lowering the lcoe of photovoltaic systemsucsolar.org/files/public/documents/12-9-11 present...

23
Lowering the LCOE of Photovoltaic Systems 9 Levelized Cost of Energy 9 Methods to reduce the LCOE 9 PV Researches at UC Merced Yong Sin “Shon” Kim Dec. 09 2011 School of Natural Science, University of California at Merced [email protected] http://ucsolar.org 2011 UC Solar Research Symposium

Upload: others

Post on 17-Oct-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Lowering the LCOE 

    of Photovoltaic Systems

    Levelized Cost of Energy

    Methods to reduce the LCOE

    PV Researches at UC Merced

    Yong Sin “Shon” KimDec. 09 2011

    School of Natural Science, University of California at [email protected]

    http://ucsolar.org

    2011 UC Solar Research Symposium

  • 2

    Cost of EnergyCost of Energy

    • System: $/MWh (₡/KWh)• Components: $/W

    Credit: California Public Utilities Commission

    PG&E Average Bundled Rates by Class

  • 3

    Levelized Cost of Energy (LCOE)Levelized Cost of Energy (LCOE)

    • Definition– The unit cost of energy generated over its economic lifetime.

    • Widely used to compare different technologies

    • Calculation

    where r1 is a system degradation rate and r2 is a discount rate.

    Ref: International Energy Agency, ‘Projected Costs of Generating Electricity’ (2010)

  • Levelized Cost of EnergyMethods to reduce the LCOEBy a Material scientist

    By a Optic designer

    By a Electrical engineer

    By a System engineer

    PV Researches at UC Merced

    Yong Sin “Shon” KimDec. 09 2011

    School of Natural Science, University of California at [email protected]

    http://ucsolar.org

    2011 UC Solar Research Symposium

    Lowering the LCOE 

    of Photovoltaic Systems

  • 5

    What a Material Scientist doesWhat a Material Scientist does

    • Cost ↓

    • Efficiency ↑

    • Acceptance angle ↑

    • Degradation ↓

    Credit: NREL

  • 6

    Thin film/silicon based PV –Concentration : 1x–Wide acceptance angle– Low efficiency–Temperature coefficient:

    • Thin film ~ ‐0.2%/K• Silicone based ~ ‐0.4%/K

    Concentrating PV–Concentration 

  • 7

    High Efficiency ModuleHigh Efficiency Module

    • CPV  highest efficiency

    Credit: SolFocus

    Higher efficiency lower LCOE?

  • 8

    Proper PV Systems around the WorldProper PV Systems around the World

    Latitude(°)

    Lo

    ng

    itud

    e ( °

    )Annually averaged DNI(kWh/m2/day)

    -180 -120 -60 0 60 120 180-90

    -60

    -30

    0

    30

    60

    90

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    Silicon PV Thin film CPV

  • 9

    • Maximum power point tracking– Either embedded into inverters or controlled separately– Tracking efficiency >  99.8%

    • Inverter Efficiency– Power Electronics is matured area– Maximum Efficiency > 98%

    • Reducing the cost– Reducing the cost of each components 

    What an Electrical Engineer doesWhat an Electrical Engineer does

    Ref: International Energy Agency, ‘Projected Costs of Generating Electricity’ (2010)

  • 10

    Power Optimization RoadmapPower Optimization Roadmap

    Source: SMA

    Source: SMA

    ?Source: NSC, Enphase, SolarEdge

  • 11

    Distributed PV SystemsDistributed PV Systems

    • Enphase• SolarMagic

    • Ref: SolarMagic.com, enphase.com

  • 12

    SunPower Embraces Microinverters SunPower Embraces Microinverters 

    • SunPower offers AC solar panels with 25‐Warranty (Oct. 17, 2011).

    • Enphase has strengthened the warranty of its microinverters to 25 years 

    • A panel with a micro inverter vs a panel and a micro inverter

  • 13

    • Capacity factor• Ground coverage ratio

    What an System Engineer doesWhat an System Engineer does

  • Levelized Cost of Energy

    Methods to reduce the LCOE

    PV Researches at UC Merced

    Yong Sin “Shon” KimDec. 09 2011

    School of Natural Science, University of California at [email protected]

    http://ucsolar.org

    2011 UC Solar Research Symposium

    Lowering the LCOE 

    of Photovoltaic Systems

  • 15

    Smart Monitoring SystemSmart Monitoring System

  • 16

    • Short circuit current of individual cells

    • Currently working on defining–The series resistance Rs

    • Partial masking techniques–Previous works define

    • Rsh and Isc

    Characterizing individual cell in a moduleCharacterizing individual cell in a module

    123456

    Row

    2.5

    2.6

    2.7

    1 2 3 4 5 6 7 8 9 10 11 12123456

    Column

    Row

    4.2

    4.3

    4.4

    50% masked

    20% masked

  • 17

    Mismatch LossMismatch Loss

    • Distributed MPPT– MPPT for each module– ±5% mismatch  : 3.34%– ±10% mismatch : 5.78%

    • String level MPPT – 6 modules in series– ±5% mismatch  : 4.00%– ±10% mismatch : 8.24%

    4.6 4.7 4.8 4.9 5 5.1 5.2 5.3 5.4

    0.0050.01

    0.050.1

    0.25

    0.5

    0.75

    0.90.95

    0.990.995

    Data (A)

    Pro

    babi

    lity

    dens

    ity

    5%10%

    These cells limit the string current

    0.050.1

    0.25

    0.5

    0.75

    0.90.95

    Pro

    babi

    lity

    dens

    ity

    4.6 4.7 4.8 4.9 5 5.1 5.2 5.3 5.4

    0.050.1

    0.25

    0.5

    0.75

    0.90.95

    Data (A)

    Pro

    babi

    lity

    dens

    ity

    10% Mismatch

    5% Mismatch

    Mismatch is assumed to normal distribution with 3σ at 5% or 10% of their mean value

  • 18

    SelfSelf‐‐shading Lossshading Loss

    0

    0.5

    1

    1.5

    2

    2.5

    3

    Po

    we

    r o

    f (a

    ) (K

    W)

    Centralized

    String

    AC ModuleDC Module

    w/o MPPT

    0 0.2 0.4 0.6 0.8 10

    0.5

    1

    1.5

    2

    2.5

    3

    Fraction of self-shading

    Po

    we

    r o

    f (b

    ) (K

    W)

    Centralized

    String

    AC ModuleDC Module

    w/o MPPT

  • 19

    • UBS–Fast tracking–No oscillation–No ad hoc parameter

    • Problems of previous methods–Slow tracking–Oscillation–ad hoc parameters

    Unbounded Binary Search for MPPTUnbounded Binary Search for MPPT

    Patent Pending

  • 20

    • Fixed voltage scheme–Sets the voltage that inverter has its maximum efficiency

    • Fixed current scheme–Uses the reference module w/o MPPT

    • AC output sensing–Maximize ac power

    Inverter in a Distributed SystemInverter in a Distributed System

    Y.S. Kim, S.M. Kang, R. Winston: submitted to ISCAS12

  • 21

    • Shading diagram–The darker the color, the more the place is shaded.

    • CPV trackers installed at UC Merced

    Shading by a Tracker ArrayShading by a Tracker Array

    North-south Spacing(m)

    Eas

    t-w

    est S

    paci

    ng(m

    )

    -10 0 10 20 30

    0

    5

    10

    15

    20

    25

    Ref: Kim, Y. S., Kang, S.‐M. and Winston, R. (2011), Modeling of a concentrating photovoltaic system for optimum land use. Patent Pending

  • 22

    Performance (Performance (±±5% mismatch)5% mismatch)

    • Tracker array– Single tracker – w/o self‐shading

    • Module array– 3‐by‐4 modules

    • Optimum distance @GCR=0.2– ΔX(NS)=11m– ΔY(EW)=9m

    0 5 10 15 20 250

    10

    20

    30

    40

    50

    Local time (H)

    To

    tal p

    ow

    er

    (KW

    )

    CentralizedStringAC ModuleDC Modulew/o MPPT

    w/o MPPT Centralized String DC module2‐by‐2 0.938 0.965 0.975 0.9963‐by‐3 0.908 0.960 0.973 0.9954‐by‐4 0.885 0.957 0.973 0.9955‐by‐5 0.871 0.955 0.972 0.994

    Ref: Kim, Y. S., Kang, S.‐M. and Winston, R. (2011), Modeling of a concentrating photovoltaic system for optimum land use. 

    Normalized performance to AC module (micro inverter)

  • 23

    ConclusionConclusion

    System Engineers

    Thank You