long‐term decarbonization scenarioseea.epri.com/pdf/renewable-clean-energy/blanford-epri... ·...

20
© 2016 Electric Power Research Institute, Inc. All rights reserved. Geoffrey J. Blanford, Ph.D. Technical Executive Energy & Environmental Analysis, EPRI EPRI‐IEA Workshop: Clean Energy for Industries November 29, 2016, Washington, DC Long‐Term Decarbonization Scenarios

Upload: others

Post on 25-Jan-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • © 2016 Electric Power Research Institute, Inc. All rights reserved.

    Geoffrey J. Blanford, Ph.D.Technical Executive                                                    

    Energy & Environmental Analysis, EPRI

    EPRI‐IEA Workshop:  Clean Energy for Industries November 29, 2016, Washington, DC

    Long‐Term DecarbonizationScenarios

  • 2© 2016 Electric Power Research Institute, Inc. All rights reserved.

    Overview

    “Paris and Beyond” scenariosGlobal pathway for non‐electric emissions reductionsDetailed look at decarbonization in USRole of electrification

  • 3© 2016 Electric Power Research Institute, Inc. All rights reserved.

    “Paris and Beyond” scenarios in EPRI’s MERGE analysis

    0

    20

    40

    60

    80

    100

    120

    140

    2000 2020 2040 2060 2080 2100

    Billion

     tonn

    es CO

    2eq

    uivalent

    S1: Baseline

    S2: NDC only | Base

    S3: NDC + | Base

    S4: NDC ++ | Base

    S5: NDC ++ | Level 1

    S6: NDC ++ | Level 2

    S7: NDC ++ | Level 3

    S8: 2 deg C post‐2030

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    2000 2050 2100 2150 2200

    Degree

    s Celsius abo

    ve pre‐in

    dustria

    l

    a. Global Emissions b. Global Mean Temperature

    2100

    From “The Paris Agreement and Next Steps in Limiting Global Warming”, Rose et al (2016), Climatic Change, under review

  • 4© 2016 Electric Power Research Institute, Inc. All rights reserved.

    Global Emissions in Ambitious Post‐Paris Scenario

    ‐20

    ‐10

    0

    10

    20

    30

    40

    50

    60

    2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100‐20

    ‐10

    0

    10

    20

    30

    40

    50

    60

    2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

    No Negative Emissions (dashed lines)

    Total Emissions*

    Energy CO2

    Elec CO2

    Non‐Elec CO2

    Billion

     tonn

    esCO

    2eq

    uivalent

    * Excludes LU/LUC/F

  • 5© 2016 Electric Power Research Institute, Inc. All rights reserved.

    Global Non‐Electric Emissions:  20‐40% below BAU by 2050

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    1.8

    2

    2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

    Inde

    x Re

    lativ

    e to 201

    0

    Baseline

    Ambitious Post‐Paris

    No Negative Emissions

    ‐20%

    ‐40%

    Ambitious scenarios have 100%+ reduction in electric sector emissions by 2050 Meanwhile, non‐electric emissions are reduced by 20%, or 40% if negative emissions are not allowed Reductions are achieved through:

    – Efficiency improvements (beyond baseline)– Electrification (beyond baseline)– Other low‐ or zero‐carbon end‐use fuel (e.g. 

    bioenergy, hydrogen)– CCS in some cases

    Modeling is challenging due to heterogeneity of applications

  • 6© 2016 Electric Power Research Institute, Inc. All rights reserved.

    Where’s the carbon in the US economy?

    Direct Emiss

    ions (M

    tCO

    2)

    [Other]Transportation Buildings Industry

    0

    400

    800

    1200

    1600

    2000

  • 7© 2016 Electric Power Research Institute, Inc. All rights reserved.

    0

    400

    800

    1200

    1600

    2000

    US Direct CO2 emissions + Fossil Fuel Consumption

    Energy Con

    sumption (qua

    ds)

    Direct Emiss

    ions (M

    tCO

    2) Gas

    Coal

    Petroleum

    CO2

    Transportation Buildings Industry

    0

    5

    10

    15

    20

    25

    [Other]

  • 8© 2016 Electric Power Research Institute, Inc. All rights reserved.

    0

    400

    800

    1200

    1600

    2000

    US Direct CO2 emissions + All Fuel Consumption

    Energy Con

    sumption (qua

    ds)

    Direct Emiss

    ions (M

    tCO

    2)

    Transportation Buildings Industry

    CO2

    0

    5

    10

    15

    20

    25

    [Other]

    Gas

    Coal

    Petroleum

    ElectricityBioenergy

  • 9© 2016 Electric Power Research Institute, Inc. All rights reserved.

    Reducing carbon emissions through electrification

    In nearly every case, replacing fossil fuels with electricity at the end‐use results in lower overall carbon emissions– Leverage will only increase with tighter constraints on power sector CO2Key questions:– What are the costs?– How much fossil use can be cost‐effectively replaced by electricity even without a carbon price?

    – For the remainder, how does carbon pricing change the equation, i.e. how does electrification compare with other mitigation options?  

    – In either case, how do we think about adoption and diffusion in the context of consumer behavior?

  • 10© 2016 Electric Power Research Institute, Inc. All rights reserved.

    Light‐Duty Vehicles

    Currently EVs and PHEVs have a very small market share but may be on the cusp of much more widespread deployment– Certain consumer groups may find EV/PHEVs more or less attractive based on usage patterns and technology attitudes (from ORNL):Urban / Suburban / Rural Low / Medium / High annual mileage Early Adopter / Early Majority / Late Majority

    We model the economic trade‐offs among alternative vehicles in each region / consumer group based on these “behavioral cost” differences and retail fuel prices

  • 11© 2016 Electric Power Research Institute, Inc. All rights reserved.

    ‐$1,500

    ‐$1,000

    ‐$500

    $0

    $500

    $1,000

    PHEV‐10 PHEV‐20 PHEV‐40 EV‐100 EV‐150 EV‐250

    Annu

    alize

    d Co

    st Delta vs ICE

    V

    Purchase Price Behavioral Maintenance Fuel Carbon Net Delta vs ICEV

    Electric Vehicle Cost Delta vs Conventional Vehicle‐ EPRI assumptions about vehicle costs for 2030 (no incentives)   ‐ ORNL estimates of behavioral costs                                               ‐ current fuel prices + $100/tCO2

    Median consumer type

  • 12© 2016 Electric Power Research Institute, Inc. All rights reserved.

    Electric vehicles may not work for all consumer types

    ‐$1,500

    ‐$500

    $500

    $1,500

    $2,500

    $3,500

    $4,500

    $5,500

    PHEV‐10 PHEV‐20 PHEV‐40 EV‐100 EV‐150 EV‐250

    Annu

    alize

    d Co

    st Delta vs ICE

    V

    Purchase Price Behavioral Maintenance Fuel Carbon Net Delta vs ICEV

    Rural, high mileage, late majority, high electricity price consumer type

    ‐ EPRI assumptions about vehicle costs for 2030 (no incentives)   ‐ ORNL estimates of behavioral costs                                               ‐ current fuel prices + $100/tCO2

  • 13© 2016 Electric Power Research Institute, Inc. All rights reserved.

    Electric Heating in Buildings

    Currently about 1/4 of residential floorspace in the US has electricity as the main heat source, according to EIA surveys– Concentrated in regions with mild climates / favorable relative fuel prices, e.g. Florida and Pacific NW

    – Higher shares in mobile homes and multi‐unit buildings– Lower share in commercial buildingsNew opportunities for air source heat pump (ASHP) technologyWe model the economic trade‐offs for ASHP vs. conventional furnace (+ A/C) in each region / climate zone based on temperature profile and retail fuel prices

  • 14© 2016 Electric Power Research Institute, Inc. All rights reserved.

    Distribution across US of Electric Heating Cost Premium

    ‐500

    ‐400

    ‐300

    ‐200

    ‐100

    0

    100

    200

    300

    400

    500

    0 50 100 150 200

    Cost Premium fo

    r Electric

     Heatin

    g ($ per yea

    r)

    Cumulative square footage installing new equipment 2015‐2030 (billions)

    Based on today’s fuel prices and new vintage technology

    Areas where electric heating has the lowest total costs

    Areas where electric heating has a cost 

    premium relative to gas

    FloridaPacific

    SE‐CentralMtn‐S

    CaliforniaTexas SW‐CentralS‐Atlantic

    Mid‐Atlantic

    New York

    Mtn‐N

    NW‐Central

    NE‐CentralNew England

  • 15© 2016 Electric Power Research Institute, Inc. All rights reserved.

    Higher carbon prices more electric heating in the money

    ‐500

    ‐400

    ‐300

    ‐200

    ‐100

    0

    100

    200

    300

    400

    500

    0 50 100 150 200

    Cost Premium fo

    r Electric

     Heatin

    g ($ per yea

    r)

    Cumulative square footage installing new equipment 2015‐2030 (billions)

    $0/tCO2

    $100/tCO2

    $200/tCO2

    $300/tCO2

    Based on carbon‐adjusted fuel prices and new vintage technology

  • 16© 2016 Electric Power Research Institute, Inc. All rights reserved.

    0

    0.5

    1

    1.5

    2

    2.5

    ‐20 0 20 40 60 80 100 120

    Electric Loa

    d (W

     per sq

    . ft.)

    Temperature (deg F)

    Hourly Building Heating/Cooling Load with ASHP vs TempFlorida

    CoolingHeating“Balance Point”

    Electric resistance back‐up on margin

    Annual temperature Range (2010)

  • 17© 2016 Electric Power Research Institute, Inc. All rights reserved.

    Hourly Building Heating/Cooling Load with ASHP vs Temp

    0

    0.5

    1

    1.5

    2

    2.5

    ‐20 0 20 40 60 80 100 120

    Electric Loa

    d (W

     per sq

    . ft.)

    Temperature (deg F)

    NE‐Central (e.g. Chicago)

    Cooling

    “Balance Point”

    Electric resistance back‐up on margin

    Heating

    Annual temperature Range (2010)Heating Peak is ~6x 

    Cooling Peak

  • 18© 2016 Electric Power Research Institute, Inc. All rights reserved.

    Non‐Electric Energy CO2 Emissions in US 

    0%

    10%

    20%

    30%

    40%

    50%

    60%

    70%

    80%

    90%

    100%

    Fuel TransportDomestic AviationOther Transport

    Heavy Trucks

    Industry BoilersIndustry Process

    Refining

    Other Industry

    Cars and Light Trucks

    Water Heating/cooking

    Space Heating

    Half of non‐electric emissions are in sectors with clear potential for deep electrification, subject to consumer behavior

    Industry and heavy transport:  also potential for electrification, but fewer opportunities / more barriers 

  • 19© 2016 Electric Power Research Institute, Inc. All rights reserved.

    Key Takeaways

    Energy system decarbonization begins with electric sectorNon‐electric decarbonization rates can depend on negative emissions opportunities in electric sector and elsewhereModeling non‐electric emissions is challenging due to heterogeneity and consumer behavior considerationsPricing carbon emissions can have small effects relative to other economic factorsElectrification is a promising decarbonization option, especially in light‐duty vehicles and buildings – integrated analysis is needed

  • 20© 2016 Electric Power Research Institute, Inc. All rights reserved.

    Together…Shaping the Future of Electricity