greenhouse effect and a very high surface temperature.

Mars has almost no atmosphere; therefore the amount of CO2 (95% of the atmosphere) although similar to that of Venus is not sufficient to supply a warming effect and the surface temperatures of Mars are very low.

Mars is much further away from the Sun than is Venus. Adapted from The Goldilocks Principle: A Model of Atmospheric Gases http://www.ucar.edu/learn/1_1_2_1t.htm

Page 20: LP 3 Greenhouse Gases - Stanford Earth · a. Short‐wave radiation b. Long‐wave radiation c. Non‐wave radiation 3. The energy that is emitted from the Earth travels in the form

TASK CARD: GOLDILOCKS PRINCIPLE Without greenhouse gases what would happen to the Earth? We will look at Earth’s two closest planets to see what is happening in their atmospheres. Greenhouse gases are invisible molecules in the atmosphere. They let sunlight energy into the atmosphere, but they are able to trap it so it can’t get back out. In the earth, there are several important greenhouse gases. Table 3 lists the main gases and their sources. Our neighboring planets either have too much greenhouse gases or not enough. Mars and Venus have very similar types of GHGs in their atmospheres, but they are different in the density of gas. • Venus has an extremely dense atmosphere, so this density combined with the concentration of

CO2 (96.5% of the atmosphere) is responsible for a "runaway" greenhouse effect and a very high surface temperature.

• Mars has almost no atmosphere; therefore the amount of CO2 (95% of the atmosphere) although similar to that of Venus is not sufficient to supply a warming effect and the surface temperatures of Mars are very low.

• Mars is much further away from the Sun than is Venus. Materials: Bean models of the atmosphere on the three planets (Earth, Venus and Mars) Resource Cards 1-5 As a group, discuss the following questions.

1. Do the bags all look the same? Why or why not? 2. Using the tables on the three planet resource sheets, complete the table on your

worksheet. 3. What would the temperature on each of the three planets be like without greenhouse

gases? 4. Why is it so much colder on Mars than on Venus, even though they have similar amounts

of carbon dioxide? 5. Name at least two ways that the atmospheres of Venus and Mars are similar to each

other, and one way that both differ from Earth's. 6. Why do we call this the “Goldilocks” principle?

Page 21: LP 3 Greenhouse Gases - Stanford Earth · a. Short‐wave radiation b. Long‐wave radiation c. Non‐wave radiation 3. The energy that is emitted from the Earth travels in the form

RECORDING SHEET: Why is Earth the GOLDILOCKS planet? Temperature and Pressure Comparison

VENUS EARTH MARS

Surface Pressure Relative to Earth

Major Greenhouse Gases

Estimated Temperature if No Greenhouse Gases (°C)

Actual Temperature (°C)

Temperature Change Due to Greenhouse Gases

Atmospheric Concentrations of Greenhouse Gases (%)

VENUS EARTH MARS

Carbon Dioxide (CO2)

Nitrogen (N2)

Oxygen (O2)

Argon (Ar)

Methane (CH4)

1. Why is it so much colder on Mars than on Venus, even though they have similar amounts

of carbon dioxide?

2. Name at least two ways that the atmospheres of Venus and Mars are similar to each other, and one way that both differ from Earth's.

3. Why do we call this the “Goldilocks” principle?

Page 22: LP 3 Greenhouse Gases - Stanford Earth · a. Short‐wave radiation b. Long‐wave radiation c. Non‐wave radiation 3. The energy that is emitted from the Earth travels in the form

RESOURCE CARD 1: GOLDILOCKS VENUS

Temperature and Pressure Comparison Atmospheric Concentrations of Greenhouse Gases (%) on Venus

Surface Pressure Relative to Earth 90 Carbon Dioxide (CO2)

96.5

Major Greenhouse Gases CO2 Nitrogen (N2)

3.5

Estimated Temperature if no Greenhouse Gases (°C)

-46 Oxygen (O2)

Trace

Actual Temperature (°C) 477 Argon (Ar)

0.007

Temperature Change Due to GHG +523 Methane (CH4)

0

The relative distance from the Sun has some influence on planetary temperature, but the greenhouse gases and atmospheric density have more of an impact on temperature. Venus has an extremely dense atmosphere (with a surface pressure 90 times that relative to Earth's atmosphere). Conversely, Mars has an extremely thin atmosphere (with a surface pressure less than 1/100th of that relative to Earth's atmosphere).

Toomuchgreenhouseeffect:TheatmosphereofVenus,likeMars,isnearlyallcarbondioxide.ButVenushasabout300timesasmuchcarbondioxideinitsatmosphereasEarthandMarsdo,producingarunawaygreenhouseeffectandasurfacetemperaturehotenoughtomeltlead.TheatmosphereonVenusismuchdenserthantheonesonMarsorEarth.Ifwerepresentedthedensitywithbeans,Venuswouldhave9000beanscomparedto100onEarth.

Page 23: LP 3 Greenhouse Gases - Stanford Earth · a. Short‐wave radiation b. Long‐wave radiation c. Non‐wave radiation 3. The energy that is emitted from the Earth travels in the form

RESOURCE CARD 2: GOLDILOCKS MARS

Temperature and Pressure Comparison Atmospheric Concentrations of Greenhouse Gases (%) of Mars

Surface Pressure Relative to Earth 0.007 Carbon Dioxide (CO2)

95

Major Greenhouse Gases CO2 Nitrogen (N2)

2.7

Estimated Temperature if No Greenhouse Gases (°C) -57 Oxygen (O2)

0.13

Actual Temperature (°C) -47 Argon (Ar)

1.6

Temperature Change Due to GHG +10 Methane (CH4)

0

The relative distance from the Sun has some influence on planetary temperature, but the greenhouse gases and atmospheric density have more of an impact on temperature. Mars has an extremely thin atmosphere (with a surface pressure less than 1/100th of that relative to Earth's atmosphere).

Notenoughgreenhouseeffect:TheplanetMarshasaverythinatmosphere,nearlyallcarbondioxide.Becauseofthelowatmosphericpressure,andwithlittletonomethaneorwatervaportoreinforcetheweakgreenhouseeffect,Marshasalargelyfrozensurfacethatshowsnoevidenceoflife.

Page 24: LP 3 Greenhouse Gases - Stanford Earth · a. Short‐wave radiation b. Long‐wave radiation c. Non‐wave radiation 3. The energy that is emitted from the Earth travels in the form

RESOURCE CARD 3: GOLDILOCKS EARTH

Temperature and Pressure Comparison Atmospheric Concentrations of Greenhouse Gases (%) on Earth

Surface Pressure Relative to earth 1 Carbon Dioxide (CO2)

0.03

Major Greenhouse Gases H2O, CO2

Nitrogen (N2)

78

Estimated Temperature if No Greenhouse Gases (°C)

-18 Oxygen (O2)

21

Actual Temperature (°C) 15 Argon (Ar)

0.9

Temperature Change Due to Greenhouse Gases

+33 Methane (CH4)

0.002

The relative distance from the Sun has some influence on planetary temperature, but the greenhouse gases and atmospheric density have more of an impact on temperature. Venus has an extremely dense atmosphere (with a surface pressure 90 times that relative to Earth's). Conversely, Mars has an extremely thin atmosphere (with a surface pressure less than 1/100th of that relative to Earth's).

Therightamountofgreenhouseeffect?Theearthhassmallamountsofcarbondioxideandothergreenhousegases,butworkingtogethertheycreateabalancedsystemthathelpstosupportlife.US!Thismodeldoesnottakeintoaccounttheimportanceofwatervaporasagreenhousegas.Watervaporbothhelpswarmtheplanet,whenitisintheformofagas,andcooltheplanet,whenitisinareflectingcloud.

Page 25: LP 3 Greenhouse Gases - Stanford Earth · a. Short‐wave radiation b. Long‐wave radiation c. Non‐wave radiation 3. The energy that is emitted from the Earth travels in the form

RESOURCE CARD 4: GOLDILOCKS Major Greenhouse Gases and their Sources

Greenhouse Gas Main sources Water Vapor (H20) Water in the air as clouds or vapor.

Carbon Dioxide (CO2)

Burning fossil fuels, deforestation, land use changes, respiration, volcanic eruption

Methane (CH4)

Decomposition of wastes in landfills, agriculture (especially rice production), cattle digestion, manure management

Nitrous Oxide (NO2)

Soil cultivation practices (how we grow plants) use of fertilizers, burning fossil fuels, biomass burning.

Chloroflorocarbons (CFCs)

Human made compound originally made to use as a coolant in refrigerators and air conditioners. Now regulated in production and atmosphere release because of international agreements to limit use.

Page 26: LP 3 Greenhouse Gases - Stanford Earth · a. Short‐wave radiation b. Long‐wave radiation c. Non‐wave radiation 3. The energy that is emitted from the Earth travels in the form

RESOURCE CARD 5: GOLDILOCKS Beans in a Bag Models Scientists use models to help describe a complex system. Sometimes you need to simplify the system for the model. These bags contain very different colored beans, but they all have the same total number of beans. That's not the way it is on the real planets. Venus has an atmosphere 90 times thicker than Earth's and Mars has an atmosphere more than 100 times thinner! If you made a bag with 100 beans to represent Earth's atmosphere, then to show the correct density of the atmosphere, your Venus bag would have 9000 beans, and your Mars bag would have less than 1 bean!

Page 27: LP 3 Greenhouse Gases - Stanford Earth · a. Short‐wave radiation b. Long‐wave radiation c. Non‐wave radiation 3. The energy that is emitted from the Earth travels in the form

Bean Bags for Atmosphere Concentration Models To make the bags of atmosphere, you can use this table to help you. This is to demonstrate the relative proportions of each gas in the total atmosphere. Each bag or atmosphere should have 100 beans in it. If you were to simulate the actual amount of each gas, you would multiply the proportion by the relative amount to Earth (for Venus, X 90; for Mars X 0.6). Gas Concentration

Venus Earth Mars

CO2 96 1 95 N2 3 76 3 O2 21 1 CH4 1 Ar 1 1 2 Total Number of beans

100 100 100

Total in Atmosphere

9000 100

0.6

Page 28: LP 3 Greenhouse Gases - Stanford Earth · a. Short‐wave radiation b. Long‐wave radiation c. Non‐wave radiation 3. The energy that is emitted from the Earth travels in the form

3.1.6HomeworkName Per. Date GreenhouseinaJarLab–SETUPandEXPERIMENTALDESIGNQUESTIONSTOTHINKABOUT:

1. Howmightcarbondioxidebeimportanttotheatmosphere?2. Howcanyoudesignanexperimentthatwilltesttheeffectofcarbondioxideonthe

temperatureoftheatmosphere(air)?Materials 2Lsodabottles thermometers 2waystomakecarbondioxide Alka‐seltzertablets+water=carbondioxide Vinegar+bakingsoda=carbondioxide Aheatsource(lightbulbs)tosimulatetheenergycomingfromthesunItwillbeimportanttothinkaboutthedifferencesbetweenwhatisinthebottlesandalsohowyouwilltrapthegasinthebottle.Draworwritesomewaystosetupthisexperiment.Tomorrowyourgroupwilldiscusstheirideasandthenyouwillconductyourexperiment.Youwillbeabletogatherdataforabout25minutes.

Page 29: LP 3 Greenhouse Gases - Stanford Earth · a. Short‐wave radiation b. Long‐wave radiation c. Non‐wave radiation 3. The energy that is emitted from the Earth travels in the form

3.2.1aLABName Per. Date GreenhouseinaJarLabDiscusswithyourgroupthedifferentwaysyouthoughttosetupthelab.Decideonalabsetupasagroup.Youaredesigninganexperimentthatwilltesttheeffectofcarbondioxideonthetemperatureoftheatmosphere(air)?Whatdothinkwillhappen?

Materials 2Lsodabottles thermometers 2waystomakecarbondioxide Alkaseltzertablets+water=carbondioxide Vinegar+bakingsoda=carbondioxide Aheatsource(lightbulbs)tosimulatetheenergycomingfromtheSunDiagramofexperimentalsetup(asagroup)

Inyourdiagram,giveeachjaranumber(ex.1,2,and3).Labelwhatyouwillputineachjar,howyouwillmeasurethetemperature,howyouwilltrapthegasandwhereyouwillplaceyourlightsource.Itmightalsobeagoodideatorecordthetemperatureonthetableunderthelight.

Page 30: LP 3 Greenhouse Gases - Stanford Earth · a. Short‐wave radiation b. Long‐wave radiation c. Non‐wave radiation 3. The energy that is emitted from the Earth travels in the form

DataCollection:Onceyourexperimentissetup,beginrecordingthetemperaturesinthebottles.Usetheblanktablebelow.Time

Set up 1 = Set Up 2 = Set Up 3 = Set Up 4 =

0 minutes

2

4

6

8

10

12

14

16

18

20

22

24

Usinggraphpaperoracomputer,graphthetemperatureoftheairagainstthetimetheywereinthelightsource.AnalysisWhatconclusionscanwedrawfromthisactivity?Doescarbondioxidehaveaneffectonthetemperatureoftheairinthejar?

Page 31: LP 3 Greenhouse Gases - Stanford Earth · a. Short‐wave radiation b. Long‐wave radiation c. Non‐wave radiation 3. The energy that is emitted from the Earth travels in the form

3.2.1LAB

Name Per. Date

GreenhouseinaJarLab

Question:HowdoesthepresenceofincreasedlevelsofCO2affectthetemperatureinsideabottlewhenexposedtoheat?Materials:2clear2Lsodabottleswithlabelsremovedtinfoil2thermometers(theseshouldreadatroomtemperature)1250mlbeaker+water1Alka‐seltzertablet1150Wlightfixture1ruler1stopwatchProcedure:

1. Setupthelamponthetablesothatitfacesawayfromtherestoftheclass.Becarefulasyouworkwiththelamp,itcangetveryhot.Donotturnitonyet.

2. Placethe2literbottlesnexttoeachothersidebysideabout6inchesawayfromthelamp.3. Add200mlofwatertoeachbottle.4. Hangthethermometerinthecontrolbottlesothatitisinthemiddle,thethermometer

shouldnottouchthewater.Makesureyoucanseethetemperature.Usetinfoiltosealthebottleandalsoholdupthethermometer.

5. BreakanAlkaseltzertabletinhalfandplacebothpiecesinthesecondbottle.Immediatelyhangthesecondthermometerandclosethetopwithtinfoilaswiththefirstbottle.Thisisyourexperimentalbottle.

6. Turnonthelampandmakesureitshinesevenlyonbothbottles.7. Usingtherecordingsheet,recordthetemperatureinbothbottleseverytwominutesforthe

nexttwentyminutes.

8. Whenalldatahasbeencollected,cleanupyourlabstation.

Page 32: LP 3 Greenhouse Gases - Stanford Earth · a. Short‐wave radiation b. Long‐wave radiation c. Non‐wave radiation 3. The energy that is emitted from the Earth travels in the form

DataCollection:

Onceyourexperimentissetup,beginrecordingthetemperaturesinthebottlesonatable.Usetheblanktablebelow.

Time

Setup1=CONTROL

JustWater

SetUp2=

EXPERIMENTAL

Water+CO2

0minutes

2

4

6

8

10

12

14

16

18

20

ResultsGraphyourresultsongraphpaper.DiscussionQuestions:

1. Whatisdifferentinthetwobottles?

2. DescribewhatishappeninginthebottlethatcontainstheCO2.

3. HowmightyouchangethisexperimentifyouwantedtoknowtheeffectofdifferentconcentrationsofCO2.AssumeyouhaveamethodformeasuringCO2concentration.

Page 33: LP 3 Greenhouse Gases - Stanford Earth · a. Short‐wave radiation b. Long‐wave radiation c. Non‐wave radiation 3. The energy that is emitted from the Earth travels in the form

3.2.2ConceptMapandHomeworkContinuetoworkonyourConceptMapAddthefollowingwordstoyourmap.GreenhousegasesCarbonDioxideWaterVaporMethaneNitrousOxideAtmosphereTemperature

Page 34: LP 3 Greenhouse Gases - Stanford Earth · a. Short‐wave radiation b. Long‐wave radiation c. Non‐wave radiation 3. The energy that is emitted from the Earth travels in the form

3.3.1Name Per Date BathtubThoughtExperimentImagineyouhavea50‐gallonbathtub.Youwanttokeepitalwaysexactlyhalfwayfull,at25gallons.Besidesturningoffthetapandclosingthedrainassoonasitgetsto25gallonsandleavingitthere‐‐Listatleast2waysyouthinkoftoputwaterintothebathtubListatleast2waysyouthinkoftotakewateroutofthebathtubNow,imagineyourbathtubisstayingevenatasteadystateof25gallons.Allofasuddenyourfriendcomesoverwithahoseblastingatfullspeed.Whathappenstoyourbathtub?InthisexamplethereareSOURCESforwater(hoses,taps,cups)andthereareSINKSforwater(waystotakewaterout,alsobuckets,hoses,drains).Therearealsosourcesandsinksforgreenhousegases.Sharewithyourpartnerandwritedownatleastonesource(placeagreenhousegascomesfrom)andonesink(awayagreenhousegascanbeuseduporgoaway)

SOURCEofGreenhouseGases SINKforGreenhouseGases

Page 35: LP 3 Greenhouse Gases - Stanford Earth · a. Short‐wave radiation b. Long‐wave radiation c. Non‐wave radiation 3. The energy that is emitted from the Earth travels in the form

3.3.2GasFilesActivityTheGasFilesTeacherInformation:

Thereare5greenhousegasesthatwillbediscussedinthisactivity.Studentsshouldhaveataskcard,arecordingsheetandthefirst4resourcecards.Resourcecards5and6areoptional.

Moreinformationongreenhousegases:

Watervapor(H2O).Themostabundantgreenhousegas.Itactsasafeedbacktotheclimate.WatervaporincreasesastheEarth'satmospherewarms,butsodoesthepossibilityofcloudsandprecipitation,makingthesesomeofthemostimportantfeedbackmechanismstothegreenhouseeffect.

Carbondioxide(CO2).Aminorbutveryimportantcomponentoftheatmosphere(intermsofconcentration).Carbondioxideisreleasedthroughnaturalprocessessuchasrespirationandvolcanoeruptionsandthroughhumanactivitiessuchasdeforestation,landusechanges,andburningfossilfuels.HumanshaveincreasedatmosphericCO2concentrationbymorethanathirdsincetheIndustrialRevolutionbegan.Thisisthemostimportantlong‐lived"forcing"ofclimatechange.

Methane(CH4).Ahydrocarbongasproducedboththroughnaturalsourcesandhumanactivities,includingthedecompositionofwastesinlandfills,agriculture,andespeciallyricecultivation,aswellascattledigestionandmanuremanagementassociatedwithdomesticlivestock.Onamolecule‐for‐moleculebasis,methaneisafarmoreactivegreenhousegasthancarbondioxide,butalsoonewhichismuchlessabundantintheatmosphere.

Nitrousoxide(NO2).Apowerfulgreenhousegasproducedbysoilcultivationpractices,especiallytheuseofcommercialandorganicfertilizers,fossilfuelcombustion,nitricacidproduction,andbiomassburning.

Chlorofluorocarbons(CFCs).Syntheticcompoundsofentirelyofindustrialoriginusedinanumberofapplications,butnowlargelyregulatedinproductionandreleasetotheatmospherebyinternationalagreementfortheirabilitytocontributetodestructionoftheozonelayer.CFCsarealsogreenhousegasesandsoarethecompoundswehavemadetoreplacethem.

Page 36: LP 3 Greenhouse Gases - Stanford Earth · a. Short‐wave radiation b. Long‐wave radiation c. Non‐wave radiation 3. The energy that is emitted from the Earth travels in the form

TASKCARD:TheGASFilesGreenhousegasesareinvisible.Theyareintheatmosphere.Theyareproducedbothnaturallyandbecauseofhumanactivity.Wecallthiseither:NATURAL‐causedbynatureorANTHROPOGENIC‐causedbyhumansUsingtheresourcecardsasreferences,DISCUSSthefollowingquestionswithyourgroup:1.Whatarethemaingreenhousegasesintheatmosphere?AccordingtoResourceCard1,whatisthemostabundantgreenhousegas?2.AccordingtoResourceCards1and2,therearemanysourcesofgreenhousegases.Onyourtable,recordthe5maingreenhousegasesandgiveonenaturalandonehumansourceforeachone.TheseareSOURCESforgreenhousegases.3.Whattrendsdoyounoticeingreenhousegasemissionsovertime?(ResourceCard3)Whydoyouthinkthisishappening?4.Foreachofthe4gaseshumansrelease(notcountingwatervapor),whatisonethingthatcouldbedonetodecreasetheamountweareemitting?5.WherearethemajorSINKSorplacestostorecarbon?Isthisnaturalorcausedbyhumans?Somepeopleareproposingthatwecaptureandstorecarbondioxideunderground.Doyouthinkthiswillwork?Why?(ResourceCard4)6.Usingatleasttwographs,giveanexamplerelatingthegraphsandexplainingtheevidencescientistsusetosupportclimatechange.

Page 37: LP 3 Greenhouse Gases - Stanford Earth · a. Short‐wave radiation b. Long‐wave radiation c. Non‐wave radiation 3. The energy that is emitted from the Earth travels in the form

Name Per Date RECORDINGSHEET:TheGASFilesListthemaingreenhousegasesandatleasttwosourcesforeachone.Dividethesourcesbyhumancauses(anthropogenic)andnaturalcauses.Notallmayhavebothhumanandnaturalcauses.(ResourceCard1and2)GreenhouseGas(GHG) HumanCause‐SOURCE NaturalCause‐SOURCE

UsingResourceCard3,whattrendsdoyounoticeforgreenhousegasesovertime?

Foreachofthe4gaseshumansrelease(notcountingwatervapor),whatisonethingthatcouldbedonetodecreasetheamountweareemitting?WherearethemajorSINKSorplacestostorecarbon?Isthisnaturalorcausedbyhumans?Somepeopleareproposingthatwecaptureandstorecarbondioxideunderground.Doyouthinkthiswillwork?Why?(ResourceCard4)

ExplaintheemissionprofilesinResourceCard5.Whyisthisimportanttounderstand?

Usingatleasttwographs,giveanexamplerelatingthegraphsandexplainingtheevidencescientistsusetosupportclimatechange.

Page 38: LP 3 Greenhouse Gases - Stanford Earth · a. Short‐wave radiation b. Long‐wave radiation c. Non‐wave radiation 3. The energy that is emitted from the Earth travels in the form

RESOURCECARD1:TheGASFiles

Thetoppiegraphshowstheproportionofannualgreenhouseemissionsfromdifferentsources.Thebottomthreepiegraphsshowthebreakdownforeachofthreegreenhousegasesincomparisontothetotal.Seventytwopercent(72%)ofthetotalgreenhousegasesemittedwascarbondioxide,18%methaneand9%nitrousoxide.Usethecolorpatternintheupperpiegraphtodeterminewhichsourceisrepresentedinthelowerpiegraphs.

Page 39: LP 3 Greenhouse Gases - Stanford Earth · a. Short‐wave radiation b. Long‐wave radiation c. Non‐wave radiation 3. The energy that is emitted from the Earth travels in the form

RESOURCECARD2:TheGASFilesMajorGreenhouseGasesandtheirSources

GreenhouseGas MainsourcesWaterVapor(H20) Waterintheairascloudsorvapor

CarbonDioxide(CO2)

Burningfossilfuels,deforestation,landusechanges,respiration,volcaniceruption

Methane(CH4)

Decompositionofwastesinlandfills,agriculture(especiallyriceproduction),cattledigestion,manuremanagement

NitrousOxide(NO2)

Soilcultivationpractices(howwegrowplants),useoffertilizers,burningfossilfuels,biomassburning,microbialdenitrification

Chloroflorocarbons(CFCs)

Humanmadecompound.Originallymadeforuseasacoolantinrefrigeratorsandairconditioners.NowCFCsareregulatedbecauseofinternationalagreementstolimituse.

Definitions:Deforestation–cuttingdowntreesLandUseChanges–whenwhatisonthelandchanges.Forexample,aforestchangesintoafarmingfield,agrassylotchangesintoaparkinglot,awhiteglacierchangesintobrowndirtDecomposition–thebreakdownofsomethingintosomethingelseBiomass‐plants

Page 40: LP 3 Greenhouse Gases - Stanford Earth · a. Short‐wave radiation b. Long‐wave radiation c. Non‐wave radiation 3. The energy that is emitted from the Earth travels in the form

RESOURCECARD3:TheGASFiles

Page 41: LP 3 Greenhouse Gases - Stanford Earth · a. Short‐wave radiation b. Long‐wave radiation c. Non‐wave radiation 3. The energy that is emitted from the Earth travels in the form

RESOURCECARD4:TheGASFilesAmountofCarbonReleasedorStoredbyDifferentSourcesperYear

Wheredoescarbongo?Carbonisreleasedfromtherespirationofplantsandtheburningoffossilfuels.Itisstoredintheatmosphere(theair),thebiosphere(plantsandsoil)andtheocean.

Page 42: LP 3 Greenhouse Gases - Stanford Earth · a. Short‐wave radiation b. Long‐wave radiation c. Non‐wave radiation 3. The energy that is emitted from the Earth travels in the form

RESOURCECARD5:TheGASFiles

Key:CO2–CarbonDioxideN2O–NitrousOxideCH4–MethaneLUCF–LandUseChangeandForestryF‐gases–Chloroflorocarbons(CFCs)(manmadesyntheticchemicals)

Page 43: LP 3 Greenhouse Gases - Stanford Earth · a. Short‐wave radiation b. Long‐wave radiation c. Non‐wave radiation 3. The energy that is emitted from the Earth travels in the form

RESOURCECARD6:TheGASFiles

Page 44: LP 3 Greenhouse Gases - Stanford Earth · a. Short‐wave radiation b. Long‐wave radiation c. Non‐wave radiation 3. The energy that is emitted from the Earth travels in the form

!"

#$%&"$'()*+",&-.)/$.0"$1"%)/2*/$.3""4$"%$,&5*6&")."1$5(&"$5").6&.0)678"6$"*++&9)*6&:""

4$"+&00&.")."1$5(&"$5").6&.0)67:";+)%).*/$."$5"5&,<(/$.")."15&=<&.(78"%*2.)6<,&"$5"

0&9&5)67"$1"&>?$0<5&:""4$"%).)%)@&"5)0A:""

B.").1$5%*+",&-.)/$."6C*6"($<+,"D&"<0&,"6$",)0(<00"6C&"),&*3"E*0)(*++7"6$"%*A&"

0$%&6C).2"6C*6"($<+,"D&"9&57"D*,"+&00"D*,:"

B0A"1$5"&>*%?+&0"$1"6C).20"?&$?+&",$"6$"F%)/2*6&G"1$5"6C&"1$++$H).2"&.9)5$.%&.6*+"

&I&(603"""

;*56C=<*A&"J"D<)+,"C$<0&0"6$"D<)+,).2"($,&08"657"6$"2&6"?&$?+&"6$"C*9&"&%&52&.(7"

A)608"%&&/.2"?$).60:"""

K+$$,0"J"D<)+,"C$<0&0"$."0/+608"%*A&"H*++0"0$"6C&"H*6&5"(*.L6"2&6").:""M5&*6&",*%0:""

"M+)%*6&"MC*.2&"J"%$06+7").9$+9&",&(5&*0).2"6C&"*%$<.6"$1"25&&.C$<0&"2*0&0"$1"*++"

A).,0")."6C&"*6%$0?C&5&:""K$5"6C&"%$06"?*568"%)/2*/$."(*..$6"5&9&50&"H*5%).2"6C*6"

C*0"*+5&*,7"$((<55&,8")6"(*."$.+7"0+$H"$5"06$?"HC*6"H$<+,"($%&"H)6C$<6"*.7"(C*.2&0:"

N"

Page 45: LP 3 Greenhouse Gases - Stanford Earth · a. Short‐wave radiation b. Long‐wave radiation c. Non‐wave radiation 3. The energy that is emitted from the Earth travels in the form

4C)0")0"*"1*%$<0"25*?C"(*++&,"6C&"O&&+).2"M<59&:""MC*5+&0"P*9),"O&&+).2"06*56&,"

%&*0<5).2"MQN"+&9&+0"*6"6C&"R*<.*"S$*"QD0&59*/$."S*D$5*6$57")."T*H*))")."!UVW:""

4C)0"25*?C"0C$H0"$.+7"*6%$0?C&5)("(*5D$.",)$>),&"($.(&.65*/$.0"X.$6"*.7"$6C&5"

25&&.C$<0&"2*0&0Y:"4C&"*..<*+"(7(+&")0",<&"6$"(C*.2&0")."?C$6$07.6C&0)0"*.,"

5&0?)5*/$.",&?&.,).2"$."0&*0$.*+"Z<(6<*/$.0:""4C&"D*0)("),&*"C&5&")0"6$"0C$H"6C*6"

MQN"($.(&.65*/$.0"*5&").(5&*0).2:"""

[" \"

Page 46: LP 3 Greenhouse Gases - Stanford Earth · a. Short‐wave radiation b. Long‐wave radiation c. Non‐wave radiation 3. The energy that is emitted from the Earth travels in the form

4C&0&",)*25*%0"*5&"*"-506").65$,<(/$."6$"6C&"%)/2*/$."H&,2&"065*6&27"<0&,"*0"*"

-.*+"*00&00%&.6:""]6"0C$H0"C)06$5)(*+"&%)00)$.0"*.,"6C&."6C&"*%$<.6"6C*6"H&".&&,"6$"

,&(5&*0&"&%)00)$.0")."$5,&5"6$"*9$),",$<D+).2"$5"65)?+).2"MQN"($.(&.65*/$.0"$9&5"

/%&:""4C&"Z*6"?*6C"0C$H0"HC&5&"H&".&&,"6$"2$"6$"*9$),",$<D+).2"MQN"9*+<&0:""

T$H&9&58"H&"*(6<*++7".&&,"6$"D5).2"&%)00)$.0"6$"+$H&5"6C*."(<55&.6"9*+<&0")."$5,&5"6$"

,&(5&*0&"*(6<*+"MQN"($.(&.65*/$.0:"

E5).2).2"MQN"9*+<&0",$H."6C)0"1*5"H)++"5&=<)5&"*"0)2.)-(*.6").9&06%&.6"$1"%$.&7"*.,"

5&0$<5(&0:""^C&."H&",$"6C&"-.*+"*00&00%&.68"06<,&.60"H)++"D&"H$5A).2")."25$<?0"6$"

%*A&"(C$)(&0"*D$<6"C$H"6$",&(5&*0&"$<5"6$6*+"(*5D$."&%)00)$.0:"

B0A"06<,&.60"1$5"),&*0"0).(&"6C&7"_<06"-.)0C&,"6C&"H&,2&"*(/9)67"*.,"0C$<+,"C*9&"

),&*0"*D$<6"0$<5(&08"0).A08"HC*6")0"C*??&.).2:""`$6&0"*6"6$?"6$"C&+?"5&%&%D&5"

=<&0/$.03""TQ^"MB`"^;"P;Ma;B#;"MBaEQ`";R]##]Q`#b""^Tc"PQ"^;"^B`4"4Qb""

^TB4"MB`"^;"PQb"

V"

4C)0"25*?C"0C$H0"6C&"(*5D$."&%)00)$.0"1$5"0&9&5*+",)I&5&.6"67?&0"$1"?$H&5"

2&.&5*/.2"?+*.60")."d*?*.8"#H&,&."*.,"K).+*.,:"S$$A).2"*6"6C&"25*?C")6")0"(+&*5"6C*6"

(*5D$."&%)00)$.0"*5&"1*5"+$H&5")."*+6&5.*/9&"*.,"5&.&H*D+&"&.&527"0$<5(&0"X0$+*58"

H).,8".<(+&*58"*.,"C7,5$&+&(65)(Y"""4C&"),&*"C&5&")0"6C*6"$.&"?$6&./*+"%)/2*/$."

H$<+,"D&"5&?+*().2"C)2C"(*5D$."&%)e.2"?+*.60"X($*+"*.,"2*0Y"H)6C"+$H&5"?5$,<().2"

(*5D$."?+*.60:"""4C5&&"$1"6C&0&"X#QSBa8"^]`P"B`P"`fMS;BaY"*5&"$?/$.0")."6C&"-.*+"

*00&00%&.6"?5$_&(6"X4C&"^&,2&"B(/9)67Y:"

g"

Page 47: LP 3 Greenhouse Gases - Stanford Earth · a. Short‐wave radiation b. Long‐wave radiation c. Non‐wave radiation 3. The energy that is emitted from the Earth travels in the form

^C&."06<,&.60",$"6C&"-.*+"*00&00%&.68"6C&7"H)++".&&,"6$"6C).A"*D$<6"6C&"65*,&"$I08"

0$"6C)0"H$<+,"D&"*"2$$,"/%&"6$"06*56"6C).A).2"*D$<6"HC7"H&"H$<+,"%*A&"0$%&"

(C$)(&0"$9&5"*.$6C&5:""4C&7"H)++"D&"6C).A).2"*D$<6"0$%&"$1"6C&0&"),&*0"*.,"

25&&.C$<0&"2*0&0"1$5"6C&)5"($.(&?6"%*?0"6$.)2C6:"""B0A"6C&%")1"6C&7"C*9&"*.7"),&*0b""

4C&7"%)2C6"*+5&*,7"A.$H"*D$<6"6C&"C)2C&5"($06"$1"0$%&"$6C&5"0$<5(&0"$1"&.&527"$5"

*D$<6"C$H"0$%&/%&0"6C&5&")0".$"0<."$5"H).,8"D<6"H&"0/++".&&,"&+&(65)()67:"

4C&5&"*5&"0$%&"65*,&"$I0"HC&."5&?+*().2"1$00)+"1<&+"D<5.).2"?+*.60"H)6C"$6C&5"67?&0:"

].(5&*0&,"($06:"

;*0&"$1"2&e.2"1$00)+"1<&+0:"

#$%&"*+6&5.*/9&"&.&527"0$<5(&0"*5&".$6"*+H*70"*9*)+*D+&"J"0<(C"*0"H).,"$5"

0<.h"

T$H"&+0&"(*."H&"2&.&5*6&"&.&527"$5"&+&(65)()67b"

i"

4C)0"25*?C")0"15$%"4C&"jB#"K)+&0"*.,"0C$H0"*..<*+"&%)00)$.0"?&5"0&(6$5:""4C&"

&%)00)$.0"*5&"%$06+7"*.6C5$?$2&.)("XC<%*."(*<0&0Y"&0?&()*++7"M*5D$."P)$>),&:""f0&"

)6")1"7$<"6C).A"7$<5"06<,&.60"($<+,"D&.&-6"15$%"%$5&",)0(<00)$."$1"6C&"0&(6$50"*.,"

HC&5&"6C&"&%)00)$.0"($%&"15$%:"

W"

Page 48: LP 3 Greenhouse Gases - Stanford Earth · a. Short‐wave radiation b. Long‐wave radiation c. Non‐wave radiation 3. The energy that is emitted from the Earth travels in the form

3.3.4ConceptMapandHomeworkContinuetoworkonyourConceptMapAddthefollowingwordstoyourmap.MitigationPowerPlantNuclearPowerWindFossilFuelSinksForestsOceansRenewableEnergy

Page 49: LP 3 Greenhouse Gases - Stanford Earth · a. Short‐wave radiation b. Long‐wave radiation c. Non‐wave radiation 3. The energy that is emitted from the Earth travels in the form

!"

#"$%&'"()*+,"-)+./-0+1"+*23'45"5)"#"%2"+)6"5*4'"/("7'"5$)*8,"9+,"%"4'('4'+-'"()4"

6$/5:")4"/("#"5$)*8,";*56"5%<:"=)56")("6$'"'+'41<"/5"()42',"/+"6$/5"7%<>"

?"

Page 50: LP 3 Greenhouse Gases - Stanford Earth · a. Short‐wave radiation b. Long‐wave radiation c. Non‐wave radiation 3. The energy that is emitted from the Earth travels in the form

@" A"

Page 51: LP 3 Greenhouse Gases - Stanford Earth · a. Short‐wave radiation b. Long‐wave radiation c. Non‐wave radiation 3. The energy that is emitted from the Earth travels in the form

B" C"

Page 52: LP 3 Greenhouse Gases - Stanford Earth · a. Short‐wave radiation b. Long‐wave radiation c. Non‐wave radiation 3. The energy that is emitted from the Earth travels in the form

D" E"

Page 53: LP 3 Greenhouse Gases - Stanford Earth · a. Short‐wave radiation b. Long‐wave radiation c. Non‐wave radiation 3. The energy that is emitted from the Earth travels in the form

F"