logbook week 2

12
Due to the material provided to us – th strips of balsa wood – a frame structur system was the most logical choice. Whe planning our structure’s design we ra through a variety of sketches (as displaye left) but when faced with actually buildin the tower we found that many of th designs were not applicable due to lack material. We thus opted for a colum structure which aimed to maximise heig while limiting the use of materials. In our initial sketches we mere mindful the lateral force and compressive force th tower was predicted to be subject t therefore many feature forms of bracing an attempt to minimise movement. The initial plan for the structure was to create triangular prism columns which were then to be stacked to add height (pictured right). While this design concept was initially sound, once the structure grew beyond two columns in height structural deficiencies came through. We underestimated the force of the dead load (a static load imposed by the self weight of the structure.) This force caused the long beams to buckle, deflect outward and bend, so it became clear to us that shorter columns needed to be used to reduce the effect of the dead load. W0 Studio Activit FRAM Photograph: initial column design (photographer: Jasmin Goldberg)

Upload: jasmingoldberg

Post on 24-Mar-2016

227 views

Category:

Documents


0 download

DESCRIPTION

 

TRANSCRIPT

           

   

Due   to   the   material   provided   to   us   –   thin  strips   of   balsa   wood   –   a   frame   structural  system   was   the   most   logical   choice.   When  planning   our   structure’s   design   we   ran  through   a   variety   of   sketches   (as   displayed  left)   but   when   faced   with   actually   building  the   tower   we   found   that   many   of   the  designs   were   not   applicable   due   to   lack   of  material.   We   thus   opted   for   a   column  structure   which   aimed   to   maximise   height  while  limiting  the  use  of  materials.      In   our   initial   sketches   we   mere   mindful   of  the   lateral   force   and   compressive   force   the  tower   was   predicted   to   be   subject   to,  therefore  many   feature   forms   of   bracing   in  an  attempt  to  minimise  movement.    

The   initial   plan   for   the   structure  was   to  create   triangular   prism   columns   which  were   then   to   be   stacked   to   add   height  (pictured  right).      While   this   design   concept   was   initially  sound,   once   the   structure   grew   beyond  two   columns   in   height   structural  deficiencies   came   through.   We  underestimated   the   force   of   the   dead  load   (a   static   load   imposed   by   the   self  weight   of   the   structure.)   This   force  caused  the  long  beams  to  buckle,  deflect  outward  and  bend,  so  it  became  clear  to  us   that   shorter   columns   needed   to   be  used   to   reduce   the   effect   of   the   dead  load.    

W02  Studio  Activity:  

FRAME  Photograph:  initial  column  design  (photographer:  Jasmin  Goldberg)  

           

   

In   order   to   accommodate   and  reduce   the   bending   of   the  column   elements   we   added  horizontal  braces  half  way  up  the  height   of   the   tower.   In   halving  the   length   of   the   tower   we  halved   the   load   that   the   vertical  column   was   undertaking,   thus  reducing  buckling  of  the  structure  and  increasing  structure  stability.      (Horizontal   braces   highlighted   in  photograph  –  left  –  using  red)  

As   the   tower   got   higher   we   also  encountered  problems  with  the  design  of   the   base.   It   was   found   that   the  surface  area  of  the  base  was  too  small,  causing   the   tower   to   lean   in   one  direction   and   then   topple   over.   To  account  for  this  lean  we  extended  one  of  the  supporting  vertical  beams  in  the  opposite   direction   to   the   lean   in   an  attempt   to   counterbalance   the  structure;  this  was  successful.  We  also  added   lateral   bracing   to   the   base  column  in  order  to  prevent/minimising  the   bending   of   the   vertical   beams  which   were   taking   the   most   force,  being  at  the  bottom  of  the  structure.    

Photograph:  addition  of  horizontal  bracing  (photographer:  Jasmin  Goldberg)  

Photograph:  revised  base  (photographer:  Jasmin  Goldberg)  

           

     

In   the   ‘deconstructing’   phase   we   were  interested   to   find   out   that   the   brackets  deemed   necessary   when   constructing  the  tower  were  not  actually  essential   to  the   stability.   The   tower   remained   stable  when  the  horizontal,  half  column  braces  were  snapped.      The   critical   collapse   point   of   the  structure  was   indeed   the   lateral  bracing  in   the   base.   This   makes   sense  considering  the  base  is  the  foundation  of  the  structure  and  is  bearing  the  greatest  load   due   to   the   self-­‐weight   of   the  structure.    

Photograph:  final  structure,  full  length  (photographer:  Jasmin  Goldberg)  

           

   

W02  Lecture  Activity  

In  this  week’s  lecture  we  took  part  in  a  water  tower  exercise  using  straws  as   support   columns  and  pins   as   joints.   Initially  we  did   a   test   to   find   out  how   much   load   the   columns   on   their   own   could   take   and   the   findings  were  as  follows:     One  straw  =  500g     Four  straws  (bunch)  =  2000g     Four  straw  structure  =  200g  (pictured  right)    These  results  indicated  that  the  structural  members,  when  held  together,  are   the   strongest,   as   their   combination   protects   the   supporting   column  against   deflection   while   combining   the   individual   load   capacity   of   each  straw.   However,   when   the   four   are   separated   into   the   four   straw  structure   (pictured   right)   it   is   unable   to   accommodate   even   the   load   of  one  straw.      This  was  because  the  height  of  the  pin  joins  allowed  for  movement  of  the  structural   members,   causing   deflection   under   the   applied   load   and  collapse  of  the  structure.    

Alternate   structures   were   then   tested  to  determine  whether  deflection  could  be  protected  against.      Firstly   shorter   columns   were   tested  with   double   pin   joints   (pictured   left).  These   additional,   lower,   pin   joints  restricted   the   movement   of   the  supporting   members,   thus   reducing  deflection   and   ensuring   their  straightness   which   was   found   to   be  much  more  stable  than  angled  columns  which  were  prone  to  collapse.      It   was   also   found   that   the   shorter  structural   columns   were   able   to   take  more  load  and  less  likely  to  bend  under  the  applied  load.    

           

                                                   

The   structure   that  was   found   to   be   the  most   successful  was   this  one   (pictured   right).   The   straws  were   folded   in  half,  shortening  their  length  and  thus  increasing  the  load  they   were   able   to   take.   They   were   then   arranged   to  create   the   angular   supporting  members   shown,   secured  by   pin   joints.   This   angular   arrangement   of   the   straws  further   reduced   movement   of   members,   decreasing  likelihood   of   deflection.   Furthermore,   the   triangular  arrangement   ensured   a   balanced   load   path   through   the  structure   to  prevent   lean  or  the  collapse  of  a  single  side  or  column.    

           

   

ar/c".....6(y e:;/ ~""'> >s,"•••..r<!:_~p~~~-.~ o~

/'••.••~,..I!/c::;>~ ';p=...-~

/,or/h~5' a A..a-... C''''''•••..•..../Gz ...•.7" c;...--....,~"eO' (;...-A<:;>U .,L

/' -C,..V / "fl .::1

(O~"..o,.. pV";OCi:J

/IjJH~ \cUfrndrol'"

/&jJCY /.?rvcr(./~.. .t--t::..-r/rc;/ ~,>.r'/e..-../yO_ a6o<.--<!:../oc.--.....c:Ya-r,-c--. .

(O"'/~ r..-c r _a6//"y j:? <....---./ c::>_-,,-~_ ~

.t--e9'-'.e-c~ /'-/

-) e.••..•V' ••...C7...,~ ..••••~ ./

/~.:::;c/-./

CO/&~I'-)--; 6('o~./ r /CJqcY.-

6<:c;_/~ (A...,,q /lj /c.;;o~r-~ //00_ r-

roo/.

'/Vj7~O~/-../ --r- r..-,a""'/I'1-"h~ . .4P,P,,0.6::7' gr.q,-/~y r /qr~,-q/

/o~O"/ ..4::, ,:7ro,-"d.

./~ ~/'(.-- /~ /~-4.,

~c/Q/ ~"" /h

/e~e..,.-_~d//,.o%/ '1)

           

   

- rho./", I?=J r/O;-.- f,vq I-.c.--

haYl/t' /"1-/7

_"'/// :/~..-..c::x-7'z:> ?- e .::::;'-/

(

C>o"'-...-o./ /c,t-.

~ 1A--"'~~~--/7~

?~;-/Or-/hq-..C€-ot.-e.- "?"'/.n...-c...

.( ,P~ / Or".....,.,;::;......,C12..

r-("'9'''--/ #'- tC.""-e..-, rzr

Co NJT12..uCT/O N

CON)I OeR-A-TIO NS

c:.:? /" Jl;"

/~"""'c:::>~ /"-/C'-..

-r' "'-$O/OCe _~....,,,c. cc-//-.

j-l-,a/ •.•.•7Vi".., e::;> A. c:..c

l' ~ O"P e.r=-: c-l.. CI:::>/..;!

/'je ';7:c6:.(·O./~

)7~6///7 ~c~<!'c;../-c (~C~...L

~/,L.A.O<......L

) /AJk~,.,CRc/(-;.~&/,q/-?,y

e (,or, 0,,-> / C.(0,.,..,.//~,...c::.' 7-/0 ..•.....

('C>A...f?It&;o~Ctz &- 20""/"5)

Orc;Yo.., a.-..CR---- -/- bc.-/ /d:;7' (~./

           

   

I

cO""""/'-.o""..., /.-,/jOo...-,Aj ,

./,/q q""c...--"""",./'

co(.,c~ h~ Q;-(t'a/

~focrc "....y 7"-

c~~?y,

c"Or-.;:> r-<!! ..-r ..-r ./ c::> ••••• !'OJ /'l-.~ " .-.

..rrr.....-c. -/ c.--~.-/ ~c ~./O .••..•..

-~"""7&.-r a;-c~./ e#"c/<~/

L'F~C4:/-CcY C rc/~;6--/".:::-<: -r ")....,.<..--cY

.i->(

/ (<, .:>'-,

11/"

,sTP-UCTu{2..AL JYJTEMf

-f Fo f2....(V\S

,/ e:7'" ope:r-~ /-Tbl../.e::.....e

1/4// hp/~-.<=?_- ~ .»:..L~~ ,,~-<-

~ e:::::;r-=, /<:.--,..../c;-~

€'.7'

, (

           

W02  –  Key  terms  glossary    Bracing  Column  (ENVS10003,  March  17)  

• A  column  is  a  compression  element,  also  known  as  a  strut  • A  bracing  column  is  such  a  structural  element  used  to  increase  the  stability  of  a  structure  and  assist  in  managing  the  load  of  forces.  

 Frame  (ENVS10003,  2014,  March  9)  

o Structural  system  consisting  of  beams  connected  by  joints  o Efficient  in  transferring  loads  to  the  ground  

 Stability  

• Resistance  to  change,  displacement  or  collapse    Structural  Joint  (Ching,  2008;  ENVS10003,  2014,  March  9)  

• Three  types  of  structural  joints:  pin,  roller  and  fixed  • Roller  Joint  

o Loads  transferred  in  one  direction  –  vertically  downward  o Load  in  any  other  direction  causes  movement  of  roller  joint  o Allow  rotation  but  resist  translation  in  any  direction  perpendicular  into  or  away  

from  their  faces  o Useful  when  a  joint  must  allow  the  expansion  and  contraction  of  a  structural  

element  • Pin  Joint  

o Found  within  a  truss  system  o Modes  of  action  can  be  in  two  directions  –  planar  o Theoretically  allow  rotation  but  resist  translation  in  any  direction   Representation  of  joints  

(ENVS  10003,  2014,  March  9)  

           

 • Fixed  joints  

o Maintain  angular  relationship  between  the  joined  elements  o Restrain  rotation  and  translation  in  any  direction  o Provide  both  force  and  movement  resistance  o Bending  can  occur  if  a  load  occurs  in  one  member  connected  by  the  joint  

   Tension  (Newton,  2014)  

• Basic  structural  force  • Occurs  when  an  external  load  pulls  on  a  structural  member  • When  subject  to  tension  forces,  particles  of  a  material  move  apart  • Causes  material  to  stretch  and  elongate  • Acts  opposite  to  compression  forces  (see  W01)  • Amount  of  elongation  of  a  material  subject  to  tension  forces  depends  on  the  material’s  stiffness,  cross  sectional  area  and  the  

magnitude  of  the  load.          

             

           

Glossary  Reference  List:    Ching,  F.  D.  K.,  (2008).  Building  construction  illustrated  (fourth  edition).  New  Jersey:  John  Wiley  &  Sons.  2.30.    ENVS10003,  (2014,  March  9).  W02  s1  Structural  Systems.  Retrieved  March  16,  2014,  from:  https://www.youtube.com/watch?v=l-­‐-­‐JtPpI8uw&feature=youtu.be    ENVS10003,  (2014,  March  17).  W03_s1  Structural  Elements.  Retrieved  March  18,  2014,  from:  https://www.youtube.com/watch?v=wQIa1O6fp98&feature=youtu.be    ENVS10003,  (2014,  March  9).  W02  s2  Structural  Joints.  Retrieved  March  16,  2014,  from:  http://www.youtube.com/watch?v=kxRdY0jSoJo&feature=youtu.be    ENVS10003,  (2014,  March  17).  W03_s1  Structural  Elements.  Retrieved  March  18,  2014,  from:  https://www.youtube.com/watch?v=wQIa1O6fp98&feature=youtu.be    Newton,  C.,  (2014).  Basic  Structural  Forces  (I).  Retrieved  March  15,  2014,  from:  https://app.lms.unimelb.edu.au/bbcswebdav/courses/ENVS10003_2014_SM1/WEEK%2001/Basic%20Structural%20Forces%201.pdf    Knowledge  Map  (W02)  Reference  List:    Ching,  F.  D.  K.,  (2008).  Building  construction  illustrated  (fourth  edition).  New  Jersey:  John  Wiley  &  Sons.  2.02-­‐2.04.    ENVS10003,  (2014,  March  9).  W02  c1  Construction  Systems.  Retrieved  March  14,  2014,  from:  https://www.youtube.com/watch?v=8zTarEeGXOo&feature=youtu.be    ENVS10003,  (2014,  March  9).  ESD  and  Selecting  Materials.  Retrieved  March  14,  2014,  from:  https://www.youtube.com/watch?v=luxirHHxjIY&feature=youtu.be    ENVS10003,  (2014,  March  9).  W02  s1  Structural  Systems.  Retrieved  March  16,  2014,  from:  https://www.youtube.com/watch?v=l-­‐-­‐JtPpI8uw&feature=youtu.be