local 3d shape descriptor

17
Scale-Dependent/Invariant Local 3D Shape Descriptors Scale-Dependent/Invariant Local 3D Shape Descriptors

Upload: misscoma

Post on 06-Apr-2018

251 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Local 3D Shape Descriptor

8/3/2019 Local 3D Shape Descriptor

http://slidepdf.com/reader/full/local-3d-shape-descriptor 1/17

Scale-Dependent/Invariant Local 3D Shape Descriptors

Scale-Dependent/Invariant Local 3D Shape Descriptors

Page 2: Local 3D Shape Descriptor

8/3/2019 Local 3D Shape Descriptor

http://slidepdf.com/reader/full/local-3d-shape-descriptor 2/17

Scale-Dependent/Invariant Local 3D Shape Descriptors

Scale-space

2/17

Feature detector 

 –  The feature detector is primary part in computer vision

 –   A specific scale is determined by size of local window

To overcome the limitation

 – 

Construct an image scale-space –  Convolve the image with Gaussian kernels of increasing standard deviation

Scale-space

 –   Allow us to detect not only the location of a local feature in an image

 –  But also intrinsic scale

Scale in 3D geometric data

 –  Construct a representation of the data at different scale

• Multi-resolution representation of a mesh: sensitive to the sampling of the original model• Use smoothing operator similar to 2D scale-space: lead to alternations in the global topology

of the geometric data

 –  Distance metric for modeling the geometry

• 3D Euclidean distance: lead to creation of erroneous features

Page 3: Local 3D Shape Descriptor

8/3/2019 Local 3D Shape Descriptor

http://slidepdf.com/reader/full/local-3d-shape-descriptor 3/17

Scale-Dependent/Invariant Local 3D Shape Descriptors

Geometric scale-space in range image

 –  Range image is already a dense and regular projection of a single view of the surfaceof the target 3D shape

Geometric scale-space

 –  Construct a normal map NNNN

• Triangulate the range image

• Compute a surface normal for each vertex

 –  Geodesic distance

• Encode accurately the scale-variability of the surface geometry

•  Approximate the distance with the sum of Euclidean 3D distances

 – 

Build the geometric scale-space of a base normal map NNNN• By filtering the normal map with Gaussian kernels of increasing standard deviation

• : local window

Geometric Scale-Space

3/17

: a list of vertex point in the range image

: is a 2D domain in RRRR2

2D normal map

Page 4: Local 3D Shape Descriptor

8/3/2019 Local 3D Shape Descriptor

http://slidepdf.com/reader/full/local-3d-shape-descriptor 4/17

Scale-Dependent/Invariant Local 3D Shape Descriptors

Detect 3D geometric corner 

 –  For a point uuuu in the normal map NNNNσ at scale σ

 –  The corner response is computed using the Gram matrix

NNNNs : horizontal direction, NNNNt : vertical direction• : a free parameter that is empirically set for each particular feature detector 

• : weighing factor of the points in the Gram matrix

 –  Detect corner points at each scale

• Spatial local maxima of the corner detector responses

 –  Prune corners lying along edge points

• Threshold : the second-order partial derivatives

 –  Search for local maxima of the corner detector responses across the scales

• The scale of the corners is intrinsic scale of each corner 

Scale-Dependent Features

4/17

Page 5: Local 3D Shape Descriptor

8/3/2019 Local 3D Shape Descriptor

http://slidepdf.com/reader/full/local-3d-shape-descriptor 5/17

Scale-Dependent/Invariant Local 3D Shape Descriptors

Limitation of 3D shape descriptor 

 –  Sampling density

 –  Size of descriptor’s support region

Dense and regular 2D descriptors

 –  Insensitive to the resolution of the input range images

Support size

 –  Can be determine by the scale information of corner 

Local 3D Shape Descriptors

5/17

Solution in this paper 

Page 6: Local 3D Shape Descriptor

8/3/2019 Local 3D Shape Descriptor

http://slidepdf.com/reader/full/local-3d-shape-descriptor 6/17

Scale-Dependent/Invariant Local 3D Shape Descriptors

Determine local neighborhood

 –  Map the local neighborhood of a corner to a 2D domain

 –  Use exponential map

Exponential map

 – 

Map from the tangent space of a surface point to the surface itself (map 2D image to3D surface)

 –  The exponential map takes a vector wwww on the tangent plane and maps it to the point

on the geodesic curve at a distance of 1 from uuuu, or Exp(wwww)= Γ(1)

 –   Any point vvvv on the surface in the local neighborhood of uuuu can be mapped to uuuu’s

tangent plane (referred to as Log map) –  Geodesic polar coordinates of vvvv

• Geodesic distance

• Polar angle of the tangent to the geodesic at uuuu

Local 3D Shape Descriptors

6/17

Exponential map Geodesic polar angle

uuuu eeee1111

eeee2222

θ

vvvv

Page 7: Local 3D Shape Descriptor

8/3/2019 Local 3D Shape Descriptor

http://slidepdf.com/reader/full/local-3d-shape-descriptor 7/17

Scale-Dependent/Invariant Local 3D Shape Descriptors

Build a scale-dependent local 3D shape descriptor 

 –  Use the geodesic polar coordinates

 –  : geodesic distance between uuuu and vvvv

 –  : polar angle of the tangent of the geodesic between uuuu and vvvv defined

relative to a fixed bases {eeee1,eeee2}

 – 

Radius of the descriptor • Set proportional to the inherent scale σ

Interpolate a geometric entity

 –  To construct a dense and regular representation of the neighborhood of uuuu at scale σ

 –  Geometric entity: surface normal

Scale-Dependent Local 3D Shape Descriptor 

7/17

Page 8: Local 3D Shape Descriptor

8/3/2019 Local 3D Shape Descriptor

http://slidepdf.com/reader/full/local-3d-shape-descriptor 8/17

Scale-Dependent/Invariant Local 3D Shape Descriptors

Rotation invariant shape descriptor 

 –  Rotate the normal such that the normal at the center point uuuu points in the positive z

direction

 –  The resulting dense 2D descriptor is invariant up to a single rotation (in-plane rotation

on the tangent plane)

 –   Align the maximum principal curvature direction at uuuu to the horizontal axis eeee1

Scale-Dependent Local 3D Shape Descriptor 

8/17

Page 9: Local 3D Shape Descriptor

8/3/2019 Local 3D Shape Descriptor

http://slidepdf.com/reader/full/local-3d-shape-descriptor 9/17

Scale-Dependent/Invariant Local 3D Shape Descriptors

Scale-dependent local 3D shape descriptor 

Scale-invariant local 3D shape descriptor 

 – 

Build a set of scale-dependent local 3D shape descriptors –  Normalize each descriptor’s size to a constant radius

 Assumption for scale-invariant shape descriptor 

 –  The scales of local geometric structures relative to the global scale of a range image

remains constant as the global scale of a range image is altered

 –  This assumption holds as long as the geometry captured in the range image is rigid

and does not go under any deformation

Scale-Dependent/Invariant Local 3D Shape Descriptor 

9/17

for a scale-dependent corner at uuuu and with scale σ

for a scale-dependent corner at uuuu and with scale σ

Page 10: Local 3D Shape Descriptor

8/3/2019 Local 3D Shape Descriptor

http://slidepdf.com/reader/full/local-3d-shape-descriptor 10/17

Scale-Dependent/Invariant Local 3D Shape Descriptors

Scale-Dependent Local 3D Shape Descriptor 

10/17

Page 11: Local 3D Shape Descriptor

8/3/2019 Local 3D Shape Descriptor

http://slidepdf.com/reader/full/local-3d-shape-descriptor 11/17

Scale-Dependent/Invariant Local 3D Shape Descriptors

Pairwise registration

 –  Similarity Measure

 –  A and B are the set of points in the domain of and

Multiview registration

Image registration

 –  The process of transforming different sets of data into one coordinate system

 –  Data may be multiple photographs, data from different sensors, from different times,

or from different viewpoints.

 –  Registration is necessary in order to be able to compare or integrate the dataobtained from these different measurements.

Evaluation of Local 3D Descriptor 

11/17

Page 12: Local 3D Shape Descriptor

8/3/2019 Local 3D Shape Descriptor

http://slidepdf.com/reader/full/local-3d-shape-descriptor 12/17

Scale-Dependent/Invariant Local 3D Shape Descriptors

Pairwise registration

Evaluation of Local 3D Descriptor 

12/17

Range images with the same global scale using a

set of scale-dependent local 3D shape descriptor 

Range images with inconsistent global scales using

a set of scale-invariant local 3D descriptor 

Page 13: Local 3D Shape Descriptor

8/3/2019 Local 3D Shape Descriptor

http://slidepdf.com/reader/full/local-3d-shape-descriptor 13/17

Scale-Dependent/Invariant Local 3D Shape Descriptors

Multiview registration

Evaluation of Local 3D Descriptor 

13/17

Initial set of range images Approximate registration

obtained with our 

framework

Registration refined with

multi-view ICP [25]

 A water tight model using

a surface reconstruction

algorithm [26]

Page 14: Local 3D Shape Descriptor

8/3/2019 Local 3D Shape Descriptor

http://slidepdf.com/reader/full/local-3d-shape-descriptor 14/17

Scale-Dependent/Invariant Local 3D Shape Descriptors

Multiview registration

 –  Multiple objects• 15 views of the Buddha model

• 12 views of the armadillo

• 15 views of the dragon model

Evaluation of Local 3D Descriptor 

14/17

Page 15: Local 3D Shape Descriptor

8/3/2019 Local 3D Shape Descriptor

http://slidepdf.com/reader/full/local-3d-shape-descriptor 15/17

Scale-Dependent/Invariant Local 3D Shape Descriptors

Multiview registration

 –  Random global scale• 15 views of the Buddha and dragon models

• Random scale factor: 1 ~ 4

Evaluation of Local 3D Descriptor 

15/17

Page 16: Local 3D Shape Descriptor

8/3/2019 Local 3D Shape Descriptor

http://slidepdf.com/reader/full/local-3d-shape-descriptor 16/17

Scale-Dependent/Invariant Local 3D Shape Descriptors

Multiview registration

 –  Random global scale• 15 views of the Buddha models

• 12 views of the armadillo models

• 15 views of the dragon models

• Random scale factor: 1 ~ 4

Evaluation of Local 3D Descriptor 

16/17

Page 17: Local 3D Shape Descriptor

8/3/2019 Local 3D Shape Descriptor

http://slidepdf.com/reader/full/local-3d-shape-descriptor 17/17

Scale-Dependent/Invariant Local 3D Shape Descriptors

[1] J. Novatnack and K. Nishino, “Scale-Dependent/Invariant Local 3D Shape

Descriptors for Fully Automatic Registration of Multiple Sets of Range Images,”In Proceedings of the 10th European Conference on Computer Vision 

(ECCV2008) , pp. 440-453, 2008.

[2] J. Novatnack and K. Nishino, “Scale-Dependent 3D Geometric Features,” In

IEEE 11th International Conference on Computer Vision (ICCV2007) , 2007.

References

17/17