lma7so-! module manual october …...n-ant dec oy woo lma7so-! lunar excursion module |...

162
n - ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021 (NASA-CR-129890) LUNAR EXCURSION MODULE N73-70028 FAMILIARIZATION MANUAL (Grumman Aircraft Engineering Corp.) 15 Oct. 1965 140 p Unclas 00/99 39257 THIS MANUAL SUPERSEDES LMA790-1 DATED 15 MARCH 1965 PUBLICATIONS SECTION/SERVICE AND PRODUCT SUPPORT DEPARTMENT/GRUMMZ«| AIRCRAFT ENGINEERING CORPORATION/BETHPAGE/NEW YORK RainRAP emmertaie ged SUaie eke oa sae Made Adon oe nate aa kinCachessouiicnAUR EE Masse ae ee keene |LMA790-01001¢ 15 OCTOBER 1965

Upload: others

Post on 13-Jun-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

n

-

ANT

DECoy

woo

LMA7SO-!

LUNA

REX

CURS

ION

MODULE

|

FARI

LIAR

IZAT

IONMANUAL

/

NAS

9-1100

EXHIBIT

E,PARAGRAPH

10.2

.PR

IMAR

YNO

.830

LINE

ITEM

021

(NASA-CR-129890)

LUNAR

EXCURSION

MODULE

N73-70028

FAMILIARIZATION

MANUAL

(Grumman

Aircraft

Engineering

Corp.)

15

Oct.

1965

140

pUnclas

00/99

39257

THISMANUALSUPERSEDESLMA790-1DATED

15MARCH

1965

PUBL

ICAT

IONS

SECT

ION/

SERV

ICEAND

PRODUCTSUPPORTDEPARTMENT/GRUMMZ«|

AIRC

RAFT

ENGINEERINGCORPORATION/BETHPAGE/NEWYORK

RainRAPemmertaiegedSUaieekeoa

saeMadeAdonoenateaa

kinCachessouiicnAU

REEMasseaeeekeene

|LMA79

0-0100

1¢15

OCTOBER

1965

Page 2: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

LMAT90-1

ss=

INSE

RTLATEST

CHANGEDPAGS.

DESTROY

SUPERSEDED

PAGE

S.

bya

vertical

line

inth

eoutermarginsof

thepa

ge.

LEST

OP

BPPECYIVE

PAGES

NOTE:

The

portionof

the

text

affe

cted

by

thech

ange

sis

indicated

T

OTALNUMBEROFPAGES

INTHISPUBLICATION

IS138CONSISTING

OFTHE

FOLLOWING:

No.

TitlePage

....

....

15Oc

tobe

r19

65"A"Page...ee0++-

15October1965

ithruv.......+++.

15October1965

1-1

thru1-12

.....

15October1965

2-1thru2-9

......

15October1965

3-1thru3-87......

15October1965

4-1thru4-5

......

15October

1965

5-1thru5-15

.....

15October1965

A-1

thruA-4......

15October1965

*Theasterisk

indicatespageschanged,added,ordeletedby

thecurrentchange

NASA

Manuals

will

be

distributed

asdi

rect

edby

theNASA

Apcl

loPr

ojec

tOffice.

All

requests

for

manuals

shou

ldbe

dire

cted

totheNASA

Apollo

Spac

ecra

ftProject

Offi

ceat

Hous

ton,

Texa

s.

15October1965

Page 3: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

Oooo 3

LMA790-1

.Table

ofContents

Paragraph

Title

SECTION

i-MISSIONDESCRIPTION

1-1

General...ccceee

ceee

cemeeeeetersecarereeeee

1-2

Flig

htDevelopmentTestProgram.....-eesseeeeecoves

1-7

LEMFDTPDevelopment

Flig

htInstrumentationEquipment

..

1-14

LEM

Pre-MissionCheckS

...-cccccsccvccvesvesene

1-15

MissionDescription......cece

revereeesesnccces

SECTION

II-LEMSTRUCTURE

2-1

General...ccccccccescreeances

serecccevcece

2-2

AscentStage...

cccc

cereerrereerrs

een

eane

seeas

2-11

DescentStage...

2.seer

eccccrenee

cererersveeeas

2-13

Inte

rsta

geAttachments,

Umbilicals,

andSeparations

......

SECTION

III

-OPERATIONALSUBSYSTEMS

General...

wcccc

eeee

eeee

ereeensreresesssssens

Commander's

DisplaysandControls

......c

cceeecceee

SystemEngineer'sDisplaysandControls...........06-.

Guidance,

NavigationandControlSubsystem........-224.

ReactionControlSubsystem

......

cccccsveesccccces

PropulsionSubsystem,

..2...

cc

eeceetreeeens

enne

InstrumentationSubsystem.....

ccceceeeresc

cc

eccve

CommunicationsSubsystem...

..cecececesevecccccce

ElectricalPowerSubsystem.......cc0ccccacseccvees

~116

EnvironmentalCortrolSubsystem......ececceccceves

-122

CrewProvisions...0.cee

eeeet

eeee

eeenereneee

ElectroexplosiveDevicesSubsystem

.........ec0e8008

WTO O IRAwt OS 8 8 © © Oe km a oe

C2 09 & 69 03 & © 2 & OF OD OD

Nwo=

SECTIONIV

-PRELAUNCHGPERATIONS

1General...ccc

cecc

cecree

eeew

eeteeter

eeesens

2PrelaunchTestsandOperations

......000ccccceveses

-3

AcceptanceCheckoutEquipment

-Spacecraft

........04-

4PrelaunchCheckout...

.cccwcrc

wenersear

arercceae

SECTIONV

-GROUNDSUPPORTEQUIPMENT

General...ccceeee

eeeee

ere

eneenes

ACE-S/CCarry-onEquipmentand

PeripheralEquipment

...

ServicingEquipment

..0...cccteee

eeeeerence

HandlingEquipmentandFixtures...

20...eee

eeeeeeaee

BenchMaintenanceEquipment,.........00cccccccevecee

" op

APPENDIXA

-LEMSUPPORTMANUALS

©

1General...ccec

ee

eeeteee

eeeweet

ereene

2GroundSupportEquipmentManuals

.,0...

0...

eeeee

wee

-3.

Spec

ialTestEquipmentManuals

....-+eee

eeeeeeeeee

4General

PurposeHandbooksandManuals....-.---eeeeee-

15October1965

Equipment

forControlandCheckout

ofSpacecraftandServicingEquipment

eoneeene

..

Ont H OMON OHwe wt ot wt Or AT Ww of BO

''

69 09 09 09 0 OF 29 0 2 &™ 09 OD

on

Page 4: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

LMA790-1

List.ofDlustrations

Figure

Titl

ePage

.SECTION

I-MISSIONDESCRIPTION

1SaturnV

LaunchVe

hicl

eandPayload...cece

cccc

cccccccccesccccceece

1-3

-2

MissionProfile

(3Sheets)

...

cccccccccece

cccecereecereeceeseene

1-5/1-6

SECTION

UH-LEMSTRUCTURE

2-1

LEM

Structure

..ccc

ececcccccccreeeeewerereeeeeeeeeeneseeees

2

2-2

LEM

DimensionS

.....cccccncccccscsccsccevesesvcvecesceececese

2

2-3

AscentStage

(2Sheets)...

..cecccccc

ere

cet

eeeeesecececees

2-2-4

22-5

2DescentStage...eceer

eeeeneenemanee

eeee

eeseeeeeeses

LEM

Inte

rfac

ean

dExplosiveDevicesLocations...cccccccececccseccscee

-229

/2-1

0

SECTIONII

-OPERATIONALSUBSYSTEMS

LEM

Cont

rols

and

Disp

lays

8,......cece

eccc

cceceence

eccccescescccs

323/34

Commander'sandSy

ster

nsEn

gine

er's

Cont

rols

andDi

spla

ys.......eeseeeee.

3°5/3-6

PrimaryGuidance

PathSi

mpli

fied

BlockDiagram......ccccccsccccccccvees

3°13/3-14

AbortGuidancePathBlockDiagram...1...

ce

ecceceeeeeeeceeversese

$-15/3-16

PrimaryGuidanceandNavigationSe

ctio

nBlockDiagram......cceccscccseces

9-21/3-22

LandingRadar

BlockDiagram...ccc

ccc

cccece

ecenceeteressecvceese

3~23/3-24

LandingRadar

VelocityComponents’......cccccccsccccccceessevcceces

3-25

RendezvousRadar

BlockDiagram

@eeneevneeeeeveeevesevesseseveevnevneeeese

3-27/3-28

AbortGu

idan

ceSe

ctio

nBl

ockDiagram

.2...

ccscccecerecesesessscesesss

9-91

/3-3

2ControlElectronicsSe

ctio

nBlockDiagram.....cecesenesesececresescess

3933

/3-3

94Reaction

ControlSubsystem

Inst

alla

tion

......cccccccecesesecesesceces

$-37

/3-3

8ReactionControlSubsystemSchematic1.2...ccccccsecessccverscceses

9-39/3-40

RCS

ThrusterSchematic...

.cc

cccceccccerseersrccccrccccccessccece

3-42

DescentPropulsionPropellantSupplySections

Schematic......c.c.ceccccsevece

3-44

DescentEngine

Inje

ctor

andValves

...ccccececeercceceresececesesess

9-48/3-48

AscentPropulsionPropellantSupplySectionSchematic....ccesccecsscveccsecs

3-49

AscentEngine

Inje

ctor

andValveS....

essescecceccccssccecrcccsesees

S051/3-52

InstrumentationSubsystem

BlockDiagram

......cccccccccccccccceesece

3-53/3-54

CommunicationsSubsystemBlockMiagram....cececer

ecccccncccenevese

3-57/3-58

In-FlightCommunications

(EarthSide)...

cccccceceeeeeeecccccesessces

3-60

In-FlightCommunications

(Far

Side)

eeseeevreeeereoerersreereoenvreoneeeeesreone

3-61

LEM

Lunar

StayCommunications.....ccccccccccccvcvcnscscecscccecececs

3-62

ElectricalPowerSubsystemEquipment

Loca

tion

.....-.ccscscecvcesesecs

3-67/3-68

ElectricalPowerSubsystem

FunctionalBlockPiagram.....cccccevcecceees

3-69/3-70

Environmenta!ControlSubsystem

Installation..........0ccccecccescccces

3+73/3-74

EnvironmentalControlSubsystemSchematic........cccccccccccascecces

3975/3-76

PLSSDonningStation.....

.cccecereececree

eecencereecescerses

3-81

Zero-GRestraint

....cececece

etreeter

emeee

etenn

ecentercesces

3-83

Expl

osiv

eDevicesLocations...)ck

leceeeee

cecececeeseccee

es3°85/3-86

ExplosiveDevicesBl

ockDiagram

,..,.....00.

cec

cccececccccccccees

3°87

/3-8

8

set 6 bt tb ebet ltPOF 2 OF 72 OF ©2 02 0) 2 2 12 2 02 ©2 09-1) 2 022

CaANMCYMOErDOAOKN OoTTTNN

~N

WOO ORO

72OIOIA

SECTIONIV

-PRELAUNCHOPERATIONS

4-1

ETR

CheckoutTestSummary

Chart...ccccccccccscscccccvcccececvsacs

4-3/4-4

il|

|15

Octo

ber

1965

Page 5: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

QOoOrIMWOrF OOo oOoOoOon ooo

LMA790-1

ListofTables

Table

-Title

SECTIONHI

-OPERATIONALSUBSYSTEMS

1PrimaryGuidancePathModesandFunctionS.....ccccccscsccsvccceseesens

2AbortGuidance

PathModesand

FunctionS....scecscccscveccssceecsscvens

-3Scientific

InstrumentS

2.2...ccccee

weceeeeewernererenceseesecenece

4CommunicationsLinkS.....cece

ccc

ecee

ceeeee

cereerenseceasenes

SECTIONV

-GROUNDSUPPORTEQUIPMENT

GuidanceandNavigationSe

ctio

nBME...

2.cececersccccescnresasecsces

StabilizationandControlSe

ctio

nBME

1...

ccecccecccvccveccvcecccere

Electrical

PowerSubsystemBME

.........Come

eceewwerea

neewessees

CommunicationsSubsystemBME...

.cece

cereenecereweescececceens

ControlsandDisplaysBME...

.cc

eece

ctrec

me

eeeeecece

etceeee

InstrumentationSubsystemBME

......ccc

csvcccccovcseccenssrterses

APPENDIXA

-LEMSUPPORTMANUALS

aNOT ©t4

19 01

Ground

Supp

ortEquipmentManuals.........e..0..Lace

ccece

cceecces

SpecialTestEquipmentManuals......0

2cccc

cecenaceacc

ceencecccue

General-PurposeHandbooksandManuals...........2.¢eeeecw

eeerencewene

ae

<<<

15

October1965

Page

5-13

5-14

5-14

5-15/5-16

§-15/5-16

5-15/5-16

A-1

A-2

A-3/A-

hii

Page 6: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

LMA790-1

“&

“ate

Petnae

tete

Begcrssw

—_

ArtistConceptionofLunar

Stay

iv15October

1965

Page 7: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

TOO OF oO

LMA790-1

FOREWORD

ThisFamiliarizationManualprovidesageneraloperationaldescriptionof

allsubsystemsandmajor

components

oftheLEM.

Theinformationcontainedherein

isfororientationand

indoctrination

pur-

poses.

Thescope

ofcoveragedescribes

theLEM

mission,

spacecraftstructure,

operationalsubsys-

tems,

prelaunchoperations,

andgroundsupportequipment,

Areferenceindexofsupportmamualsde-

veloped

todate

isin

clud

edin

AppendixA.

15October1965

.

Page 8: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

LMA790-1

SECTIONI

MISSIONDESCRIPTION

1-1,

GENERAL.

TheLunarExcursionModule(LEM)Systemconsistsofamannedvehicle(module)andrelatedsubsys-

tems.

TheLEM

System

enablessuccessfulcompletion

oftheLEM

mission,

usingth

econceptknownas

theLunar

Orbi

talRendezvous(LOR)

tech

niqu

e.TheLEM

mission,

which

ispart

oftheoverallApollo

mission,

beginsshortlyafterseparationof

theLEMfrom

theCommand/Servicemodules

(CSM),

con-

tinu

esthroughlunarde

scen

t,lunar

stay

,and

lunarascent,

andends

atrendezvouswith

theor

biti

ngCSM

beforeth

ereturn

toearth.

Missionabortprocedurescanbeexercisedat

anytimeduringth

emissionshould

itbecomenecessary.

-1-2.

FLIGHTDEVELOPMENTTESTPROGRAM

BeforetheLEM

canbecommitted

tothelunarmission,

itsability

tomeetth

eoperationalrequirements

ofthemissionmustbedemonstrated

toassureastronautsafety

andmissionsuccess.

The

Flig

htDe-

velopmentTestProgram(FDTP)

isintended

toprovide

this

assurancebyaseries

ofdevelopmental

missions

inth

erelative

safe

tyof

earth

orbi

t.

1-3.

LEM-1/206AMISSION

The

firstdevelopmentalmission

will

consistof

afu

ll-u

p,unmannedLEM

andCSM

boil

erpl

ateNo

.30

launchedbyaSaturn

IB,

Theprimarypurpose

ofthis

mission

willbe

tovalidate

theoperationalchar-

acte

rist

icsandperformance

oftheLEM

AscentandDescentPropulsionSubsystemsand

allflight

con-

trol

sinnear-earth

orbit.

1-4,

LEM-2/207MISSION

Theseconddevelopmentalmission

willbe

the

firs

tmanned

flight

ofacompletespacecraft(Command

module

(CM),

Servicemodule

(SM),

andLEM).

Theprimary

purp

oseof

themission

will

be

todeter-

mine

thecapabilityoftheLEM

toprovide

theenvironment

requiredduringspaceoperationsand

torendezvousanddockwith

theCSM

underava

riet

yof

operational

cond

itio

ns.

Because

oftheweight

limi

tati

onsimposedby

theSaturnIBpayload

capa

bili

ty,LEM

andCSM

prop

ella

ntwi

llbehi

ghly

offl

oade

d.

1-5,

LEM-3/503MISSION

The

thirddevelopmentalmission

will

use

theSaturnV,

thelunarmissionlaunchve

hicl

e,which

will

enablethespacecraft(LEM,

CM,

SM)

tobe

full

yloaded.

Theprimary

purposeof

thismission

willbe

todemonstratefurtherLEM

capabilities,

confirmrates

ofconsumable

expenditures,

andproveout

proposed

timelines

for

thelu

narmission,

1-6.

SUBSEQUENTMISSIONS

Themissions

forLEM-4andsubsequentLEM'saredependenton

thesu

cces

sof

the

init

ialthreeLEM's

and

themanrating

oftheSaturnV

launchve

hicl

e.If

the

init

ialmissionsare

succ

essf

ul,

thelunar

landingmissionmay

be

initiatedbyLEM-4

orsoon

after.

Alternatemissionsareplanned

foreach

of

theLEM'sto

provideforco

ntin

genc

ies.

1-7,

LEMFDTPDEVELOPMENTFLIGHTINSTRUMENTATIONEQUIPMENT,

Insupportof

theFDTP,

theba

sicLEM

configuration

will

beaugmentedby

spec

ialequipment,

unique

tothedevelopmental

flights.

Thisdevelopment

flig

htinstrumentation(DFI)equipmentmay

beclassified

into

threegroups:

(1)

theLEM

MissionProgrammer

(LMP),

(2)theon-boardDFI,

and

(3)th

eDF!

trackingequipment.

1-8,

LEMMISSIONPROGRAMMER.

TheLEM

MissionProgrammer(LMP)

will

provide

theLEM

with

theca

pabi

lity

ofunmannedoperations

byactivatingfunctionswhicharenormallyperformedbyanastronaut

toaccomplish

testobjectives.

The

LEM

hasthreemodes

ofoperation:

prime,

backup,

andgroundcommand.

15October.

1965

|1-

l

Page 9: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

LMA790-1

1-9,

PrimeMods,

Theprimemodepr

ovid

escommand

inte

llig

ence

fromaprogramst

ored

inth

eLEM

GuidanceComputer

(LGC),

throughthebasicLEMsubsystem

inte

rfac

esandtheProgramCouplerAs-

sembly(PCA),

toth

esubsystemsto

provideve

hicl

eco

ntro

l.Itcanprovide

allfunctionsrequiredto

accomplishunmannedmissionob

ject

ives

andhas

theca

pabi

lity

ofopsn-orclosed-loopor

both,

guid-

anceasrequiredbythemission

prof

ile,

1-10

,Ba

ckup

Mode.

Thebackup

mode

,whichwill

beused

only

inth

eev

entof

aprime-modemal-

function,

providescommand

inte

llig

ence

fromaseries

ofcommandsequencesstoredin

theProgram

RadarAssembly

(PRA),

through

thePCA,

toth

esubsystemsto

providavehicleco

ntro

l.It

sca

pabi

lity

isHmitedto

open-loop,

time-sequencedcommands,

Itwill

berequired

toac

tiva

teon

lythosefu

ncti

ons

requiredto

accomplishobjectives

constraining

subsequent

flig

hts.

,

1-11,

GroundCommandMode,

Theground

commandmode

prov

ides

grou

nd-i

niti

ated

command

intel-

ligence

forcontingency

situations,

Thegroundcommandsare

sent

tothe

Digi

talCommandAssembly

(DCA)where

they

areprocessedandroutedto

(1)theLGC

forupdatingandprogram

selection;

(2)the

PRA

forprogram

initiations,

termination,

andse

lect

ionco

ntro

l,or

(3)thePCA

forro

utin

gto

the

subsystems

tocorrectLMP

rela

yorsubsystemmalfunctions

that

wouldotherwisejeopardizesubse-

quentvo

hicl

e-te

stca

pabi

lity

..

1-12,

On-BoardDevelopment

Flight

Instrumentation,

To

sati

sfyth

eob

ject

ives

ofth

eFDTP,

engineeringda

tabeyond

that

suppliedbyth

ebasicLEM

inst

ru-

mentationwi

llbere

quir

ed.

Thisad

diti

onal

data

will

beaccommodatedonthedevelopmental

flig

htsby

theinclus

ionof

specialon-boardDFL

Thisequipmentwill

cons

istof

anumberof

f{m/{fmtelemetry

linksth

atra

diat

eLEM-generatedda

tano

trequiredforreal-time

display,

andasingle

pcm/fm

unit

forreal-timecontrolpurposes.

Thevhftelemetry

link

swill

cons

istof

Inter-RangeInstrumentationGroup

(IRI

G)standardpropor-

tion

albandwidthpam/fm/fm.

AJAstandardco

nsta

ntbandwidth{m/im,

andpem/fm

transmitting

sys-

tems.

Thepem/fmsystem

will

radiateth

eoutput

oftheop

erat

iona

lPulsecodemodulationandtiming

equipment(PCMTE)

toensurere

ceip

tof

this

informationduringanear-earthmission.

Thenumber

ofeach

ofthesesystemsusedwill

bedeterminedbyth

erequirements

ofth

ein

divi

dual

missions,

Thesetelemetrysystems

wil!contain

allcomponentsnecessary

tosense,

condition,

commutate,

multiplex,

modulate,

andradiatethead

diti

onal

data

requirements

ofth

edevelopmentalmissions.

1-18,DEVELOPMENTFLIGHTINSTRUMENTATIONTRACKINGEQUIPMENT.

TheDFItracking

equipment

will

baaC-bandtranspondersystem

cons

isti

ngof

two

ilne

filters,

two

AN/DPN-66

transponders,

twopower

divi

ders

,andfo

uran

tenn

as,

Thesystem

will

facilitate

radar

trackingof

theLEM

duringFDTP

near-earthmissionswhen

the(o

pera

tion

al)S-band

isnota

full

y‘qualified

system.

Toaccomplish

this

func

tion

,thetranspondersreceiveapulse-type

sign

alvi

a

thei

rantennasandtransmitback

toearthapulse-type

sign

alat

adi

ffer

entfrequencyover

thesame

antennas.

1-14,.

LEMPRE-MISSIONCHECKS.

’Beforeearthla

unch

,theLEM

System

1ssubjectedto

rigorouschecks

toachievemaximum

mission

reli

abil

ityandastronaut

safe

ty.

Systemacceptanceandfu

ncti

onal

test

s,in

tegr

ated

equipmenttests,

assembly

test

s,launchpad

test

s,andcountdownop

erat

iona

ltestspermitconstant

system-monitoring.

Duringthese

test

s,eachsubsystem

ischecked

totheex

tent

possible

withoutequipmentremoval,

Ageneral-purposespacecraft-checkoutsystem,

theAcceptanceCheckoutEquipment

-Spacecraft

(ACE-S/C),

isusedforcomputer-controlledormanuallyco

ntro

lled

acceptance

testsandprelaunchtesta

oftheLEM

System.

TheLEM

System

isexercisedthrough

itsmodes

ofop

erat

ion,

redundanciesare

isol

ated

andchecked,

anddiagnostic

routines

areperformed

tothereplaceable-unit

leve

l.

1-15,

MISSIONDESCRIPTION.

The

objectiveof

theApollomission

isto

land

twoastronautsand

scientific

equipmentonth

esurfaceof

themoonand

toreturnthem

safely

toea

rth.

Themission

hasthe

followingphases:

earthas

cent

,

earthparking

orbit,

translunar

coast,

luna

ror

bit,

lunardescent,

lunar

stay

,lunarascent,

rendezvous

and

docking,

andLEMjettison.

.

1-16.

SATURNVLAUNCHVEHICLEANDPAYLOAD,

(See

figure

1-1.)

TheSaturnV

isthelaunchve

hicl

eused

intheApolloprogram

toboostth

epayloadused

toperform

the

manned

luna

rla

ndin

gandreturn.

Thisthree-stagevehicleconsistsof

theS-IC

firs

t-st

agebo

oste

r,the

1-20

Oo

,15

October1965

Page 10: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

'

MoOnNnoOoOoOoOoOoODoOoOoOoOonoOn

LMA790-1

LAUNCH

ESCAPESYSTEM

(LES)

COMMAND

MODULE

(CM)

SERVICEMODULE

(SAA)

SPACECRAFT

~—LAUNCH-VEHICLE

ADAPTER

(SLA)

LUNAR

EXCURSIONMODULE

(LEM)

.

BOOSTERINSTRUMENT

UNIT

S-IVBTHIRD-STAGEBOOSTER

$-ISECOND-STAGE

BOOSTER

ved

|LUNAR

EXCURSIONMODULE

(LEM)

S-IFIRST-STAGE

BOOSTER

201LMA10-60

t

Figure

1-1,

SaturnV

LaunchVehicleandPayload

15October1965

;1-3

°

Page 11: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

LMA790-1

8-11

second-stagebooster,

andthe8-IVBthird-stagebo

oste

r.Thepayloadconsistsofth

eCommend:

Module(C

E),

ServiceModule

(£3),

LumarEx

curs

ionModule(LEM),

andth

eCpacecraft

-Launch-

VehicleAdapter

(SLA

).TheCommandModule

hous

esthe

threeastronauts(Commarder,

SystemsEn-

gineer,andNavigator)beforeandsubsequent

tolunaroperations.

TheBoosterInstrument

Unit,

lo-

catedbetweenth

eServiceModuleandth

eS-IVB,

controlseach

ofth

ethreestagescuring

flight.

The

overallle

ngth

oftheSaturnV

LaunchVehicleandPayload

is361

feet,

1-17

,8-

ICFirst-StareBooster.

TheS-IC

first-stagebooster

is33

feet

indi

amet

er,

138.

5feet

inlength,anduses

five

F-1

engi

nes,

EachF-1

engine,

burningRP-1and

liqu

idoxygen,

produces

1,500,

000pounds

ofthrust,

thusyi

eldi

nganov

eral

lboostof

7,500,

000pounds,

1-18

,8-II

Second-Staze

Booster:

The§-Isecond-stagebooster

is33

feet

indiameterandapproxi-

mately82

feet

inlength

employs

five

J-2

engi

nes.

EachJ-2

engine,

burningquidhydrogenand.

liquidoxygen,

produces

200,

000

poundsof

thrustforanov

eral

lboostaf

1,000,

000pounds,

1-19,

S-IVBThird-Stage

Booster.

TheS-IVB

third-stageboosterproduces

200,

000pounds

ofthrust.

1-20

,Ea

rth

Vici

nity

andTr

ansl

unar

Coast.

(See

figure

1-2,

sheet

1of

3.)

TheSaturn

laun

chve

hicl

ein

sert

sthespacecraftandtheS-IVBstage(which

isattachedto

theSpacecraft-LaunchVehicleAdapter

(SLA

))in

toanearth

orbit..

The

landinggear

oftheLEM

isfolded

andtheantennare

trac

tedwhen

the

LEM

isinstalledinsidetheSLA,

Whenearth

orbitis

achieved,

theS-IVB

stage

isshutdownandth

ethreeastronauts

intheCM

perform

CSM

subsystemchecks

inpreparationfortranslunar

inje

ctio

n,Landmark

sightingsandotherguidance

andnavigationtasks

(for

example,

attitude

referencesystemsalignments)areperformedwhile

inearth

orbit.

Uponcompletionof

earthorbit(nominallytwo

revolutions),

theS-IVBengine

isrestartedto

be-

gintranslunar

injection.

Afterthe

init

ia]translunarcoastingpe

riod

,th

eCSM

detachesfrom

theSLAand

S-IVBstage,

pitches

180°

infree

flig

ht,anddockswithth

edockinghatch

ofth

eLEM

-amaneuver

call

edtranspositionand

docking.

Duringtranspositionand

dock

ing,

theLEM/S-IVBstageis

stab

iliz

edbytheS-IVB

instru-

mentation

unit.

Uponcompletion

oftranspositionanddo

ckin

g,th

eS-IVB

stageand

theSLA

arejetti-

sonedandtheCSMandth

eLEM

are oriented

forco

ntin

uati

onof

thetranslunarcoast

peri

od.:

During

translunar

coast,

theLEM

remains

pass

ive,

exceptfortheIn

erti

alMeasurement

Unit

(IMU)heaters

andportionsof

theEnvironmental

ControlSubsystem

(ECS)and

Elec

tric

alPowerSubsystem

.(E

PS),

whichwereactivatedbefore

launch.

TheCM

performsall

navi

gati

onandguidancefunctionsan

d,orientedbytheSM

reactioncontrols

initiatesmidcoursecorrectionmaneuversbymeans

oftheService

ModulePropulsionSubsystem

thrusting.

1-21

,LUNARVICINITY.

(See

figure

1-2,

sheet

2of

3.)

Approximately64hours

afterlaunch,

theSM

PropulsionSubsystem

insertsth

eLEM

andCSMintoa

circularlunarorbitofapproximately80

nauticalmolesabove

thelunar

surface.

Duringtheearly

partof

this

orbit,

theastronautsperformIMU

alignments;landmark

sightingsfororbitdetermination;

andGuidance,

Navigation,

andControl(GN&

C)Subsystemupdating.

Uponcompletion

ofthis

phase,

theLEMispressurizedfrom

theCM

andth

eLEM

internal

environment

iachecked.

TheCommander

andSystemsEngineerenter

theLEMthrough

thedockingha

tch;

theNavigatorremains

inth

eCM.

The

astronauts

inth

eLEMcheck

ovteachsubsystem,

andperform

IMUoptical!alignment

ofth

eGN&

CSubsystemsusing

theal

ignm

entoptical

telescope(AOT).

The

iner

tial

atti

tude

referenceassembly

ofth

eLEM

abortguidancese

ctio

nis

then

alig

nedwith

respect

totheGN&C

Subsystem.

Uponcomple-

tion

ofthecheckout,

andat

apredetermined

poin

tin

lunar

orbit,

theReactionControlSubsystem

(RCS)

separatestheLEMfrom

theCSM.

Theastronautsre

alig

ntheIMUand

chec

kthe

trackingcapability

oftherendezvousandlandingradars

inpreparationfordescentto

thelunar

surf

ace.

TheDescentPropulsionSubsystem

insertstheLEM

intoHohmann

elliptical

transfer

orbit.

Thisde-

scentorbithasapericynthionof

50,000

feetapproximately225milesuprange

oftheproposedlanding

site

.Duringthe

initialpartof

thedescenttransferorbitcoast,

theor

bita

lpath

isve

rifi

edbyrendez-

vousradartrackingbyLEMandoptical

trackingbyCSM,

Near

theend

ofthis

orbi

t,theastronauts

update

theIMU

ofth

eGN&CSubsystembystar-sightings

inpreparationfor

thenext

poweredph

ase,

Attheconclusionof

thedescenttransfer

orbi

tcoastphase,

thedescentenginecuts

offandth

eLEM

begins

itscoasttowards

pericynthion.

TheGN&C

maintains

theat

titu

deof

theLEM

during

allcoast

phasesandmainrocketengine

firi

ngs.

Thedescentengine

isfiredwhen

theLEMarrivesat

the

pericynthion,

toreduce

thevelocity

duringdescent

tothelunar

surf

ace.

Thebrakingphase

isper-

formed

atnear-maximum

descent-enginethrustalonganear-optimum(minimum

fuel)trajectory.

The

land

ing

site

isno

tvisibleduring

this

phasedue

tothehigh

pitc

hanglesrequiredfo

rthebraking

manuever.

1-4

Oo

-15

Octo

ber

1965

Page 12: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

EART

HVICRUTY

AND

TRAN

SLUN

ARco

ag Yat

:on

eo™®

.Fi

f!Pe

é.

/4

éLote

‘..

é.

oN

io

,a,

an

~

poeMITTere

=o

.

~:

oe

f™

.2

Loe

fey

,

oS

‘.wn

_‘,

g4

Lao

NR

aBo

:'

..

mo,

.2

:a,

oe

few

veLe

Paesoe

::

(03:

20:5

8)BEGIN

.

TRANSPOSIT

AND

DOCKIN

Page 13: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

bees a u

.

«x

Na

2.

(00:02

:34)

BEGIN

S-i!

THRUSTING

(03:47:58)

CSM

OOCKED—

BEGINCOASTTHROUGH

S-IVB

JETTISON

SeN ’

3.

10.

(00:02:54)

JETTISONLAUNCH

ESCAPESYSTEM

(03:

50:5

8)JETTISON

S-IVB—

BEGINCOASTTOLUNAR

ORBIT

INSERTION

4_

(00:

09:0

4)

11.

BEGIN

S-IVB

THRUSTING

ee

aeee

(05:

05:5

8)FIRSTMIGCOURSE

CORRECTION

Page 14: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

5,

(00:11:52)

EARTH

ORBIT

INSE

RTIO

N

oR

(55:

30:0

0)12.

SECOND

MIOCOURSE

©CORRECTION

LMA790-1

S.

(83:00:43)

BEGINTRANSLUNAR

INJECTIONON

SECONO

ORBIT

:LUNAR

LANDINGSITE

13

(63:

15:0

4)©THIRDMIDCOURSE

CORRECTION

15October

1965

Figure

1-2,

Mission

Prof

ile

(She

et1of

3)

Se

7(0

3:05

:53)

*BEGIN

INITIALCOAST

TO

TRANSPOSITION

AND

DOCKING

A

(64:15:04)

14.

BEGINLU

NAR

ORBIT

INSERTION

B-201LMA10-13-1-

1-5/1-6

Page 15: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

°BEGINLUNAR

LEM-CSM

ORBITCOAST

.SEPARATIONON

SECOND

ORBIT

17

(68:24:14)

138

(68:

24:4

8)°

BEGINTRANSFER

*BEGINCOASTTO

ORBIT

INSERTION

INITIATIONOF

“POWERED

DESCENT

< Ay

~—

&

}GS

ta

a:

19.

(69:22:53)

20.

(69:

29:2

3)BEGINPOWERED

BEGINFINAL

:DESCENTBRAKING

APPROACHPHASE

~PHASE

a1.

BEGINLANDING

22.

TOUCHDOWN:

PHASE

Page 16: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021
Page 17: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

5October

1965

LMA790-1

23.

LEMLU

NAR

sTaY

*FOR

34:4

4:43

HOURS

2H,

(108:24:09;

BEGINCOAST

TOTERMINAL

RENDEZVOUS

a>&

27

(105

:19:

46)

°BEGIN

DOCKING

14

:1:

(109

:08:

13)

29.

SETTISONLEM

.30.

BEGINTRANSEARTH

,INJECTIONON

22ndORBIT

Figure

1-2.

Mission

Profile

(Sheet

2of

3)

2G,

(104:17:08)

*BEGINPOWERED

ASCE

NTON

20th

CSM

ORBIT

2G.

(105

:11:

00)

BEGINTERMINAL

.RENDEZVOUS

28,

(105

:44:

16)

HARODOCK—

BEGIN

LUNARORBITCOAST

TO

TRANSEARTH

INJECTION

31

(109

:09:

56)

°BEGINTRANSEARTH

COAST

:

B-201LMA10-13-2

1-7/1-8

Page 18: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

——

TRANSE

ANTH C

OAST A

LNDENT

RY

32

(129

:69:

5i*FIRSTM

CORREC

S

pit

”ae

38

(198

:26:

59)

a°JETTISON

oe

CHUTES—

:DEPLOYM!

Page 19: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

1a

(ifi

B33.(174:03:58)

3G,

(197

:15:

34)

35,(198:0

THIRDMIOCOURSE

JETTE

NMIDCOURSE

CORRECTION

.CORRECTION

BERONane

ee

ceeeee

SRARe

te

eeeeeee

Q=—=

ees

(198:33:08)

OGUE

39.

EARTH

LANDING

\INCHUTE

15

Page 20: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

LMA790-1

~~

—TSl

34)

(19:15:34)

.(198:26:01)

SONSM

36.

ENTRY

INTO

37.

BEGINPARACHUTE

,EARTH'S

:OESCENT

ATMOSPHERE

B-201LMAIO-13.3

Figure

1-2.

Mission

Prof

ile

(Sheet

3of

3)

October19

65|

|1-9/1-10

Page 21: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

LMA7

90-1

Atpe

ricy

nthi

onof

thedescenttr

ansf

eror

bit,

thedescentengine

ofth

ePropulsionSubsystem

isfired

toin

itia

tepowereddescent,

Descent

tothelunarsurfaceconsists

ofthreedistinctphases:

thebraking

phasefromapproximately

50,000

to10

,000

feet

(highgate),

afi

nalapproachphasefromapproximately

10,000feet

to700

feet

(low

gate)duringwhich

thelanding

site

isobservable,

and

thelandingph

ase,

whichterminates

attouchdown,

Descent

isperformedautomaticallyunder

cont

rolof

theGN&SSub-

system

toapproximately700

feet

above

thelunarsu

rfac

e.

Approximately

2minutesbeforereaching

thelow-gate

point,

theLEM

isoriented

tobeginthe

fina

lap-

proachphase,

During

the

finalapproachphase,

theLEM

descends

tothelow-gate

pointat

nearlycon-

stant

flight

pathangle;

theattitudeof

theLEM

issuch

that

theastronautscanobservegross

landing

area

detailsandgeneratenew

information

fortheGN&CSubsystem

toguideth

eLEM

toanal

tern

ate

land

ing

site

,if

necessary.

:

At

thelow-gate

point,

theastronauts

intheLEMcan

select

thebestlanding

site

andperform

theland-

ingphase

totouchdown,

Toaccomplish

tran

slat

ion

toadesiredsp

oton

thelunarsu

rfac

e,theth

rust

vectorcanbe

tilted

toaccelerate

theLEMin

thedirectionofthelanding

site

.Atapproximately

3feet

above

thelunarsu

rfac

e,th

eengine

iscutof

fand

theLEM

free

-fal

lsto

thelunar

surf

ace.

Aftertouchdownon

thelunarsurface,

thetwoastronauts

checkall

subsystems

todeterminewhether

damageoccurredupon

landingand

toas

surethat

allsystemscanperform

thefu

ncti

onsrequired

for

asuccessfulascent,

The

decision

isthenmadewhether

thenominalplannedstay-timeoperations

canbeexecuted.

Ifal

lthesystemscheckout

sati

sfac

tori

ly,

theastronautsobserve

thesurrounding

lunarlandscape,

check

theLEM

hatches,

andperforma

finalcheck

oftheportable

life

supportsys-

tem

(PLSS)

inpreparationforone

oftheastronauts

toleavetheLEM.

Allequipmentnot

essential

forlunarstay

isturned

off.

After

theLEM

issecuredforlunar

stay

,it

isdepressurizedandoneastronautleaves

toexplore

the

lunarsurface.

TheLEMis

thenpressurized.

The

exterior

oftheLEMis

inspectedby

theextra-

vehicularastronaut(EVA)andanerectableS-bandcommunicationantenm

isdeployed.

Atelevision

system

isused

tosendpictures

ofthelunartopographyback

toearthviaanS-band

link.

Photographic

recordsaremade,

samples

ofthelunarsurfaceare

collected,

andother

scientificoperationsareper-

formed.

The

EVA is

always

indi

rect

visu

alandvoicecontactwi

ththeastronautin

side

theLEM.

Afterapproximately

3hours

ofexploration,

theLEMis

depressurizedand

theEVA

enters.

After

the

LEMis

pressurized

thePLSS

isre

plen

ishe

d,ThePLSScanbeused

fora

totalof

eight3-hourexcur-

sions,

Avoicereport

ismade

toearthviatheS-band

linkand

pertinent

scientificdata

istransmitted

andrecorded.

Additionallunar-surfaceexploration

will

beperformed

inaccordancewith

theplanned

staytime.

Whenthe

lunarstay

iscompleted,

theastronautspreparetheLEMfor

launchandascent.

Acomplete

check

ismadeof

allsubsystems..

TheGN&CSubsystemand

theAbortGuidanceSectionare

optically

aligned.

TheAOT

obtainscelestialdata

foralignment

oftheIMU.

The

locationoftheLEMrelative

totheorbiting-CSM

isdeterminedandstored

intheLGC

for

lateruseduring

theascentmaneuver.

Because

theLEMdescent

stage

isleft

behindatlaunch,

allconnectionsbetween

theascentanddescent

stages

(inc

ludi

ngca

blin

gand

piping)aresevered

just

before

laun

ch,

Theascentstage

isthen

ready

forlaunchfrom

thelunarsurfaceand

eventualrendezvous

with

theorbitingCSM.

Nominal

launchtime

occurswhen

theCSMis

slightly

uprange[romits

zenithpositionover

theLEM.

Assuming

theLEMis

launched

atthistime,

orup

to1-1/2minutes

late

,theascentengine

will

burncontinuouslyfrom

lift

off

toinsertion

into

anascenttransferorbit(approximately

7minutes),

Theascent

trajectorybeginswith

averticalrise

for

12seconds,

followedbytwopitchoverphases

(one

atahighpitch

rate;a

finalone,

atacomparativelylow

pitch

rate),

Burnoutoccurs

at50,000

feet.

At

this

point,

theLEM

isin

an

ascenttransfer

orbit,

which

intercepts

theCSMat

the

firstintersectionoftheLEM

andCSMorbits.

Iflunarlaunch

isdelayed

morethan

1-1.°2

minutes,

astay

ina

50,000-foot-altitudeparking

orbit

isrequiredbeforeasecondengine

burnfor

insertion

into

anascenttransfer

orbitwith

eithertheascent

engine

or

theRCS,

Iflunarlaunch

isdelayedapproximately

8minutes,

theCSM

disappearsbelowthe

horizonand

launchwould

beperformedapproximately

2hours

late

r,at

thenext

"on-time"la

unch

oc-

‘currence,

When

theLEMis

approximately

500

feet

from

theCSM,

theCommander

manuallymaneuvers

theLEM

toa

docking

attitudeandincreasesordecreases

therateofclosure

untilcompletedocking

isaccom-

plished,

TheCSM

normallyremains

passiveduringrendezvousand

docking,

although

italsocanac-

complishrendezvousand

docking,

ifnecessary.

15October

1965

1-11

Page 22: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

LMA790-1

1-22,

TRANSEARTHCOASTANDENTRY.

(See

figu

re1-2,

sheet3of

3.)

Afterdocking

iscompleted,

theLEM

issecuredto

theCSM

andtheCommanderandSystemsEngineer

prepare

fortranrfer

totheCM,

Pressuresareeq

uali

zed,

LEM

subsystemsareturned

off,

and

scie

ntif

icequipmentandsamplesaretransferredto

theCM.

After

thetwoastronautstransfer

toth

e

CM

through

theINGRESS/EGRESS

hatch,

theLEM

isje

ttis

oned

,ThisconcludestheLEM

mission.

Abriefcheckout

oftheCSM

andpre-ignition

preparationaremadebefore

SM

engine

firing,

TheSM

engine

isthenfiredto

infect

theCSM

into

therequiredtransearth

orbit.

TheSM

isjettisoned

ap-

proximately15minutesbeforeentry

into

theearth'satmosphereandtheCM

isorientedforentryand

__la

ndin

g.

1-12

.15October

1965

Page 23: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

OOrr97n 97 OGD OOOO Oooo

LMA790-1

SECTION

If

LEMSTRUCTURE

2-1,

GENERAL.

(See

figure

2-1.)

TheLEM

consistsofadescentstageandanascent

stage.

Provision

ismade

forseparatingthestages

and

theinterconnectingumbilicals

atlunarlaunchand

intheevent

ofamissionab

ort.

Seefigure

2-2

forapproximatedimensionsand

front,

side,andto

pviews

oftheLEM.

Theapproximate

weight

ofth

eLEMat

eart

hlaunch

is32,500pounds.

2-2,

ASCENTSTAGE.

(See

figu

re2-3.)

Theascentstage

isthemanned

port

ion

ofth

eLEM

and

will

carrytwoastronauts,

Flig

ht,

lunarland-

ing,

lunar

laun

ch,

andrendezvousanddockingwith

theCommand/Servicemodule(CSM)arecontrolled

from

thecrewcompartment,

The

entirepressurizedcompartmentof

theascentstage

isthecabin.

Thecompartmentof

thecabinforward

of+Z27

istheforwardcabinsectionand

thecompartmentof

the

cabinfrom+Z27

to-27

isthemidsection.

Thecrewcompartmentof

thecabinwhich

istheforward

cabinsection

isusedastheoperationscenter

fortheastronautsduring

allcrew

operations.

Inaddition,

theascentstageconsists

ofthe

aftequipment

bay,

tanksections,

enginesupports,

windows,

tunnels,

andha

tche

s,Airpressureandtemperature

within

thecrewcompartmentand

midsection,

arecontrolled

bytheEnvironmental

ControlSubsystem

(ECS).

Stowage

isprovidedforitemssuchas

food

,LiOH

cartridges,

spare

parts,

gloves,

bootsand

scientificequipment

inthemidsection.

2-3.

STRUCTURE,

Theascentstage

isconstructedof

aluminum

alloy.

Ast

ruct

ural

skin

which

issurroundedby

acomplete

layerofinsulationandathinaluminumskin

providesthermalandmicrometeriodprotectionforthe

astronauts.

Theouterskinis

approximately

3inchesfrom

theinner

structural

skin.

Thecabinisa

92-inchdiametercylinder

stiffenedby2-inchdeepcircumferentialframes.

Theframesarespaced

approximately

10inchesapartandare

locatedbetweenthestructuralskinand

theouterorthermal

shield.

Thecabinhastwotrianguiarwindowsin

thefront-facebulkhead,

anoverheaddockingwindowon

the

left

side

,aforwardhatch,

controlsand

displays,

anditemsnecessaryforastronautcomfortandsup-

port.

2-4,

FORWARDCABINSECTION,

Theforwardcabinsectionorcrewcompartment

isusedas

thecrewoperationscenter.

Thecompart-

mentcontainsmost

ofthecontrolsandinstrumentpanels

that

arerequiredforLEM

operations.

2-5,

MIDSECTION.

The

midsection

isasmallercompartment

directlybehind

thecabin.

Theascentengine

isalignedwith

thecenter

ofgravity

inthemidsection.

Theascentenginevalvesareaccessiblewhen

theremovable

cover

that

extendsabove

thedeck

inthemidsection

isremoved.

Inaddition,

themidsectionhas

the

docking

hatch,

EnvironmentalControlSubsystem

(ECS),

andstowage

forequipment

thatmustbeac-

cessible

totheastronauts.

2-6.

TUNNELS,

Thedocking

tunnel,

atthetopce

nter

line

oftheascent

stag

e,is

used

fordockingwhen

tran

spos

itio

nis

performed,

fortransfer

oftwoastronauts

totheLEM

after

injectionintolunar

orbit,

fordockingafter

rendezvous

inlunar

orbi

t,and

fortransfer

oftheLEMcrewand

scientificpayload

totheCommand

Module.

TheINGRESS,EGRESS

tunnel

atthelower

portion

oftheforwardcabin

section,

isused

for

ente

ring

and

leavingtheLEMwhileon

thelu

narsurfaceand

forextravehiculartransfer

ofcrewand

equipment

inspace.

Pressure-tight,

plug-typehatches

ineachtunnelaremanuallycontrolledandare

seaiedwith

preloaded

sili

cone

elastomeric

seal

s,

15October

1965

..

2-1

Page 24: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

$-BAND

STEERABLE

ANTENNA

RENDEZVOUS

LMA790-1

OVERHEAD

DOCKING

RADAR

ANTENNA

S-

BAND

INFL

IGHT

ANTENNA

(2)

X-

\

_INGRESS/

EGRESS

HATCH

INGRESS/

EGRESS

PLATFORM

Ww

WINDOW

=>

.woi igs

a>

WY

/DESCENT

ySTAGE

A—~Gh

LADDER

Figure

2-1,

2-2

TAY

|&

3yhCo an

DESCENT

ENGINE

SKIR

T

LEM

Stru

ctur

e-

DOCKING

HATCH

Ne

LANDING

GEAR

VHF

ANTE

NNA(2)

ASCENT

STAGE

RCS

THRUSTER

ASSEMBLY

RCS

NOZZLE

A“

Zzse

eKY

B-201iMA10-16

15October

1965

Page 25: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

3 ”2 0

a2 fay= o7 g

CG

E9 AS =

3 iawt

Nn

0aba

‘ &%, =\ x hes

. Dp

7 Gr )

Jwo

wo

2he

33

8wm=

QANMIT79nDoOMNMAoOnoOnoOoaoaAD

Page 26: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

LMA790-1

OMOMOMEO

D

1.IN

ERTI

ALMEASURINGUNIT

B.OXIDIZERTANK

(RCS

);2.

DOCKING

HATCH

9.FUELTANK

3.DOCKING

TARGET

RECESS

10.ASCENTENGINECOVER

4.FUELTANK

(RCS)

V1.CREWCOMPARTMENT

5.HELIUMPRESSURE

|12,FORWARD

INTERSTAGEFITTING

REGULATINGMODULE

.13

.INGRESS/EGRESSHATCH

6.AFTEQUIPMENTBAY

14,CABINWINDOW

7.HELIUMTANK

(RCS)

.15

.ALIGNMENTOPTICALTELESCOPE

16.MIDSECTION

8-201LMA.39-1

Figure

2-3.

AscentStage

(She

et1of

2)

2-4

.15

October

1965

Page 27: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

2-5

B-20

1LMA

10-3

9-2

atdd

wo

syo&< aa. tewarsd xuZ>A&On CG

xezuSDYoureWww uw<it< ~-_

: +o. “<o ~ oO md

fo}-Nn

.~o@

“ a4—

3 oeoo

5 8a~~

GaoOa<

°

o”t

a N

go6 gZz Q 3< z ot~ 5 iZe =a .— as

Suxdxw ideOzZxXrZzni «<jr aur

ws =OSNZe

322, =< xOF0¢Ez-AoOwn 1

5October1965

Momrnarr rp oO MD O ODO OOD oOoOoMmMoon

Page 28: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

~~st

wll

LMA790-1

2-7,

AFTEQUIPMENTBAY.

The

aftequipmentbay,

aftof

themidsectionpressure-tightbulkhead,

isunpressurized,

hasanequip-

mentrackwithintegralcoldplatesonwhich

electronicreplaceableassemblies(ERA’s)aremounted,

andhousestwogaseousoxygen(GOX)

tanks

for

theECS

(whichprovidesoxygenfo

rbr

eath

ing)

,two

helium

tanks

forascentstagemainpr

opel

lant

pres

suri

zati

on,

inve

rter

s,and

batteriesfo

rtheElec-

trical

PowerSubsystem

(EPS).

.s

2-8,

TANKSECTIONS,

Thepr

opel

lant

tanksectionsareoneither

side

ofthemidsectionoutsidethepressurizedarea.

The

tankse

ctio

nsco

ntai

ntheascentengine

fuel

andox

idiz

ertanksand

theReactionControlSubsystem

(RCS)

fuel

,oxidizer,

andhelium

tanks,

The

oxid

izer

tank

whichhasth

egreatercontentand

istherefore

heavierby1.6

to1,

iscloser

totheLEM

centerline

(X-axis)than

tsthefuelta

nk.

-Thisprovides

properweightdi

stri

buti

onat

launchandminimizes

thecenter-of-gravity

shif

tdue

topr

opel

lant

depletion,

TwoECSwatertanksare

intheov

erhe

adof

theascent

stage,

andtwogaseousoxygenstoragetanksare

inthe

aftequipment

bay.

.

2-9,

WINDOWS.

Two

tria

ngul

arcabinwindowsin

thefr

ont-

face

bulkhead

oftheforwardcabinsection(crewcompart-

ment)provide

visibility

during

thedescenttransfer

orbit,

lunar

land

ing,

lunarst

ayand

therendezvous

phases

oftheLEM

mission.

Bothwindowshaveapproximately

2square

feet

ofviewingareaandare

canteddown

totheside

topermitadequateperipheralanddownward

visi

bili

ty.

Eachwindow

consists

oftwopanesseparatedfromeachotherandvented

tospaceenvironment,

The

outerpane

isthermal

andra

diat

ion-

prot

ecti

ve(Vycor)

glas

s;theinnerpane

isst

rong

,fl

exib

le(Chemcor)

glass.

Aclamp-

typeseal

consistingof

aTeflonTFE

jacket

surroundinga

meta

llic

springsealstheinner

pane.

Anoverheadwindow

ontheleft

side

oftheforwardcabin

section,

directly

over

theCommander'shead

provides

visibility

totheCommander

duringdocking.

Theconstructionof

this

window

issimilar

tothat

ofthecabinwindows.

Theoverheadwindow

cont

ains

asi

ghti

ngre

ticu

leasanaid

inlining

up

theCSM

withtheLEM.

The

field-of-view

isat

least+10°

eachside

ofthewindow

cent

erli

nein

theY

dire

ctio

nand

-5°and+40°from

theve

rtic

alin

theZ

direction.

Visi

bili

tyis

obtainedbyth

eCommanderleaning

backwardandlookingupfrom

hisnormalduty

stat

ion,

Theapproximate

visibleopening

ofthewindow

is5incheswide

intheY-axisand

12inches

long

inth

eZ-

axis

.Theeyepo

siti

onforth

ewindow

tsas

follows:

X=

280.

63inchesfrom

thebase

line

or

groundlineof

tneLEM,Y

=22

.00

inchesfrom

the

LEM

centerline,

andZ

=37.75inchesfrom

thecenter

ofgravity

oftheLEM,

.

2-10.

HATCHES.

Twohatches

intheascentstagepermitth

eastronauts

toleaveandenterth

eLEM.

Theupper

(docking)

hatch

isusedmainlyfordocking.

Itis

inthemidsectionon

the+X

axis,

directly

above

theascenten-

ginecover.

Three

steps

inthehatchpermituse

ofthehatchforobservationwhileon

thelunar

surf

ace.

Theingress/egressforwardhatch

ison

the+Z

axis,

beneath

thecenterinstrumentconsole

(inthefor-

wardcabin

section)and

isused

toleaveandenteron

thelunar

surface.

Eachhatchcontainsadump

valveandamanually-operated

single

dete

ntmechanism

that

preloadsth

ehatchagainst

itsse

al.

Eachhatch

issealedwithapreloaded

sili

cone

elastomericcompound

seal

mounted

inth

eLEM

stru

ctur

e.Whenthe

latch

isclosed,

alipnear

theoutercircumference

ofhatch

ente

rsthe

seal,

ensuringapres-

sure-tightcontact,

Bothhatchesopen

intotheLEM;

normalcabinpressurizationforces

thehatches

into

the

seals,

Toopeneitherhatch

itis

necessary

todepressurize

thecabinthrough

thedumpvalve;

then

unfastea

thelatchandopen

thehatch.

Theforwardhatchhasanex

tern

alplatformonwhich

theastro-

nautsstepafterleavingandbeforeenteringtheLEM,

:

2-11,

DESCENTSTAGE.

(See

figure

2-4,

)

Thedescentstage

istheunmanned

portionof

theLEM,It

consists

ofthatequipmentnecessary

for

landingon

thelunarsurfaceandservesaSaplatformfor

launching

theascentstageaftercompletion

ofthelunar

stay.

Inadditionto

thedescentengineand

itsrelatedcomponents,

thedescent

stagehouses

the

scientific

equipment;andtanks

forwaterandoxygenusedbyth

eECS,

four

batteries

(for

theEPS)

located

inthebatterystoragebayand

sixsparepo

rtab

lelife

supportsystems

(PLSS)

batt

erie

s,The

land

inggear

isattachedexternally

toth

edescent

stage.

Thedescentstage

isconstructed

ofaluminum

alloy;chem-milling

isused

extensively

toreduceweight.

The

innerstructural

skin

issurroundedwith

acomposite

layerof

insu

lati

onanda

thin

aluminum-a

lloy

skinthatformsamodifiedoctagonalshapearound

thedescentstageandthermallyprotectsand

isolates

thestructure,

Twopairs

oftransversebeamsarrangedinacruciform,

togetherwithanupperand

2-6

,15October

1965

Page 29: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

hag: Om o oo C1 Mm © omoano

LMA790-1

+2

o) ©

©@®@O®

@1.

AFT

INTERSTAGE

FITTING

2.FUELTANK

3.ENGINEMOUNT

4.PL

SS,S-BANDANTENNA

STORAGE

BAY

5.DESCENT

ENGINE

6.STRUCTURAL

SKIN

7.INSULATION

8.THERMAL

SHIELD

9.FORWARD

INTERSTAGE

FITTING

10.OXIDIZERTANK

-V1,FUELTANK

12.BATTERYSTORAGE

BAY

Se © ©

_HE

LIUM

TANK/CRYOGENIC

.DE

SCEN

TEN

GINE

SKIRT

_TRUSSAS

SEMB

LY(L

OGGR

).SECONDARY

STRUT

(LDG

GR)

.PAD

(LDG

GR)

LANDING

RADARANTENNA

.PR

IMAR

YSTRUT

(LDG

GR)

.LOCK

ASSEMBLY

(LOG

GR)

.SC

IENT

IFIC

EQUI

PMEN

TBA

Y.GI

MBAL

RING

_AD

APTE

RATTACHMENT

POINT

.OUTRIGGER

.OX

IDIZ

ERTANK

WATERTANK

13.OXYGEN

TANK

27.

NOTE:

.

LANDINGGEARSHOWN

IN

RETRACTED

POSITION

8-201LMA10

-42

Figure

2-4,

DescentStage

15Oc

tobe

r1965

,2-7

Page 30: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

LMA790-1

lowerdeckandendclosurebu

lkhe

ads,

provide

themainsupport

stru

ctur

e.Thebeamsareof

conven-

tional

skin-and-stringer

construction.

Alljoints

arefastened

with

standardmechanicalfa

sten

ers,

The

spacebetweenth

eintersections

ofthebeamsforms

thecentercompartment,

whichcontainsth

edescent

engine,

Outriggers

that

extendfrom

theend

ofea

chof

thetwopairsof

beams

providesupportand

at-

tachment

forthelandinggear

legs.

Fourmain

prop

ella

nttankssurround

theen

gine

:twooxidizertanks

betweentheZ-axisbeams;two

fuel

tank

sbetween

theY-axisbeams.

The

scie

ntif

icequipment,

helium,

oxygen,

andwater

tanks;

thelunarsurfaceantennas;EPS

batteries;andPLSS

batteriesare

inthedi-

agonalbays,

whichareadjacent

tothepropellant

tank

s,

2-12,

LANDINGGEAR,

The

landinggear

(fig

ure2-

4)is

oftheca

ntil

ever

type

.It

consistsof

four

sets

ofle

gsconnected

tooutriggers

that

extendfrom

theends

ofthedescentstagestructural

beams.

The

legs

extendfrom

the

front,

rear

,and

side

sof

theLEM,

Each

land

inggear

legco

nsis

tsof

aprimary

stru

tand

foot

pad,

adrive-outmechanism,

twosecondary

stru

ts,

twodownlockmechanisms,anda

trus

s.Al

lst

ruts

have

crushableattenuator

inse

rts.

Theprimary

struts

absorbcompression

load

s;thesecondary

struts,

compressionandtension

load

s.Theforwardla

ndin

ggear

(+Z

axis)hasaboardingladderon

thepri-

mary

strut,

which

isused

toclimbfrom

and to

theascentstageingress/egressha

tch,

At

launch,

thela

ndin

ggear

isstowedinaretractedposition;

itremains

retracteduntilshortlyaf

ter

theastronautsentertheLEMduring

luna

ror

bit,

The

landinggearuplocksarethen

explosivelyre-

leasedandsprings

ineachdr

iveo

utmechanism

extendth

elandingge

ar,

Once

exte

nded

,eachla

ndin

ggear

islocked

inplaceby

thetwodownlockmechanisms

ineachla

ndin

gge

ar.

2-13,

INTERSTAGEATTACHMENTS,

UMBILICALS,ANDSEPARATIONS,

Atearthlaunch,

theLEM

iswi

thin

thespacecraftLEM

adapter

(SLA)betweenth

eServicemoduleand

theS-IVBbooster

(figure2-5),

TheSLAhasanupperandlower

sect

ion.

Theoutriggers

tewhich

thela

ndin

ggear

isattachedprovide

forattachment

ofth

eLEM

tothelower

sectionof

theSLA

atth

eir

apex.

Eeforetransposition,

theupper

sectionoftheSLA

isexplosivelyseparated

into

foursegments.

Thesesegments,whicharehinged

tothelower

section,

fold

back

,Aftertransposition,

thelower

section

isreleased,

separatingtheSLAand

theboosterfrom

theLEM.

Four

explosivenuts

and

bolt

sconnect

theascentanddescent

stag

es,

Atlunar

laun

ch,

or

forabortbeforelunar

landing,

thetwo

stagesareseparatedby

firing

these

nuts

and

bolt

s.In

ters

tage

wiringumbilicaisareex

plos

ivel

ydi

s-connectedandhardlinesaremechanicallydisconnectedat

stage

separation.

ae

2-14

,ELECTRO-EXPLOSIVEDEVICES,

Electroexplosivedevices(EED)areused

toreleaseth

ela

ndin

ggearfo

rdeployment,

toenablehelium

pressurization

oftheAscentandDescentPropulsionSubsystem,

andReactionControlSubsystem,

and

forst

ageseparation.

The

elec

troe

xplo

sive

devicesareexplodedbyanApolloStandard

initiator,

con-

trolledby

itsrespectiveswitchon

theExplosiveDevices

Panel.

Moredetailed

informationforthe

EED

subsystem

isprovided

inSe

ctio

nI.

2-8

|.

15Oc

tobe

r1965

Page 31: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

2 © Oconto Coo oo OO oD

ANTENNADEPLOYMENT

MECHANISM

(1)

RCSCROSSFEED

SCUIBVALVES

(2)

ASCENTPROPULSION

HELIUMPRESSURIZATION

SQUIBVALVES

(2)

UMBILICALSEPARATION

ASSEMBLY(2)

DESCENTPROPULSION

HELIUMPRESSURIZATION

SQUIBVALVE

LANDING.GEAR

UPLOCKMECHANISM

(4PLACES)

NOTE:

am

INDICATESPYROTECHNICS

1§October

1965

LMA790-1

Ah

da

SERVICEMODULE

SERVICEMODULE

ENGINE

SKIR

T

SPACECRAFT

LEM

ADAPTER

(SLA)

LEMASCENT

aSTAGE

_

RCSHELIUM

PRESSURIZATION

SQUIBVALVES(4)

INTERSTAGESEPARATION

EXPLOSIVEBOLTS

(4PLACES)

\-~

ADAPTERACCESS

DOORS

ee

LEMDE

SCEN

TSTAGE

SIVB

BOOSTER

Figure

2-5.

LEM

Inte

rfac

eandExplosiveDevices

Location

B-201LMA10-32

2-9/2-10

Page 32: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

mam oO Dopo om C3 C3 3

LMA7

90-1

SECTIONII

OPERATIONALSUBSYSTEMS

3-1,

GENERAL,

This

sectiondescribes

theLEM

operationalsubsystems

insufficientdetail

toconveyanunderstandingof

theLEMasan

integrated

system.

The

integratedLEM

systemcomprises

thefollowingsubsystems:

eGuidance,

Navigation,

andControl

e@Communications

e@ReactionControl

eElectrical

Power

@Propulsion

.@Environmental

Control

eInstrumentation

eCrew

Provisions

@ElectroexplosiveDevices

Eachsubsystem

isfunctionallyrelated

tooneormore

oftheothersubsystems.

This

sectionalsode-

scribestheLEM

displaysandcontrols

that

arerelated

toalloperationalsubsystems.

3-2,

COMMANDER'SDISPLAYSANDCONTROLS,(See

figures3-1and3-2.)

-Thedisplaysandcontrolsprovidetheastronautswith

informationandinstantaneouscontrol

oftheLEM

subsystems

tocomplete

themissionsuccessfully,

or

toreturn

theLEM

safely

totheCSM

inanemer-

gency.

Theplacementof

displaysandcontrols

issuch

thatastronautsafetyandmissionsuccessareoptimized.

DisplaysandcontrolsrequiredforLEM-managementby

asingleastronautare

centrally

located,

ac-

cessible

tobothastronauts,

Each

astronautis

assigned

specificresponsibilities.

Certaindisplaysand

controlsareduplicatedateach

flig

htstationto

provide

reliabilitybackup,

3-3.

COMMANDER'SUPPERSIDECONSOLE.

TheCommander'supper

side

consoleconsists

ofci

rcui

tbreakerpanels

that

have

circuitbreakers

for

the

EnvironmentalControlSubsystems

(ECS);

ReactionControlSubsystem

(RCS);

Guidance,

Navigation,

and

Control(GN&

C)Subsystem;

PropulsionSubsystem;CommunicationsSubsystem;

ElectricalPower

Sub-

system

(EPS);InstrumentationSubsystem;andExplosiveDevicesSubsystem.

3-4,

COMMANDER'SCENTERSIDECONSOLE.

Thecontrolspreviously

locatedontheCommander's

center

sideconsole

(suchas

thepower

distribution

panelandaudiocontrolpanel)havebeenrelocated

tootherconsoleareas;

atpresenttherearenodis-

playsorcontro!panelsplannedfo

rlocation

on

this

console.

3-5.

COMMANDER'SLOWER

SIDECONSOLE.

TheCommander's

lower

sideconsoleconsistsofanexplosivedevicespanelandanaudiopanels.

3-6,

ExplosiveDevices

Panel.

The

controls

oftheexplosive-devicespanelareused

torelease

the

landinggear

for

deployment;

toenablehelium

pressurization

oftheAscent

Propulsion,

Descent

Propul-

sion,

orReactionControlSubsystems;

toopen

theEnvironmentalControlSubsystem(ECS)waterfeed

valve;

andforstage

separation.

Theelectro-explosivedevicesusedareexplodedbyastandardApollo

initiator,

each

controlled

by

itsrespectiveswitchon

theexplosivedevices

pane

l,

3-7,

Audio

Panel,

Thecontrols

oftheaudiopanelenable

theaudiocenter

toreceiveS-bandandvhf/am

voicetransmissionandroutemicrophoneamplifieroutputs

fortransmissionviaS-bandandvhf/am

equipment,

Thecontrolsalsoenablereceptionandtransmission

ofvoiceviatheintercomsystem,

pro-

vidingavoiceconference

capabilitybetween

theextravehicularastronautand

theastronaut

intheLEM.

15October19

65.

3-1

Page 33: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

Te

LMA790-1

3-8.

COMMANDER'SLIGHTINGPANEL.

TheCommander's

ligh

ting

panelco

ntro

lsth

ebrightness

ofth

eannunciators

inth

ecaution/warning

lights

array

ofth

ecomponentcaution

ligh

ts,

theelectroluminescence

ofth

enumeric

readouts,

thelow-

levelelectroluminescenceintegrally-illuminated

markingsand

displays,

theCommander's

side

console

lights,and

the

floo

dlig

hts,

3-9..BOTTOMCENTERPANEL,

Thebottomcenterpanelconsists

oftheprimaryguidanceandnavigation

panelwhichpermits

theastro-

nauts

toload

information

into

theLEM

guidancecomputer

(LGC),

initiate

program

func

tion

sandper-

form

testsof

theLGC

andotherpo

rtio

nsof

theGN&C

Subsystem.

Inad

diti

onto

fail

ures

intheLGC,

thepaneldisplaysindicateprogram

functionsbeingexecutedbytheLGC

and

specificdataselectedby

thekeyboard

inpu

t.Thisda

tais

also

routedfrom

the

LGCto

the

inertial

measurement

unit

(IMU)and

theLEM.

Commands

forswitching

todi

ffer

entmodesare

supp

lied

toth

eIMU,

anddata

issupplied

toth

eSpacecraftTelemetrySystem

forrouting

toMannedSpace

Flig

htNetwork(MSFN).

Inconjunction

withtheLGC,

thepanelsu

ppli

esin

dica

tion

sto

thecaution/warning

lights

array.

3-10.

LOWERCENTERPANEL,

panel,

and

lighting

pane

l.

$-11,

Radar

Pane

l.The

cont

rols

oftheradar

paneloperate

therendezvousradarantenna

inthemanual

orautomaticmode,

determine

thela

ndin

gradarantennapo

siti

onwith

respect

toth

eLEM

X-axis,

pro-

videsi

gnal

sto

therendezvousand

land

ing

rada

rtest

circ

uitr

y,andprovidepower

tothela

ndin

gradar

.subsystem,

3-12,

StabilizationandControlPanel,

The

controls

ofthe

stabilizationandcontrolpanelpermits

selection

offour

mode

sof

atti

tude

controlprovidedby

thecontrolelectronicsse

ctio

nof

theGN&

CSubsystem.

Theautomaticmode

providesfu

lly-

auto

mati

cat

titu

deco

ntro

l.The

attitude

holdmode

istheprimary

atti

tude

cont

ro!mode

forthe

fina

lapproaching,

landing,

anddockingphases

ofth

emission,

Thepulsemode

isanopen-loopat

titu

decontrolmode.

Inthepulsemode,

minimum-impulse

attitude

changescanbemadein

anyax

iswith

theattitude

cont

roll

er.

The

dire

ctmode

isalsoanopen-

loopat

titu

decontrolmode;-itprovides

fullRCS

jetth

rust

ingfo

rat

titu

dechanges

inallthreeaxes,

3-13,

Heater

ControlPa

nel,

Theheaterco

ntro

lpanelcontrols

thedefoggingheaters

fortheCom-

mander'sandSystemsEngineer’sforwardwindowsandth

eCommander'soverheadwindow,

thetem-

peratureofthefourRCS

quadrants,

thetemperaturerange

forautomatic

heating

oftheradarantennas,

and

theheaterassemblies

oftheradarsystems,

The

temperatureindicator

displaysth

etemperature,

indegrees

Fahrenheit,

oftheradarassemblyor

ofanyone

ofth

eRCS

quadrants,

Panel.

The

lighting

panelcontrolsthebrightness

ofth

edome

ligh

t,dockingandtracking

stems

Engineer's

side

console

lights,andtestingof

thelamps.

3-15,

COMMANDER'SCENTERPANEL,

3-16,

Flight

Cont

rol.

The

cont

rols

anddisplaysrelatedto

flig

htco

ntro

lareas

foll

ows:

flig

htdirector

atti

tude

indicator,

rate/errormonitor

swit

ch,

atti

tude

monitor

swit

ch,

forwardve

loci

ty/l

ater

alve

loci

ty-LOSazimuthrate/LOSelevationrate

indi

cato

r,mode

select

swit

ch,

shaft/trunnionsw

itch

,AV

indi

cato

r,AV

reset

swit

ch,

elapsedtimer,

eventtimer

indi

cato

r,thrust

‘indicator,

altitude/range

indi

cato

r,thrust/weight

indicator,

guidancecontrol

switch,

andaltitude/range

monitor

switch,

The

flig

htdirector

atti

tude

indicatordisplays

totalattitude,

atti

tude

rates,

and

attitude

errors,

or

atti

tude

,at

titu

dera

tes,

andrendezvousradar

shaftandtrunnion

angl

es,

depending

uponthe

sett

ing

ofth

erate/errormonitor

swit

ch,

Sett

ingtheat

titu

demonitor

switch

selects

eith

erPrimaryGuidance

Navigation.Subsystem(PGNS)

orAbortGuidanceSystem

(AGS)as

thesource

ofat

titu

deand

attitu

deerrorsdisplayedonthe

flight

director

attitudeindicator,

The

shaftandtrunnionanglesaredisplayed

byth

epi

tchandyawerror

need

les,

respectively,when

therate/errormonitor

switch

issettoRNDZ

RADAR.

The

roll

rate

indicator,

pitc

hratein

dica

tor,

andyawrate

indi

cato

rar

e,respectively,

directlyabove,

tothe

right,

and

directlybelow

the

flight

director

attitudeindicator.

The

attitude

rate

informationdisplayedon

the

roll

,pi

tch,

andyaw

indicators

isalwaysobtainedfrom

thecrew

equipmentsystem

(CES)

rate

gyro.

.

Theforward

velo

city

/lat

eral

velocity

-LOSazimuthrate/LOSelevationrate

ioaicatn

is-used

incon-

junc

tion

withth

erate/errormonitor

switch.

Forwardand

lateralve

loci

ties

arecoincident

withLEM

Z-andY-axis

velo

citi

eswhen

thesourcedr

ivin

gth

edi

spla

yis

thePGNS,

Whenthe

landingradar

is

3-2.

715

October

1965

Page 34: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

ai

COMM

ANDE

R'S

UPPER

SIDE

CONSOLE

@CIRCUIT

BREA

KER

PANE

L@

COMMANDER’S

CENTER

SIDE

CONSOLE

63)

me”@

EXPLOSIVE

DEVICESPANEL

@AUDIO

PANEL

@COMMANDER'S

LIGHTING

PANEL

Page 35: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

.as

al:,

peassdeel

a>d2WUT

TABRAC?

ene

BOTTOM

CENTER

PANEL

SYSTEMS

ENGINEER

@PRIMARYGUIDANCEAND

NAVIGATION

PANEL

LOWER

CENTER

PANEL

@RADAR

PANEL

@SYSTEMS

ENGINEER

@STABILIZATION/CONTROL

PANEL

@CIRCUIT

BREAKER

PANEL

@HEATERCONTROL

PANEL

Feaeeeeype

ET

ee

wael

=x=etTe

CO00G909

_—aw

ee

metee

etmety

ee

‘a

=re,

ee

O0O000D9006

Oso

ange

reneSn

reer

rTment

So050G

o095

’SCENTER

PANEL

(SYSTEMS

CONSOLE

SYSTEMS

ENGINEER’SABORT

GUIDANCE

PANEL

®AUDICK

@COMN

SUPPER

SIDE

CONSOLE

@COMN

PANE!

@LIGHTING

PANEL

SYSTEMS

ENGINEER’S

CENTER

SIDE

CONSOLE

COMMANDER'S

CENTER

PANEL

@ELECTRICALPOWER

PANELS

Page 36: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

SYNNIINV

SNOILYOINNI

VANVd

SNOILVSINAL

1aNvd

terson

aya

_Cy

~~Tree

eee

teewane

af

a!

- i -

Di

o>.

fé}:

=i}

ijee

US

EV t

dl

m=

itipo

Vffy

IUD TUS

ro

s—e

era

-Seei

@Zh

@'

eavcorrseesee3:0

goeroeNG

2.

‘3

/g

vomere

nore[Poe

~tm

ores

13

acer

000"

gmine

WO)wenPod

=.

oe

gt

Fr

zt3

—ene

3/6|

“iF

@

He

۩999BASOGGIE

"iron

6a299990.oo0

Aotis

==

street

wowang

Faenee.

E=

}

gg1)@999006000

Nee

tetarenNe

wees

Page 37: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

1a8

isd [erdr

iste ffeds Ty fiwertn im fe (Ong Sheu

fa be bet

Figure

3-

15October

1965°

Page 38: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

b-€,'6-€

skrjdsiqput

sjoucgWaT

“‘T

ST-OLYW1LOZ-9

0029969999999900000

_—_—

aSee

-—

=Se

No

NeaeNtA

reinevee

T-O6LVINT

Page 39: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

pepe’bh

FLIGHT

CO;

.SHAFT/TRUNION

SWITCH

12COMMANDER'S

ATTITUDE

MONITOR

SWITCH

13,

COMMANDER’S

RATE/ERROR

MONITOR

14,

SWITCH

15,

COMMANDER'S

FLIGHT

DIRECTOR

ATTITUDE

16,

INDICATOR

~V.RESET

SWITCH

.COMMANDER'SFORWARD

VELOCITY

/LATERAL

VELOCITY—LOS

AZIMUTH

RATE/LOS

17,

ELEVATION

RATE

INDICATOR

ELAPSED

TIMER

18.

.VINDICATOR

EVENT

TIMER

INDICATOR:

19.

THRUST

INDICATOR

ALTITUDE/RANGE

INDICATOR

LaGo-

Page 40: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

3

moSania thas

Ua:

mele

’'4‘

baa hee'

jy?

1 1a

NTROL

THRUST/WEIGHT

INDICATOR

GUIDANCECONTROL

SWITCH

MODE

SELECT

SWITCH

ALTITUDE/RANGE

MONITOR

SWITCH

SYSTEMS

ENGINEER'SFORWARD

VELOCITY/LATERALVELOCITY—LOS

AZIMUTH

RATE/LOS

ELEVATION

RATE

INDICATOR

,SYSTEMS

ENGINEER'S

FLIGHT

DIRECTOR

ATTITUDE

INDICATOR

SYSTEMS

ENGINEER'SRATE/ERROR

MONITOR

SWITCH

SYSTEMS

ENGINEER'S

ATTITUDE

MONITOR

SWITCH

FN cidtuiarad

MAINPROPULSION

HELIUM

MONITOR

SELECTSWITCH

PROPELLANTTEMPERATURE/PRESSURE

MONITOR

SWITCH

DESCENT.HELIUM

REGULATOR

=2

SWITCH

DESCENT

HELIUM

REGULATOR

=1

SWITCH

ASCENT

HELIUM

REGULATOR

=2

SWITCH

ASCENT

HELIUM

REGULATOR

=1

SWITCH

PROPELLANTTEMPERATURE

INDICATOR

PROPELLANTPRESSURE

INDICATOR

HELIUM

INDICATOR

=:

22 ON BS ee ee es Oeeeee ee eeeeeses

HN6 dH

REAC

FUEL

QU.

OXIDIZER

TEMPERA

PRESSUR

SYSTEM

}SYSTEM

ETHRUSTEI

FLAGS

TEMPERA

SELECT

S_QUANTITY

QUANTITY

CROSSFEE

Page 41: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

f

(

Ure

ey

a

iNe

Ue

t'

‘‘'''t:

ertyte me eh meme ewe -

i(GTi

(C3:

ja mo

4

14i

7

3.

hii

by pi

'+

WSsans

sii7:

20ers

oaam

memye

woest,

7

wed

Tabi \

0 ORS Core A Oe Ge GS EDOS GS SE OD ee Oe ES Eeee ee Oeee

‘TIONCONTROL

ENGINETHRUST

CONTROL

ABORT

STAGE

SWITCH

ABORT

SWITCH

BALANCED

COUPLES

SWITCH

X-TRANSLATION

SWITCH

ENGINEARM

SWITCH

MANUAL

THROTTLE

SWITCH

THRUSTCONTROL

SWITCH

ENVIRON

CON”

SUIT/CABIN

TEMPEF

SUIT/CABIN

PRESSU

PARTIALPRESSURE

GLYCOL

TEMPERATU

INDICATOR

0,PRESSURE/H,0

CO,

PARTIAL

PRESS

H>0

SEPARATOR

LIG

O;PRESSURE/H,0

SELECT

SWITCH

SUIT

FAN

SELECT

S\GLYCOL

PUMP

SELEC

ANTITY

INDICATOR

QUANTITY

INDICATOR

TURE

INDICATOR

EINDICATOR

\SWITCHESAND

STATUS

FLAGS

3SWITCHESAND

STATUS

FLAGS

RPAIRSWITCHESAND

STATUS

HKNaIs HON

TURE/PRESSURE

MONITOR

WITCH

TESTSWITCH

MONITOR

SWITCH

-DSWITCHAND

STATUS

FLAG

HSN uN ao

Page 42: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

LE)@

MENTAL

ROL

ATURE

INDICATOR

2EINDICATOR

SOINDICATOR

T]E/PRESSURE

IUANTITY

INDICATOR

IRE

LIGHT

iT \UANTITYMONITOR

ITCH

TSWITCH

eae)

|

NS New

HEWALAS

Sef 4t

AT4dDadii ,

UA Fra eet

CAUTION

COMM:

LIGHT

WARNI

CAUTIC

SYSTE!

“SWITC:

< cicie

Figure

3-2.

Commander

15October

1965

Page 43: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

LMA790-1

1G iG 914 onOrd

(i540 ‘oun ar iidTemmeow mwne fe ew wee nage ewe am nne

. ieay

St lia rite ‘ot da

ia roxio ros~

5 ’ sets (["-:

iy ele Sahlpoi jis|ii S i shbes

rs = : si —

ae seos 8TN SHIN

“5 aN Ree — tay:

/

~\ NandWARNING

LIGHTS

IMANDER’SMASTERALARM

SWITCH

{T TEMS

ENGINEER'SMASTERALARM

‘NING

LIGHTS

TCH

LIGHT

TION

LIGHTS

A-201LMA10-52

er’s

andSystems

Engineer’sControlsandDisplays

3-5/3-6

Page 44: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

oO © Oo oO oO oOOoOomo oo wo

LMA790-1

thedrivingsource,

theforward

andlateral

velocities

arecoincident

withLEM

Z-andY-axis

velocities

onlywhen

theradarbeamsare

coin

cide

ntwith

theLEM

bodyaxis

(from

thelow-gate

pointto

touchdown).

WhentheAGSsystem

isth

edrivingsource,

late

ralvelocity

istheon

lyinformationdisplayedand

isco

inci

dent

withY-axis

velo

city

,

Theelapsedtimerdisplays

time

(upto

60hours)

inhours,

minutes,

and

seco

nds;it

iscontrolledbythe

elapsedtimer

start/stoppushbuttonandtheelapsedtimer

setswitch.

The

eventtimer

indicatordisplays

time

inminutesandseconds.

Itcancountupfromzero

to59

minutesand

59seconds,

orfrom

59min-

utesand

59secondsdown

toze

ro.

TheAV

indi

cato

rprovidesa

five-digit

readout

ofchanges

invehiclevelocity

(fee

tpersecond)during

thosephasesof

themissioninvolvingchanges

ofvelocity.

The

indicatordisplays

thetime-integrated

X-axisaccelerationobtainedfrom

theAGS,

Itmay

beused

toprovideagrosscheckof

engineper-

‘formance,

becausearygiven

thro

ttle

sett

ingprovidesa

spec

ific

disp

layvalueafteragiventime

inter-

valforagivenLEM

mass.

Itmay

alsobeused

incertainabortsituations

whenathrust

atti

tude

prof

ile

isto

befollowed.

TheAV

resetsw

itch

controls

thein

puts

totheAV

indicator,

Theat

titu

de/r

ange

indicatordi

spla

yseither

rang

e/ra

ngera

tein

form

atio

nor

altitude/altituderate

in-

.formation,

asselectedwith

thealtitude/rangemonitor

switch.

The

altitude/altituderateinformation

isobtainedfrom

thela

ndin

gra

dar,

thePGNS,

or

theAGS,

as

sele

cted

with

themode

sele

ctsw

itch

.When

landingradarinformation

isselected,

true

altitude

and

alti

tude

rate

data

areav

aila

blefrom

the

low-gate

point

totouchdown

iftheLEM

X-axis

isvertical.

Beforereaching

thelow-gate

poin

t,only

true

alti

tude

data

isav

aila

blefrom

thelandingradar.

WhenPGNS

orAGS is

selected

with

themode

selectswitch,

inertiallyderivedaltitudeand

altituderatedataareavailablefordisplay.

Thethrust/weightindicator

isaself-containedaccelerometer

that

displaysinstantaneousX-axisac-

cele

rati

onin

lunargunits

(1g=5.

32ft/sec2).

The

indi

cato

rmay

beused

toprovideagrosscheck

ofengineperformance,

becausegiventhrottle

settingprovidesa

specific

accelerationforagiven

LEM

mass,

The

thrustindicator

isadualverticalmeter

(0%

to100%

thrust)whose

left

needledisplaysdescent

enginechamberpressureandwhoseright

needledisplayseithermanual

thrustcommandsinitiated

withtheSystemsEngineer'sorCommander's

thru

st/t

rans

lati

oncontroller

orLGC

thru

stcommands,

as

selectedwithth

eth

rust

cont

rolswitch.

Bothneedlearealignedat

thesame

scalereadingunder

normal

oper

atio

n,A

divergencebetweénneedle

sett

ings

indi

cate

samalfunctionor

that

manual

thru

stauthority

isbeingintroduced

toenableasmooth

transitionto

fullymanual

control.

When

themanual

thru

stau

thor

ity

isintroduced,

thethrust

controlswitch

isset

toMAN

when

theth

rust

command

needle

(rig

htneedle)reaches10%

thru

st.

After

sett

ingth

eswitch

toMAN,

manual

thru

stcommandsare

dis-

playedbytherightneedleand

bothneedlesshouldthenbealigned.

3-17,

Warning

Ligh

ts.

Thewarning

lights

providearedin

dica

tion

towarn

ofamalfunction

that

af-

fectsastronaut

safetyandrequiresimmediateaction

tocounter

theemergency.

Ifawarning

ligh

tlights,

theastronauts

canalleviate

theconditionindicated.

Lightingofawarning

lightis

accompanied

bya

toneintheastronaut'sheadset.

Informationconcerning

themalfunction

issimultaneouslyteleme-

tered

to

thegroundmonitoring

station

toensure

control

stationawarenessof

the

situation

intheLEM.

TheMASTERALARMswitch-lighton

theCommander's

centerpanelandon

theSystemsEngineer's

centerpanelprovideared

indi

cati

onwhenawarningorcaution

lightgoes

on,

Bothmasteralarm

switch-lightsareextinguishedandth

etone

silenced

bypressing

either

masteralarm

switch-light.

Eachwarning

light

isextinguishedon

lybya

sign

alfrom

thesensor

atthema

lfun

ctio

n,in

dica

ting

restorationofanormalorwithin-tolerance

condition,

3-18.

Main

Prop

ulsi

on.

The

cont

rols

anddisplaysre

late

dto

mainpropulsionareas

foll

ows:

propel-

lant

temperature

indicator,

prop

ella

ntpressure

indi

cato

r,helium

indi

cato

r,propellant

temperature/

pressuremonitor

switch,

heliummonitor

selectswitch,

ascentheliumregulator

switches,

anddescent

heliumreyulator

switches.

The

propellanttemperature

indicatordisplays

thetemperature

(degrees

Fahrenheit)

ofthe

fueland

oxidizertanks

oftheascentordescent

propellantsystem,

dependingupon

thesettingofthepropellant

temperature/pressuremonitor

switch,

The

propellantpressure

indicatordisplaysthepressure

ofthe

fuel

andoxidizertanks

oftheascentor

'descentpr

opel

lant

system,

dependingupon

the

sett

ing

ofthepr

opel

lant

temperature/pressuremonitor

switch.

Thehelium

indicatordi

spla

ystheambienttemperature,

andpressure,

oftheascentordescenthelium

tank,

asselectedwiththeheliummonitor

selector

switch,

15October

1965

3-7

Page 45: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

LMA790-1

Theascentanddescentheliumregulatorswitchesare

center-off,

spring-loadedto

ggle

switches

that

controlnormallyop

en,

latc

h-ty

peso

leno

idvalvesupstream

oftheheliumpressureregulators,

Apulse

from

theascentordescentswitchtriggers

theap

plic

able

solenoid

toth

eopenorclosedpo

siti

onto

regu-

late

pressurefrom

theascentordescent

tank

s.

$-19

,EngineThrustCo

ntro

l.The

controls

anddi

spla

ysrelated

toengineth

rust

controlareas

fol-

lows:

threé-axis

attitude

controller,

thrust/translation

cont

roll

er,

throttle/jetsco

ntro

lselect

lever,

enginearm

swit

ch,

manual

thro

ttle

swit

ch,

thrust

cont

rol

swit

ch,

+X-translationcontrolpu

shbu

tton

,

X-translationswitch,

balancedcouples

switch,

abortstage

swit

ch,

abort,switch,

enginestop

switch,

engine

startsw

itch

,andlunarcontact

light.

The

thrust

controlswitchpermitsswitchingfromautomatic

thro

ttle

cont

rol

tomanual

thro

ttle

control

IntheAUTO

position,

theLGCcommandsignals

aresummed

with

themanualcommand

signalsand

fed

tothecomputer,

IntheMANposition,

theLGC

throttle

command

sign

als

tothedescentengineare

interrupted.

The

manualthrottleswitch

selects

theCommander's

orSystemEngineer's

atti

tude

cont

roll

erth

atcan

beused

tomanuallyadjust

thedescentengineth

rust

leve

l,if

itscorresponding

throttle/jetscontrol

sele

ctJe

ver

issettoTHROTTLE.

When

themanualthrottle

switch

isin

theCDR

position,

only

the

Commander's

atti

tude

controller

isenabled

toad

just

descentengineth

rust

leve

l;in

theSE

position,

only

theSystemsEngineer's

attitudecontroller

isenabled.

Theenginearm

switch

isathree-position

lockto

ggle

swit

ch,

TheASC

posi

tion

providesanarming

sign

althat

enables

firi

ngof

theascentengineandsimultaneouslysi

gnal

sth

eLGCthatthe

engineis

armed,

IntheOFF

position,

thearming

signalsareremovedfrom

theenginevalvesand

theLGC.

TheDES

posi

tion

arms

thedescentengineand

sign

alstheI.GC

that

theengine

isarmed.

Regardless

ofth

esettingof

this

swit

ch,

theappropriateengine

isarmed

ifth

eabortswitchorabortstageswitch

isactuated

,

‘TheX-translationswitch

sele

cts

thenumber

ofje

tsto

beused

inX-axis

tran

slat

ionmaneuvers,

This

switchisusedon

lywiththeAGS

systems.

Thebalancedcouplesswitchselectsei

ther

balancedpairs

ofRCS

jets

ina

coupleorunbalancedX-axis

RCSjets,

foruse

inmaintaining

pitchand

roll

attitude

duringtheascentengine

thru

stphasewhenth

eAGSis

intheguidanceco

ntro

lloop.

Thisswitch

isnormally

settoON

(balancedcouples)

during

the

initialphasesof

lunarascent,

formaximum

stabilizationoveranycenter-of-gravityth

rust

vector

misalignment,

Aftersome

minimumburntime

(tobedetermined),whenbalanced-coupleoperation

isnolongerrequired,

this

switchcanbe

settoOFF

toconserve

fuel,

Theabortswitch

isactuated

toinitiate

an

abort,

usingon

lythedescenten

gine

.Actuation

ofthis

switch

causes

thefo

llow

ingevents

tooc

cur:

acommand

sign

alis

sent

toarm

thedescent

engi

ne;a

sign

alis

sent

(via

instrumentation)

totelemetry

toin

dica

teth

attheLEMis

preparing

foranab

ort;

anda

sign

alis

sent

totheLGC

andAGS

tocomputeandexecute

theaborttr

ajec

tory

,usingth

eabortprogram,

Theabortstageswitch

isactuated

toinitiate

anabort,

usingonly

theascent

engine.

Actuation

ofth

is

switchcausesth

efollowingevents

tooccur:

acommandsignal

isse

ntto

electroexplosivedevices

topressurize

theascentengine;a

signal

issent

totheLGCandAGS

tocomputeandexecute

theabort

trajectory,

using

theabortstageprogram;a

signal

issent

(via

instrumentation)

totelemetry

toindi-

catethat

theLEMis

preparing

tostagefo

ranab

ort;

thedescentengine

issh

utcown;andan

"engine

.on"command

isenabled,

which.fires

theappropriateelectroexplosivedevice

toinitiate

vehicle

staging.

TheLGC

simultaneously

turnson

theascent

engine,

and

signalstelemetry,

viaserialdown-link,

that

theascentenginehasbeen

started,

3-20,

SYSTEMENGINEER'SCENTERPANEL,

3-21

,Fl

ight

Cont

rol.

The

cont

rols

anddi

spla

ysrelated

toflight

cont

rolareas

foll

ows:

forward

velocity/lateralvelocity

-1OSazimuthrate,’LOSelevationrate

indicator,

flight

directorattitudeindi-

-eator,

rate/errormonitor

switch,

and

attitudemonitor

switch.

3-22,

Caution

Ligh

ts.

The

caut

ion

lights

provideayellow

indi

cati

onto

aler

ttheastronautstoa

situ

a-tionormalfunction

tis

nottime-critical

totheir

safety,

butrequires

thattheybeaware

of

it.

Ifa

caution

ligh

tgoes

on,

theastronautscan

alleviatetheconditionindicated.

Lighting

ofacaution

lightis

accompaniedbyatone

intheastronautsheadset.

Informationconcerning

the.

malfunction

issimul-

taneouslytelemetered

tothegroundmonitoring

station

toensureco

ntro

lst

atio

nawareness

ofthe

situ

-ationintheLEM,

TheMASTERALARMswitch-lighton

theSystemsEnyineer'scenterpanelandon

theCommander's

centerpanelprovideared

indicationwhenawarningorcaution

lightgoes

on,

Both

masteralarm

switch-lightsareextinguished

and

theto

nesi

lenc

edbypressing

eith

erMASTERALARM

3-8.

,15

October

1965

Page 46: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

oO

LMA

790-

1

cating

estorationof

anormalorwithin-toleranceco

ndit

ion,

3-23,

ReactionCo

ntro

l.The

cont

rols

anddisplays

rela

ted

toreaction

controlar

eas

foll

ows:

fuel

quantity

indi

cato

r,oxidizerquantity

indi

cato

r,temperature

indi

cato

r,pressure

indi

cato

r,systemA

switches.and

statusfags,

systemB

switchesand

status

flags,

thrusterpairswitches

and statusflags,

temperature/pressuremonitor

sele

ctswitch,

quantity

test

swit

ch,

quantity

monitor

swit

ch,

andcross-

feedswitchand

status

flag.

:

Theoxidizerand

fuel

quantity

indi

cato

rsdisplaypercentagesof

oxid

izer

and

fuel

remaining

insystem

Aorsystem

B,The

quan

tity

monitorswitchhasSYSA,

SYS

B,and

OFFpositions.

When

theswitch

isset

toSYSA,

theoxidizerand

fuel

quan

tity

indi

cato

rsdisplay

thepercentage

ofoxidizerand

fuel

quantity

insystemA,When

theswitch

isset

toSYS

B,

theoxidizerand

fuelquantity

indicatorsdisplay

thepercentage

ofoxidizerand

fuel

quantity

insystem

B.When

theswitch

isset

toOFF,

d-c

poweris

removedfrom

thequ

anti

tyin

dica

tors

andnovaluesare

disp

laye

d.

Thetemperature

indicatordi

spla

ysthete

mper

atur

eof

thehelium,

fuel,andoxidizer

tanksof

system

Aandsystem

B.The

pressureindicator

disp

lays

thepr

essu

reof

thehelium,

fuel,andoxidizerta

nks,

and

ofthe

fueloroxidizermanifolds

ofsystemAandsystem

B,Thetemperature/pressuremonitor

select

switchhasHe,

FUEL,

OXID,FUELMANF,

andOXIDMANFpositions.

Selectionof

any

ofthe

fivepositionsdisplaysthecorrespondingtemperatureandpressure

forsystemsAand

B,on

thetem-

peratureand

pressureindicators,

ThesystemAandsystemB

switches

andstatusflags

consistof

eight2-

posi

tion

status

flags

that

indi-

catethestatus(openor

closed)

oftheirrespective

latch-typesolenoidvalve,and

fourregulatorswitches,

twomain

shutoffswitches,

andtwoascentfeedswitches.

The

regulatorswitchescontrol

latch-type,

solenoid-operated,

shutoffvalves

(twoeach

forsystemsAand

B)

upstreamof

thepressure

regulators.

Withineachsystem

(Aand

B),

onevalve

isnormallyopen;

theot

her,

normallycl

osed

.Themain

shut-

offswitchescontroltheflowoffuel

andoxidizerdownstream

ofthepropellanttanks,

bymeans

of

solenoidvalves.

Thesevalvesarenormallyopen;however,

ifamalfunctionexists

insystemA

orB,

themalfunctioningsystem

isshutdown

by

settingthemain

shutoffswitch

forthatsystem

toCLOSE.

Theascentfeedswitchescontrolthe

fuel

andoxidizer

solenoidvalves

intheascent

tanks.

ifanRCS

malfunctionoccurs,

theascentsystemcansupply

fuel

andox

idiz

erto

8or

16th

rust

chamberassem-

blieswhiletraveling

inthe+X-directionduringascentphases,

This

isaccomplishedby

settingthe

ascentfeed

switch

forsystemA

cr

B,or

both,

toOPEN

and

themain

shutoffswitch

forsystemA

or

B,or

both,

toCLOSE,

The

thru

ster

pair

switchesand

status

flagsconsist

ofeight3-

posi

tion

status

flags

that

indi

cate

the

status

(openor

closed)

oftheirrespectivepairoflatch-typesolenoidvalves,

and

eightthruster

pair

switches.

Thevalvescontrolthe

fuel

andoxidizer

flow

tothethrustchamberassembly

pairs.

Ared

thrusterpair

flag

isdisplayed

ifeitheror

boththrustchamberassemblies

fail.

Ifsuch

failureoccurs,

theappropriateth

rust

erpa

irswitch

mustbe

set

toCLOSE,

thus

shut

ting

down

the

malfunctioningpair

anddisplaying

aCLOSE

condition.

©

Thecrossfeedswitchcontrolstwolatch-type,

solenoid-operated

fuel

andoxidizercrossfeedvalves

inacrossfeedpipingarrangementbetweensystemsA

and

B.If

thefeedsection

ofsystemAorB

malfunctions,

itsappropriatemain

shutoffvalve

isclosedand

thecrossfeedswitch

isset

toOPEN,

openingth

ecrossfeedvalvesandpermitting

fuel

andox

idiz

erto

flow

from

theoperativefeedsection

totheth

rust

chamberassemblies

ofbo

thsystems.

The

quan

tity

test

switch

isused

inconjunctionwi

ththequ

anti

tymonitor

switchandoxidizerand

fuel

quantityindicators

totestthepropellantquantitygagingsectionofsystemA

or

B.If

thegagingsys-

tem

isoperatingcorrectly,

thedisplay

willshowprescribed

test

values

attheoxidizerand

fuel

quan

tity

indicators.

.

3-24.

Environmental

Control.

The

controlsanddisplaysrelated

toenvironmental

contro!areas

follows:

suit

/cab

intemperature

indi

cato

r,suit,/cabinpressure

indi

cato

r,pa

rtia

lpressure

COpz

indicator,

glycol

temp

erat

ure/

pres

sure

indi

cato

r,O9

pressure.’HO

quan

tity

indi

cato

r,CO,

part

ialpr

essu

relight,

H9O

separator

light,

O9pressure,H9O

quantitymonitor

select

switch,

suit

fanselectSwitch,

and

-gl

ycol

pumpselect

switch.

The

suit

temperature

indicatordisplaysthetemperature

(degrees

Fahrenheit)

inthe

suit

circuit,

as

sensed

atthe

suit

circuitregenerativeheatexchanger.

Thecabinte

mper

atur

eindicator

displays

the

temperature(degrees

Fehrenheit)

ofthecabin

inte

rior

,assensed

atth

ecabinheatexchanger.

The

suitpressureindicatordisplays

suit

circuitpressure

(psia),

assensedupstream

ofthe

suit

gassupply

connectors.

Thecabinpressure

indicatordisplayscabininteriorpressure

(psia),

assensedbyan

15October

1965

3-9

Page 47: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

LMA790-1

aneroidsensoronth

ecabinpressuresensor

swit

ch.

The

part

ialpressureCO,

indicatordisplaysth

epartialpressure(mm

ofHg)

ofcarbondioxide

intheatmosphere

revi

tali

zati

onse

ctio

n.

The

glyc

oltemperature

Indicatornormallydi

spla

ysth

etemperatureof

glycol

(degrees

Fahrenheit)

inth

eprimary

cool

ant

loop.

However,

followingfailureof

theprimary

loop

and

sele

ctio

nof

theemergency

coolantpump,

using

theglycolpump

selectswitch,

this

indicatordisplaysthetemperature

oftheglycol

intheemergency

cool

ant

loop,

The

glyc

olpressure

indi

cato

rnormallydisplaysth

edischargepressure

(psia)

oftheglycol

pump

intheprimary

coolant

loop

.However,

foll

owin

gfa

ilur

eof

theprimary

loop

and

selectionof

theemergency

cool

antpump,

using

theglycol

pump

select

switch,

this

indi

cato

rdis-

plays

thedischargepressure

oftheemergency

glycol

pump,

TheO2pressure

indi

cato

rdi

spla

ystheoxygenpressure

(psi

a)remaining

inth

edescentoxygentank

or

ineither

ofth

etwoascent

tanks,

as

sele

cted

with

theOjpressure/H2Oquantity

monitor

sele

ctsw

itch

._TheH,0

quantityindicatordisplavs

thepercentage

ofwaterremaining

inthedescentwater

tankor

in

either

ofthetwoascent

tank

s,2s

sele

cted

with

the

O27pressure/H2O

quan

tity

monitor

select

switch.

TheO2pressure’H,Oqu

anti

tymonitor

select

switchhasC/WRESET,

DES,ASC

1,ASC

2positions.

This

switch

selects,

formonitoringon

theO

pressure/H0

quantity

indicator,

thepressureand

quantities

inthedescentorascentoxygenandwater

tanks.

When

theswitch

isset

toDES,

thepressure

inthedescentoxygen

tank

isdisplayedon

the05pressure

indicatorandquantityremaining

inthedescent

water

tank

isdisplayedon

theHO

quantity

indicator.

When

theswitch

isset

toASC

1,pressure

in

theNo

.1

ascentoxygentank

isdisplayedontheOppressure

indicator,

andquantity

remaining

inth

eNo.

1ascentwatertank

isdisplayedon

theH2O

quan

tity

indicator.

When

theswitch

isset

toASC

2,pressure

inth

eNo

,2ascentoxygenta

nkis

displayedon

the

O,pressure

indicator,

and

quan

tity

re-

maining

inth

eNo

.2ascentwater

tank

isdisplayedonth

eHO

quan

tity

indi

cato

r.When

theswitch

isset

toC/WRESET,

eith

ertheOgpressurecaution

ligh

tor

thewater

quan

tity

caution

ligh

tis

exti

n-guished

ifitwas

lit.

Thesuit

fanse

lect

switch

selects

eith

erof

two

suit

fans

toci

rcul

atebreathingoxygen

inthe

suit

circuit.

Normally,

fanNo

,1

isse

lect

edand

operating.

Failure

ofth

eselectedfa

nresults

inli

ghti

ngof

anas-

sociated

suit

circuitfa

ncomponent

caution

ligh

t.Selectionof

theNo

.2po

siti

onac

tiva

tes

theNo

.2fa

nandex

ting

uish

esth

ecaution

ligh

t.

The

glycol

pumpselect

switchhas

1,AUTO,

2andEMERpositions.

This

switch

selectsei

ther

oftwo

circulatingpumps

intheprimary

coolant

loop

,or

thecirculatingpump

intheemergency

coolant

loop

.Thus,

normally,

with

theswitch

setto

AUTO,

theNo

.1pump

operates.

Failure

ofthis

pump

resu

lts

inautomaticswitchover

toth

eNo

.2pump

andlighting

oftheNo

.1pumpcomponent

caut

ion

ligh

t.Se-

lect

ingthe

1or

2po

siti

onac

tiva

tes

that

particular

pumpandbypasses

theautomaticswitchover

feat

ure,

Sele

ctio

nof

theEMER

position

activatestheglycol

pump

intheemergency

coolant

loop

,

3-25.

SYSTEMENGINEER'SDISPLAYSANDCONTROLS,

3-26.

SYSTEMSENGINEER'SDATAENTRYANDDISPLAYASSEMBLY.

The

data

entr

yanddi

spla

yassembly(DEDA)

isused

toco

ntro

lmanually

theAGS

modesof

operation,

manually

inse

rtdata

into

theabortelectronicsassembly

(AEA),

andmanuallycommand

thecontents

ofadesiredAEAmemory

core

tobedisplayedon

theDEDA.

.

3-27.

SYSTEMSENGINEER'SUPPERSIDECONSOLE,

TheSystemsEngineer'supper

side

consoleco

nsis

tsof

circ

uitbreakerpanels

that

have

circuitbreakers

for

the

lighting;thewindow

heaters;

theInstrumentationSubsystem;ReactionControlSubsystem;

Environ-

menta!ControlSubsystem;

FlightDisplays;Guidance,

NavigationandControlSubsystem;

ExplosiveDe-

visesSubsystem;CommunicationsSubsystem;

PropulsionSubsystem;and

ElectricalPowerSubsystem.

3-28

.SYSTEMSENGINEER'SCENTER

SIDECONSOLE.

TheSystemsEngineer'scenter

sideconsoleconsistsoftheelectricalpower

control

panel.

TheSystems

Engineerco

ntro

lsth

eel

ectr

ical

power

dist

ribu

tion

from

hiselectrical

power

controlpanel

(cente

rside

console),

whichreceivespowerfromtwoascentand

fourdescent

batteries.

.The

batteriesare

installed

intheLEM

16hoursbefore

launch.

3-29

.SYSTEMSENGINEER'SLOWERSIDECONSOLE,

TheSystemsEngineer'slower

side

consoleco

nsis

tsof

anaudiopa

nel,

communications

panel,

anda

communicationsantennas

panel.

3-10

,_

L15

October

1965

Page 48: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

moomoo o moomoo

LMA790-1

ommunications

Panel,

Thecommunicationspanelhasswitchesandcontrols

that

enablethe

CommanderandSystems

Engineer

tooperateS-band,VHF

A,VHF

B,telemetry

control,

tape

recorder,

andbackup

(secondary)S-band

equipment.

TheVHF

controls

select

simplexor

duplex

voiceoperation;

asquelchcontrolestablishesthedegree

ofnoiselimiting

intheoperatingduplexreceiver.

Thetelem-

trycontrols

permittransmission

ofhigh-orlow-bit-ratepulse-code-modulationorbiomedicaldata

from

either

astronaut.

The

tape

recorderprovidesa10-hourtime-correlatedrecordingcapacity

for

ce.

Thetape

recorder

isused

atthediscretion

oftheastronaut.

.

CommunicationsAntennas

Panel.

Thecommunicationsantennas

panelhas

indicators,

switches,

andaslewcontrolforpointing

theS-bandsteerableantenna

atearth.

TheSystems

Engineerinitially

selectsamanualtrackmodeandhigh

orlowslewrate

and,

byobserving

theazimuthand

elevation

antennadegrees

indicators

andreceivedS-band

Signal

strength

indicator,

adjusts

theantenna

attitude

with

theslewcontrols

formaximum

indication

on

thereceivedS-band

signal

strength

indicator.

Whenmaximum

indication

isobtained,

theSystemsEngineerswitchesfrom

manualtrackmode

tothe

automatictrackmode,

whichbrings

into

operationanautomaticearth-trackingcircuit

that

causesthe

antenna

totrack

theearthsignalscontinuously.

The

panelcontainstwoantenna

selectorswitches:

one

forVHF;

theother,

forS-band.

TheVHF

switchenables

theoperator

toselect

either

oftwo

in-

ghtomnidirectionalantennas,

theextravehicularastronaut(EVA)antenna

(for

lunar

stay),

orapre-

egresscheckoutjack

that

enablestheprospectiveEVA

tocheckhisPLSScommunicationswithLEM

and

theMannedSpace

FlightNetwork(MSFN).

TheS-bandswitchselects

eitheroftwoomnidirectional

tennas,

thesteerableantenna

(dish),

or

theerectableantenna

(for

lunar

stay),

Theomnidirectional

tennasareforbackupuse,

asrequired.

THREE-AXISATTITUDECONTROLLERS,

three-axis

attitude

controller

between

theCommander's

lighting

paneland

thebottomcenterpanel

permits

theCommanderto

controlattitude

inallthreeaxes.

Thethree-axis

attitudecontrollerbe-

tween

theSystems

Engineer'sDEDAandlower

sideconsoleprovides

thesame

capabilityfor

theSys-

tems

Engineer,

Each

attitudecontroller

isspringrestrainedtoward

thecenter

position.

Side-to-side

movementof

theattitude

controller

provides

roll

attitude

control,

forwardor

aftmovement

provides

pitchattitudecontrol,

and

rotationoftheattitudecontrollerprovidesyaw

attitudecontrol.

The

attitude

controllersoperate

inconjunctionwith

thecontrolelectronicssection(CES)

oftheGN&C

Subsystem.

Signalsfrom

theCESfire

therequiredcombination

ofthe16

thrust

chamberassemblies

intheRCS

tostabilizetheLEMduring

allphases

ofthemission,

THRUST/TRANSLATIONCONTROLLERS,

ethrust/translationcontroller

isat

theCommander's

stationandone

attheSystem

Engineer's

tation.

Bothattitudecontrollersalways

providetheastronautswithtranslationcapabilityalong

the

Y-axisand

Z-axis.

X-axis

translationcapability

isprovided

totheattitudecontrollerswhen

there-

latedthrottle/jetsselect

lever

isset

toJETS.

When

thethrottle/jetsselect

lever

isset

toTHROTTLE

and

themanual

throttle

switch

issetto

CDR,

thrust

control

ofthedescentengine

isprovided

tothe

mmander’s

attitudecontroller.

Thrustcontrol

ofthedescent

engine

isprovided

totheSystems

Engi-

neerwhen

the

throttle/jetsselectlever

isset

toTHROTTLEand

themanualthrottleswitch

issetto

SE.

Movementof

thethrust/translation

controller

providestranslationalcontrolas

follows:

out,

inthe

-Z-axis;

in,

inthe+Z-axis;

up,

inthe+X-axis;down,

inthe~X-axis,

left,

inthe-Y-axis;and

right,

inthe+Y-axis.

The

throttle’jets

controlselectleverassociatedwitheachthrust/translationcontrollerselectsmanual

descent-engine

throttlingorRCS

jetsX-axis

translation.

3-34.

GUIDANCE,

NAVIGATION,ANDCONTROLSUBSYSTEM.

TheGuidance,

Navigation,

andControl(GN&

C)Subsystemprovides

themeasuringanddata-processing

capabilitiesandcontrolfunctionsnecessary

toaccomplish

lunar

landingandascent,

andrendezvousand

docking

withtheCommand/Servicemodules

(CSM).

TheGN&CSubsystemcomprisestwo

functional

loops,

each

ofwhich

isacompletelyindependentguidanceandcontrol

path.

Theprimaryguidancepath

performsall

functionsnecessary

tocomplete

theLEM

mission.

Ifamajor

failure

intheprimary

guidance

path

necessitates

missionabort,

theabortguidancepath

performsall

functionsnecessary

toeffecta

saferendezvouswith

theorbitingCSM.

primaryguidancepath

(figure3-3)

comprisesaprimaryguidanceand

navigation

section(PGNS)

andacontrolelectronicsswitch

(CES).

The

PGNSis

anaided

inertial

guidance

sectionwhoseprincipal

aidsare

thelandingradar

(LR),

therendezvousradar/transponding

(RR,'T),

and

thealignmentoptical

telescope(AOT),TheCESprocesses

theguidanceandnavigation

data

from

thePGNS

andappliesthem

to

thedescentengine,

theascent

engine,

and

selectedRCS

jets,

15October

1965

-3-11

Page 49: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

LMA790-1

The

inertial

measurement

unit

(IMU),

whichco

ntin

uous

lymeasuresattitudeandacceleration,

isthe

primary

iner

tial

sens

ing,

device

oftheLEM.

During

desc

entto

thelunarsu

rfac

e,theLR

sensesLEM

altitude

and

velo

city

with

respect

tothelunar

surf

ace.

During

theco

asti

ng,

descent,

lunar

stay,and

rendezvousanddockingphase

ofthemission,

therendezvousradar(RR)coherentlytracks

itstrans-

ponder

intheCommandModule(CM)

toderiverange,

range

rate

,andanglerate

measurements

with

respectto

iner

tial

space,

TheLEM

guidancecomputer(LGC)

isth

ecentraldata-processingdevice

oftheLEM.

Using

inputs

from

theLR,

theIMU,

theRR,

thethrust

translationcontrolassembly

(TTCA),

theat

titu

deco

ntro

ller

assembly

(ACA),

andmanuallyentereddata

derivedfrom

star

sight-

ings

with

theAOT,

theLGC

solvesthenecessary

guidance,

navi

gati

on,

stee

ring

,and

stabiliz

ation

equa

tion

sto

initiate

engine-onanden

gine

-off

commandsfor

thedescentandascentengines,

throttle

commandsandtrimcommandsfor

thedescenten

gine

,andthruster-onandthruster-off

commands

for

these

lect

edReactionControlSubsystem

(RCS

)jets.

.

Theastronautmanuallycontrolstranslationmaneuversand

thro

ttli

ngof

thedescentenginewith

the

TTCA,

which

isaT-handlehand

control.

The

translationcommand

sign

alsgenerated

bytheTTCA

are

routed

totheLGC;the

thro

ttle

commandsignalsareap

plie

dto

thedescentenginecontrolassembly

(DECA).

TheDECA

sumsthrottlecommandsfrom

theLGC

andfrom

theTTCA

andap

plie

sthere-

sultantsignaltothedescent

engine.

Italsoappliestrimcommands

generatedby

theLGC

tothe

gimbaldriveactuators(GDA‘s)

toprovidetrim

control

ofthedescentengineandroutesdescentengine-

onanden

gine

-off

commandsfrom

theascentenginela

tchi

ngdevice//sequences(AELD/S)to

thedescent

engine.

TheLGC

appliesengine-onand

engi

ne-o

ffcommands

fortheascentengineand

thedescenten-

gine

toth

eAELD/S.

TheAELD,S

routesdescentengine-onandengine-off

commandsto

theDECA,

appliesascentengine-onand

engine-offcommandsdirectly

totheascentengine,

andprovides

thepower

required

tocperate

the

engine

sole

noid

valv

es.

Theastronautmanually

controlsLEMattitudechangeswiththeACA,

which

isathree-axis,

pistol-grip

handcontrol.

When

the

pistolgrip

ismoved

outofthedetent

position,

proportional

attituderatecom-

mandsarerouted

totheLGC.

The

LGCthen

calculates

stee

ring

informationandgeneratesRCS

jet

commandsthatcorrespond

tothemode

ofoperation

selected.

Thesecommandsare

appl

ied

tothe

jet

drivers

intheat

titu

deandtr

ansl

atio

ncontrolassembly(ATCA),

whichgeneratesthruster-onand

thruster-offcommands,

androutesthem

totheproper

RCSjets.

Iftheastronautcommands

amaximum

atti

tude

changebymoving

thepi

stol

-gri

pto

thehardover

posi

tion

,theACA

appl

ies

thehardovercom-

mand

dire

ctly

toth

eemergency

solenoids

ofthecorresponding

RCSjets.

.

Controlof

theLEM,

whenusing

theprimaryguidance

path,

rangesfrom

fullyautomatic

tofullymanual.

Theprimaryguidancepathoperates

intheautomaticmodeor

theattitude-holdmode.

Intheautomatic

mode,

allnavigation,

guidance,

stabilizationandco

ntro

lfunctionsareco

ntro

lled

by

theLGC,

during

thedescentand

theascentphase

ofthemission,

When

theattitude-holdmode

isselected,

theastronaut

uses

theACA

tobringtheLEMtoa

desiredattitude,

Whenhereleasesth

eACA,

theLGC

generates

commands

tohold

this

atti

tude

untilanew

atti

tude

isselected.

Ifth

eLEMis

inthepowereddescent

phase

ofthemission

andthe

attitude-h

oldmodehasbeen

sele

cted

,th

rott

ling

ofthedescentengine

is

normallyaccomplishedautomatically.

Theastronaut

can,

however,

elect

tocontroldescent-engine

throttling

manually.

Under

this

cond

itio

n,theLEMis

enti

rely

undermanual

cont

rol.

Table

3-

summarizes

theoperationoftheprimaryguidance

path

inbothmodes

ofoperation,

Theabortguidancepath

(figure3-4)

comprisesanabortguidancese

ctio

n(AGS)and

theCES.

TheAGS

isabackupsystem

forthePGNS,

Ifitbecomesnecessary

toaborttheLEM

mission,

theAGSperforms

allin

erti

alna

viga

tion

andguidancefunctionsnecessary

toeffect

asa

ferendezvouswith

theCSM.

The

stabilizationandcontrolfunctionsareperformed

byanalog-computationtechniques

intheCES.

TheAGSusesastrap-down

inertialsensingtechnique,

rather

thanthe

stabilizedgimbaltechnique

(the

IMU)used

inthePGNS.

The

abortsensorassembly

(ASA)

isastrap-down

iner

tial

sensorpackage

that

containsthreegyroscopes,

threeaccelerometers,

associatedelectronicsandapower

supply.

TheASA

isinstalledin

theLEMso

that

itscoordinateaxescorrespond

totheX-,

Y-,

andZ-axis

oftheLEM.

TheASA

appliesgyroandaccelerationdataforeachLEMaxisto

theabortelectronicsassembly

(AEA).

TheAEA

isahigh-speed,

general-purpose

digitalcomputer

thatperformsthe

basicstrap-downsystem

computationsand

theabortguidanceand

navi

gati

onst

eeri

ngcontrol

calc

ulat

ions

,The

data

entryand

displayassembly

(DEDA)is

ageneral-purposeinput-outputdevicethroughwhichtheastronautmanually

enters

data

into

theAEA

andcommands

various

data

readouts,

TheCES

performsthe

functions

ofanautopilotwhen

theabortguidancepath

isselected.

Ituses

inputs

from

theAGSandfrom

theastronauts

toprovide

thefo

llow

ing:

engine-on,

engine-off,

and

thro

ttli

ng

commandsfor

thedescentengine;gimbalcommandsto

theGDA's

tocontroldescentengine

trim;en-

gine-onand

engine-offcommands

for

theascent

engine;enginesequencer

logic

toensureproperarming

and

stag

ingbeforeengine

star

tupand

shutdown

thruster-onand

thruster-off

commandsto

theRCS

for

translationandangular

stabilization,

and

forvariousmaneuver;

jet-

sele

ctlo

gic‘toselect

theproperRCS

jets

forthevariousmaneuvers;andmodes

ofLEMcontrol

rangingfrom

full

yautomatic

tomanual,

re-

gardless

ofthephase

ofthemission

inwhich

the

abortis

init

iate

d.

3-12

15October

1965

an)

Page 50: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

PRIMARY

GUIDANCEAND

NA'

LEM

VELOCITIES

LANDING

RADAR

(LR)

ALTI

TUDE

“MEASUREMENT

GIMBALANGLES

INERTIAL

UNIT

ACCELEROMETERDATA

(mu)

c

‘RANGE

RENDEzVOUS

{RAN

GERATE

RADAR

(RR)

TRACKINGANGLES

TRANSPONDER

ALIGNMENT

OPTICAL

DATA

DERIVEDFROM

TELESCOPE

=

STARSIGHTINGS

(AQT)

Page 51: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

I’ ad porn oopregbead pond

/IGATION

SECTION|

—{f

THROTTLECOMMANDS

Ucontrot

ELECTRONIC

TRIMCOMMANDS

TRANSLATIONCOMMANDS

THROTTLE

COMMANDS

LEM

GUIDANCE

ENGINE-ONAND

MANUALCOMMANDS

ENGINE-ONAND

ENGINE-OFFCOMMANDS

COMPUTER

ENGINE-OFF

COMMANDS

(LGC)

.

—_—_—p>

ATTITUDE

RATE

COMMANDS

RCS

JETCOMMANDS

151

Page 52: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

LMA790-1

.

PROPULSION

SUBSYSTEM

‘SSECTION

(CES)

THROTTLECOMMANDS

—>

DESCENT

ENGINE

GIMBAL

—Di

CONTROL

TRIM

COMMANDS

DRIVE

ASSEMBLY

ACTUATOR

(DECA)

(GDA)

ENGiNE-ONAND

ENGINE-OFF_COMMANDS

THRUST

TRANSLATION

CONTROL

—|.

ASSEMBLY

(TCA)

|_%

——|

ASCENT

ENGINE

LATCHING

ENGINE-ONAND

ENGINE-OFF

COMMANDS

DEVICE/ S

EQUENCER

—>

(AELD/S)

ASCENT

ENGINE.

ATTITUDE

HARDOVERCOMMANDS

—+{

CONTROLLER

ASSEMBLY

(ACA)

ATTITUDEAND

TRANSLATION

SELECTED

JETS

JET

CONTROL

>REACTION

ASSEMBLY:

DRIVERS

ONAND

OFFCOMMANDS

CONTROL

(ATCA)

SUBSYSTEM

(RCS)

201LMA10-58

Figure

3-3.

PrimaryGuidancePath

Simplified

BlockDiagram

October1965

-.

;3-13/3-14

Page 53: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

~

ABORT

GUIDANCE

SECTION

ABORT

SENSOR

GYRO

DATA

ASSEMBLY

(ASA)

ACCELEROMETER

DATA

>

DATAENTRY A

ND

DISPLAY

DATA

ENTRY

ASSEMBLY

(DEDA)

DATA

READOUT

+

Page 54: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

——

eee

ey

-CONTROL

ELECTRONICS

SECTION

THRUSTCOMMA

THRUST

TRANSLATION

CONTROLLER

ASSEMBLY

(TTCA)

TRANSLATION

C:

RATE

GYRO

ASSEMBLY

(RGA)

RATE

SIGNALS

ABORT

.rT

¥”"E

LECT

RONI

CS°

ASSEMBLY

(AEA

)AT

TITU

DEERROR

SIGNALS

ASCENT

ENGIN

LATCHING

DEV!

AND

SEQUENC:

AELD’S

‘ENGINE

ON-OFFCOMMANDS

woned

er~————__—_

.

l1

MANUALCOMMANDS

Page 55: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

NOS

OMMANDS

DESCENT

ENGINE

CONTROL

ASSEMBLY

(DECA)

GIMBALCOMMANDS

DESCEN

GIMBAL

COMMANDS

>,ATTITUDEAND

TRANSLATIONCONTROL

ASSEMBLY

pl

(ATC

A) qE CE

ER

SONVWWO) 44O°NO 3NIDN3 1N3DS30

ATTITUDE

RATECOMMANDS

AND

PULSECOMMANDS

ATTITUDE

CONTROLLER

ASSEMBLY

(ACA)

15October

1965

Page 56: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

|ABNA

'LMA790-1

al u |

a!

7TTT

i

THROTTLECOMMANDS

GIMBAL.

DRIVEACTUATOR

(GDA)

f.ENGINE

ON-OFFCOMMANDS

ee ——__—~

i.——sON-OFF_

JETCOMMANDS

; |

DIRECTAND

HARDOVERCOMMANDS

f-XTR

ANSL

ATIO

NCO

MMAN

DS|

}

FROM

CONTROL

PANEL

i

ASCENT

ENGINE

ON-OFFCOMMANDS

Figure

3-4,

AbortGu

idan

cePath

Block

Dia;

Page 57: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

DESCENT

ENGINE

REACTION:

iCONTROL

SUBSYSTEM

(RCS)

mm

|

J

|

~ASCENT

ENGINE

201LMA10-57

vram

3-15/3-16

Page 58: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

LMA790-1

Table

3-1,

PrimaryGuidancePathModesandFunctions

Function

AutomaticMode

Atti

tude

-~Ho

ldMode

onmonmnmMoo oOo

Engine

cont

rol

Automaticguidance

Manual

attitude

control

Manual!translation

control

Atti

tude

rate

damping

Override

capabilities

Ascentanddescentengineareturnedonand

offautomatically.

Pitc

hand

roll

trimcom-

mandsareapplieddirectly

togimbalpower

controlcircuitry

inGDA's.

Descentengine

thro

ttli

ngis

cont

roll

edau

toma

tica

lly.

LGC

generatesautomatic

stee

ring

and

trans-

lation

commands

andappliesthem

dire

ctly

toATCA

jetdr

iver

s.

Refer

to"override

capabilities”.

Astronautcommandslinear

translationby

proportional

displacement

ofhandle

ofTTCA.

Ratecompensationaccomplishedwi

thin

LGC.

Override

ofattitude-controlfunction

iseffected

bymoving

ACApistol

grip

tohardover

posi

tion

forON-OFFRCS-jetop

erat

ion.

ACA

routes

commands

directly

tosecondary

coilsof

thrustersolenoidvalves,

Override

ofauto-

matic+X-axis

translationfunction

iseffected

withX-TRANSL

switchwhichroutescommands

directly

tosecondary

coils

ofthruster

solenoid

valves.

Astronautthencommands

X-axis

ratesbypr

opor

tion

aldisplacement

ofACA

pist

olgrip.

Sameasautomaticmode,

exceptthatdescentengine

thro

ttli

ngcanbeco

ntro

lled

automaticallyormanually,

LGC

generatesvehicle-

stab

iliz

atio

ncommands,

andappliesthem

dire

ctly

toATCA

jetdrivers,

Astronautcommandsatti-

tudechangesbypropor-

tional

displacement

ofACA

pistol

grip.

LEM

attitude

ismaintained

when

ACApistol

grip

isindetentposition,

Sameasautomaticmode,

Sameasautomaticmode,

Sameasautomaticmode.

Theastronautusesth

eTTCAto

control

thro

ttli

ngof

thedescentengineandtr

ansl

atio

nmaneuvers.

The

throttlecommands,

asengine-onandengine-offcommandsfrom

theAELD/S,

andtrimcommandsfrom

theATCA

areapplied

totheDECA,

TheDECA

applies

the

throttlecommandsto

thedescentengine,

theengine-onand

engine-offcommandsto

thedescentengine

latchingdevices,

and

thetrimcommands

totheGDA's.

.TheAELD/S

receivesengine-onand

engi

ne-o

ffcommands

for

thedescentandascent

enginesfrom

theAEA.

Asin

theprimaryguidance

path,

the-AELD,Sroutesdescentengine-onand

engine-offcommands

totheDECA

andap

plie

sascentengine-onand

engi

ne-o

ffcommandsdirectly

tothe

ascent

engine.

TheastronautusestheACA

tocontrol

theLEM

atti

tude

.TheACA

routesattituderate

commandsand

pulsecommands

totheATCA

anddirectcommandsand

hardovercommandsto

theRCS.

The

pulse

commandsand

dire

ctcommands

areusedwhen

theabortguidance

path

isin

theat

titu

de-h

oldmode.

The

astronautcan

selecteithertype

ofcommand

foreach

axis.

Ifthepulsecommandsare

Selected

foragivenaxis,

theATCA

causes

theRCS

jets

that

control

that

axis

tobe

firedat

2cps

atapprox-

matelyminimum

impulse,

Ifthedi

rect

commandsare

sele

cted

,thecorresponding

RCSjetsare

fire

donwhen

theACApistol

grip

ismoved

out

ofthedetent

position;

theyareturned

offwhen

the

pistol

grip

isreturned

tothede

tent

position,

Thehardovercommandsperform

thesame

func

tion

as

intheprimary

guidance

path.

Theattitude

rate

commands

generatedby

theACA,

error

sign

alsfrom

theAEA,

rate-damping

signals

from

therategyroassembly

(RGA),

and

translationcommandsfrom

theTTCA

areapplied

totheATCA.

TheATCA

processesthesecommandsto

generatethruster-onandthruster-off

commands,

androutes

them

totheproper

RCSjets,

trol

ofthedescent

engine.

15October1965

Inaddition,

theATCA

routestrimcommandsto

theDECAfor

trimcon-

3-17

Page 59: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

LMA7

90-1

Theabortguidancepath

operates

inthe.automaticmodeor

theat

titu

de-h

oldmode.

Intheautomaticmode,

navigation

andguidancefunctionsarecontrolled

by

theAGS;

stabilizationandcontrolfu

ncti

ons,

by

the

CES.

Intheattitude-holdmode,

pulseanddirect

submodesareavailableforeach

axis.

Thesesubmodes

are

selected

withtheATTITUDECONTROLROLL,

PITCH,

andYAW

switchesonth

econtrolpanel.

The

pulsesubmodeis

anopen-loopattitude-controlmode

inwhich

theACA

isused

tomakeminimum-impuise

attitude

changes

intheselected

axis.

The

direct

submodeis

anopen-loop

attitude

cont

rolmode

inwhich

pairsofRCS

jets

are

directly

controlled

by

theACA.

Theastronautcanmanuallyoverrideautomatic

orsemiautomatic

attitude

control

inanyaxis

bymoving

theACA

pistol

grip

tothehardover

position,

causingdirect

firing

ofthecorresponding

RCSjets

through

theirsecondary(emergency)

solenoids.

Inaddition,

theastronautcanoverride

tran

slat

ioncontrolin

the+X-axis

with

theX-TRANSL

pushbutton

on

thecontrolpanel.

Thispushbuttoncauses

allfour

ofth

e+X-axisRCS

jets

tofire.

Table3-2sum-

marizes

themodes

ofoperation

oftheabortguidance

path,

Tabl

e3-2.

AbortGuidance

Path

ModesandFunctions

Function

AutomaticMode

Attitude-HoldMode

Enginecontrol

Automaticguidance

Manual!attitude

control

Manual

translation

control

Atti

tude

rate

damping

Ascentanddescentenginesareturnedon

and

offautomatically,

Descentenginecan

be

throttledautomaticallyormanually.

Automatic

stee

ring

commandsaregenerated

byAGSandapplied

toCES

tocontrolchanges

inattitude.

Refer

to"override

capabilities,"

Astronautscommanatranslationalongany

axisbyproportionaldisplacementof

T-

handle

ofTTCA,

Rategyro

signalsaresummed

withsteering

signals.

Sameasautomaticmode,

Normal:

Automatic

stabiliza-

tioncommandsaregenerated

byAGSandapplied

toCES

tomaintainattitudecommanded

byastronaut.

Pulse:

Guidancecommands

forselectedaxisare

inter-

rupted.

Direct:

Guidancecommands

forselectedaxisare

inter-

rupted.

Normal:

Astronautscommand

attitude

angular

velocity

rates

byproportionaldisplacement

ofACA

pistol

grip.

LEM

attitude

ismaintainedwhen

ACApistol

grip

isin

detent

position.

Pulse:

Astronautscommand

angularacceleration

inse-

lected

axis

throughlow-fre-

quency

pulsingofRCS

jets.

Direct:

Astronautscommand

angularacceleration

inse-

lectedaxisthrough

on-off

firingofRCSjets.

Sameasautomaticmode,

Normal:

Rategyro

signals

summedwith

stabilization

signals,

3-18

15October1965

Page 60: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

Oooo Oo Oooo |

LMA790-1

Table

3-2.

AbortGuidance

PathModesand

Functions

(Cont)

Function

.AutomaticMode

,Attitude-HoldMode At

titu

deratedamping

PulseandDirect:

There

is(cont)

noratedamping

inselected

axis,

Override

.Override

ofat

titu

de-c

ontr

olfu

ncti

onis

Sameasautomaticmode

capabilities

effe

cted

bymovingACApistol

grip

tohard-

over

posi

tion

foron-off

RCS-jetop

erat

ion.

ACA

routescommands

directly

tosecondary

coilsofthrustersolenoidvalves.

Override

ofautomatic+X-axis

translationfunction

iseffectedwithX-TRANSL

switch,

which

routescommandsdirectly

tosecondary

coilsofthruster

solenoidvalves,

Astro-

naut

thencommands

X-axisratesby

proportionaldisplacementof

ACApistol

grip.

:

3-35

,PRIMARYGUIDANCEANDNAVIGATIONSECTION,

(See

figu

re3-5.)

Theprimaryguidanceandnavigation

section(PGNS)

isprimarilyanaidedinertial

guidanceandnaviga-

tionsystem

thatprovides

allguidance,

navigation,

autopilotstabilization,

andcontrolcomputations

necessary

tocomplete

theLEM

mission.

ThePGNScomprises

thelandingradar

(LR),

therendezvous

radar,‘transponder(RR/T),

thealignment

opti

caltelescope(AOT),

the

inertial

measurementunit

(IMU),

five

coup

ling

data

unit

s(CDU's),

theLEMguidancecomputer

(LGC),

and

thepowerandservo

assembly

(PSA).

3-36

.LandingRadar.

(See

figure

3-6}

Thelandingradar

(LR)sensesLEM

velocity

and

altitude

with

respect

tothelunarsurfacewhen

theLEM

ismovingina

tang

enti

alapproach(Phases

Iand

IIofthe

landingmaneuver)

tothelunarsurfaceand

whenit

rotates

toa

vertical

atti

tude

toco

mple

teits

fina

ldescent.

Velocityand

altitudeinformation

isapplied

totheLGC,

where

itis

used

tocheckorupdate

inertially-derived

data,

and

isalso

displayedduringdescentfroman

altitude

of40,000

feet

totouch-

down,

TheLR

iscomposed

ofanantennaassembly,

electronicsassembly,

andacontrolassembly;

itis

functionallydivided

into

athree-beam,

continuous-wave

(cw)dopplervelocitysensoranda

narrow-beam,

linearfm/cw

radar

altimeter.

Theantennaassemblycomprises

aSpace-duplexedarray

oftransmitandreceiveantennasonwhich

solid-statetransmitters,

amodulator,

detectors,

pre-

amplifiers,

test

modulators,

andwaveguidesaremounted.

The

transmitarraygenerates

fourbeams.

Three

ofthesearearranged

inalambda

configurationandareusedby

thedoppler

velocitysensor;

the

fourthbeam

isusedby

theradaraltimeter

(seefigure

3-7).

Thereceivingantennascomprise

four

broadsidearrays.

Because

thereceivingarraybeamwidthsarewider

thanthose

ofthetransmitarray,

antennaboresighiing

isnotcritical,

The

electronicsassembly

containsfrequency

trackers,

coordinate

converters,

ahigh-speedco

unte

r,andapower

supply.

Itprovides

theLGC

with

binaryword

inputs

thatcorrespond

totherangealongthealtitudebeam.

Outputs

tocontrolsanddisplayspermitdisplay

ofLEM

velocitycomponents

(inantennacoordinates),

andrangealong

thealtitudebeam.

TheLR

sup-

pliesaccurateda

tafrom

25,000

feet

totouchdownwithoutmode

chan

gesor

altitude

holesandhaspro-

vision

forhoveringandnegativespeeds.

Self-testdeviceswithintheLR

enableoperationalchecks

oftheentireLR

withoutradarreturnsfrom

thelunar

surface;

theastronautscanevaluate

theoperational

status

oftheLR

atanytimeduringtheLEM

mission.

:

3-37.

Doppler

Velo

city

Sensor.

Thedoppler

velocity

sensorcomprises

aso

lid-

stat

etr

ansm

itte

r,frequencytrackers,

andbeam-to-orthogonal

ve'ncityconverters;

itprovides

thedesireddoppler

fre-

quenciesandLEM

component

velocity

outputs.

The

receivedenergyfrom

eachbeam

isdetectedwith

thedirect-to-audiodetectiontechnique.

Thereceived

signalsaredetected

inquadratureto

retain

sign

senseandapplied

todualpreamplifiers.

Unwantedtransmitterleakaye

‘isheterodyned

tozeroandre-

jected

because

thedetectorsarea-ccoupled

tothepreamplifiers.

Theamplifiedquadraturedoppler

signalsforeachbeamare

then

applied

tovelocity

sensorfrequency

trackers,

which

search

theband

ofexpecteddopplerfrequencieswith

anarrow-bandwidth

filt

er.

When

thedoppler

signal

appears

inthetracker

band,

thetracker

locksonandcontinuouslytracksand

filtersthedopplerspectrum.

The

outputs

(f,.+Dj,

£,+Do,

f{.+Dg)of

thevelocity

sensorfrequencytrackersareconvertedtoVxa,

Vyas

and

Vzaq

andap

plie

din

prfformto

thehigh-speedcounter

and,

then,

totheLGC.

Theconverteralso

generatesoutputsignalsrepresentingthreeorthogonalvelocitiesandrange

ratealong

thealtitudebeam,

whicharesupplied

todisplays.

15October1965

“3-19

Page 61: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

ronoe

LMA790-1

3-38,

Radar

Altimeter,

Theradaraltimeter

isof

thenarrow-beam,

linear,fm/cw

type

;itcomprises

aso

lid-

stat

etransmitter,

frequency

trac

ker,

and

alti

tude

converterandprovidesoutputs

that

represent

rangealongth

eal

titu

debeam.

Thereceivedenergy

isdetectedin

amanneralmost

iden

tica

lwith

that

ofthedopplervelocitysensor,

Thedetectedquadrature

signalsareamplifiedina

dualpreamplifier

andap

plie

dto

thealtimeterfrequencytr

acke

r.Thefrequencyalong

therangebeam

isthesum

ofthe

-Yangefrequencyand

thedopplerfrequency

(f{,+fg).

Thedopplercomponent

isremoved

inth

eal

titu

deconverterbymixingop

erat

ions

;th

erangefrequency

sign

alis

applied

toth

ealtitude

frequencycon-

verter,where

therange

sign

alsarede

rive

d.

3-39

.RendezvousRadar

Transponder.

(See

figu

re3-8.)

Theprimary

func

tion

oftherendezvous

radar/transponder

(RR,T)

isto

providerange,

range

rate

,trackingangles,

andtrackinganglerates

totheLGC

toenablecomputation

ofatr

ajec

tory

from

themoon

toa

point

inspacewhere

the

finaldocking

oftheLEM

totheCSM

canbe

gin.

TheRR

canbeusedduring

thelu

nardescenttr

ajec

tory

totracka

land

ingbeacon;

inanemergencyasanai

din

determiningth

eva

lidi

tyof

sign

alsfrom

eith

ertheLR

or

IMUwhen

thedata

from

thetwoequipmentsdo

notagree.

Outputsfrom

theRR

aredisplayedon

the

Commander's

center

pane

l,

When

theLEM

isonthelunar

surface,

theRR

tracks

theassociatedtransponder

intheCSM.

During

theLEMascent

coastingphases,

theRR

isused

formonitoringormidcoursecorrectionmaneuvers,

Asabackupsystem

for

theLR

duringlunar

landing,

theRRcantrackatransponder

atornear

the

land

ing

site

on

thelunar

surf

ace.

Itcanalso

beuSedforsk

in-orsurface-trackingfo

rlimitedranges.

TheRR

hastwobasicmodes

ofoperatio

n:thetranspondermodeandth

eskin/surfacemode.

Each

modecanbeco

ntro

lled

automaticallyormanually.

Inthetranspondermode,

theRR

operates

incon-

junctionwithatransponder

intheCSM

oron

thelunar

surface.

Intheskin/surfacemode,

theRR

Operateswithoutatransponderandtracks

thesurface

oftheCSMor

thelunar

surf

ace.

Whenauto-

maticcperationof

theRR

inthetransponderorskin/surface

modeis

selected,

theRR

iscontro

lled

‘byinputsfrom

theLGC.

Duringmanual

operation,

theastronautscontroltheRR

withcontrolsand

indi

cato

rsonth

eradarpanelof

theCommander's

lower

side

cons

ole,

TheRR

antennaassembly

includesagyro-stabilizedmonopulseantenna;sum-and-differencehybrid

networks;aduplexer;a

high-level,

solid-statevaractor-multiplier-transmitter;

threemixers;and

three

i-fpreamplifiers.

The

shaft-errorreceiver,

sum-channelreceiver,

andtrunnion-errorre-

ceiverare

identical

i-fassemblies

that

convertth

ereferenceanderror

sign

als

toanintermediate

frequency.

Thesum-channelreceiver

output

isusedasareference

signal

for

thetwophase-

sens

itiv

edetectorswithin

theangletrackmodule.

Thesedetectorsconvert

theou

tput

oftheshaft-

andtrunnion-errorreceivers

into

twobi-polar-video

angle-error

signals.

Thefrequency

synthesizergenerates

thebasic

stab

lefrequenciesrequired

foroperationof

thefr

e-quencytracker,

rangetracker,

modulator,

andRR

logi

cci

rcui

ts.

The6.8-mc

sign

alis

used

inthe

rangetrackerasareference

sign

al;

the

3.4-me

signal

isused

forgeneration

of200-cps,

6.4-kc,

and

204.

8-kc

tones.

Therangetrackerprovidesrangeinformation

totheLGC

indigitalform

viatheRR

logic

circ

uits

and

tothedi

spla

ys.

Itoperateswith

transponderorwi

thCSM-skinorlunar-surfacere

turn

.Thereare

tworangetrackermodes.

Duringtransponder

operation,

amultitonerangingsystem

isused;during

theskin/surfacemode,

avariable

prf

isused

todeterminera

nge.

Whenthe

transpondermode

isselected,RR

transmission

isphase-modulatedwith

sine-wave,

200-cps,

6.4-kc,

and

204,

8-ke

tones.

Bycomparing

thephase

ofthereceived200-cps

tone

with

thephase

ofth

etransmitted200-cps

tone,

unambigucusrangemeasurementscanbemadefrom

0to

390

mile

s.Similarphasecomparisonsmade

with

the

6,4-kceand

204.

8-kc

tonesprovidesuccessiverefinement

ofrangingaccuracy.

The

lower-frequencytone

isused

forcoarserange

data

extraction;

thehigher-

frequencytone

provides

fine

range

data,

When

theskin’surfacemo

deis

selected,

theRR

transmitter

prf

isvariedinverselywith

rangefrom

40,000

to500

feet.

Therangerate

data

isextractedby

theRR

dopplerfrequency

tracker,

whichnullsthrough

theband

ofexpectedreceiveddoppler

frequencies,

The

outputofthedopplerfrequencytrackerrepresents

therange

rate

data,

Theangletrackmoduleconverts

shaft-andtrunnion-error

signalstod-cerror

signals,

whichare

used

toposition

theRR

antenna.

Inaddition,

theangletrackersgenerate

theagc

sign

althat

isdis-

playedon

theradar

panelandre

gula

tethegain

ofthe

i-fam

plif

iers

.

TheRR

logiccircuitsprovide

theinterfacesbetween

theRRand

theLGC.

Radaroutput

signalsare

processed

into

theformatrequiredby

theLGC

andSelectedsequentially

fortransferbycodedstrobe

signalsgeneratedby

theLGC.

3-20

|7

15October

1965

:

Page 62: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

RANGEAND

RANGE

RATE

TRACKING

ANGLES

AND.TRACKING

ANGLE

RA’

MODE

SELECT

COMMANDS

ANTENNA

POSITIONCOMMANDS

ANTENNA

POSITION

|

SHAFT

AXIS

POSITION

SHAFT

POSITIONCOMMAND

TRUNNION

AXIS

POSITION

TRUNNION

POSITION

COMMA

RENDEZVOUS

,RADAR

RANGEAND

RANGE

RATE

TRACKING

ANGLESAND

TRAC

ANTENNACOMMANDS

RRDATAGOOD

SYNC

SIGNALS

LR

RANGE

DATAGOOD

LRVELOCITYDATAGOOD

RANGE

‘ALONG

ALTITUDE

BE¢

RANGE

SCALE

LANDING

XAXIS

DOPPLER

VELOCITY

Vx,

RADAR

Y-AX

ISDO

PPLE

RVE

LOCI

TYVy

Z-AXISDOPPLER

VELOCITY

V,,

ANTENNA

POSITION

ANTENNA

POSITIONCOMMAR

RANGE

{ALT}

VELOCITY

MODE

SELECTCOMMANDS

ANTENNA

POSITIONCOMMANDS

ANTENNA

POSITION

Page 63: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

|+ poyined

CONTROLS

AND

DISPLAYS

COUPLING

DATA

UNIT

COUPLING

DATA

UNIT

SHAFT

AXIS

POSITION

SHAFT

POSITION

COMMAND

TRUNNION

AXIS

POSITION

TRUNNION

POSITIONCOMMAND

ALIGNMENT

OPTICAL

TELESCOPE

<ING

ANGLE

RATES

rz

4

M) DS

TA EE EER

CONTROLS

AND

DISPLAYS

LEM

GUIDANCE

COMPUTER

FINE

--ALIGNCOMMANE

ta

Vy$$$

+A

Vy

+Av,

qe

INNER

GIMBAL

ANGLE

il

IGA

COARSE

ALIGN

CO.

IGA

STEERING

ERROR

MIDDLE

GIMBAL

ANGLE

¢qe

MGA

COARSE

ALIGN

CC

MGA

STEERING

ERROR

OUTER

GIMBAL

ANGLE

‘¢4

OGA

COARSE

-ALI

GNCO

OGA

STEERING

ERROR

START,

STOP,AND

BIT

5+

SERIAL

DIGITALDATA

SYNCHRONIZATION

ATTI

TUDE

TRANSLATION

PITCH

ROLL

DESCENT

EN:

ASCENT

DESCENTENGINE

DESCENT

ENGINE

THROTi

TOTAL

INCREMENTAL

VEL(

TRANSLATIONCOMMAND

$$$

ATTITUDECOMMANDS

FR

—$—

MODEAND

STATUS

SIGN

$$$

ABORTCOMMANDAGS

KEYBOARD

INPUTS

g—_——

SYSTEM

STATUS

DATA’READOUTS

15Oct

Page 64: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

C7 3 © mo

LMA790-1

SINOGA,

COSOGA

SINMGA,COS.MGA

56INERTIAL

~SIN

IGA.COS

iGA

+p

=MEASUREMENT

UNIT

&POWERAND

SERVO

ASSEMBLY

GA)

IGA

ERROR

COUPLING

MMANDS

:DATA

>UNIT

POSITION

DATA

MGA\

MGA

ERROR

iDATA

¢-UNIT

POSITION

DATA

CONTROLS

SGA)

OGA

ERROR

V—_—_—_———oed

MMANDS

COUPLING

_DATA

q—

UNIT

YNC

PULSES

POSITION

DATA

RCS

JETCOMMANDS

GINE

TRIMCOMMANDS

ON

AND

ENGINE-OFFCOMMANDS

TLINGCOMMANDS

“DCITY

SFROM

TICA

OM

ACA

IALS

SELECT)

Aas AAAA >)s

>>AND

Figure

3-5.

PrimaryGuidanceand

NavigationSectionBlockDiagram

‘ober1965

INSTRUMENTATION

SUBSYSTEM

CONTROL

SLECTRONICS

SECTION

CONTROLS

DISPLAYS

>>AND

DISPLAYS

")

B-201LMA10.24

3-21/3-22

Page 65: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

ee

RECEIVE

ANTENNAS

(neg)

vecocity§

[fe

DUAL

fSENSOR

PREAMPLIFIER

Dy(pos.)

mH

EREQUENCY

Le.

|TRACKERD,;

-_—

1

DUAL

DETECTOR

(neg)

plvetociry

fet!

>DUAL

DUAL

Qfe

SENSOR

DETECTOR

PREAMPLIFIER

D2

(pos.)

:FREQUENCY

TRACKERD2

<>

Dg

ireg

)nt

vetocity

ffe*#

DUAL

fSENSOR

PREA

MPLI

FIER

D3(pos.)

||

FREQ

UENC

Y——|

TRACKERD30

DUAL

DETECTOR

f,+fy

(neg

.)

>Di

atrimeter

[fete

DUAL.

fBALANCED

bf»

FREQUENCY

DETECTORS

|

PREAMPLIFIER

f,+

falpos.)

TRAC

KER a

ALTIMETER

BLANKING

SOLID

SIGNAL

STATE

AL

TRANSMIT

5ANTENNAS

TRANSMITTERS

TEST

AND

TEST

“MODULATORS

™z

1,2,3

nM

>

>

MODE

cocttt

ANTENNA

,TO

POWER

iTILT

COORDINATE

|

SUPPLY

!MECHANISM

!CONVERTER

l

Liou.Ld

LEM

PRIMARYPOWER

Page 66: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

bain 4

VELOCITY

AND

ALTITUDE

CONVERTER

RANGE

D}TRACKERLOCK.

D2TRACKERLOCK»

D3TRACKERLOCK

psMONITOR

IMETERTRACKERLOCK

PCONTROL

z

a“7

VELOCITY

SENSORRi

ALTIMETER

RELIA

RANGE£

fcCLOCK

15October

1965

Figure

3-6.

1

Page 67: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

LMA790-1

Vxo

\

a

LEM

GUIDANCE

COMPUTER

DISPLAY

(LGC)

AND

CONTRO

ASSEMBLY

GE=

SO

AD

ELIA

BLEOPERATE

I‘BLE

“OPERATE

sCALE

AAAL

4

TEST

TEST

CONTROL

600KC

CARRIERFREQUENCY

(fe

}

1G—

aA

ANTENNAPOSITION>

ANTENNAPOSITIONCOMMANDS

/ B-201LMA10-43

sandingRadar

BlockDiagram

3-23,/3-24

Page 68: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

BIU99M9n9MGGoO Bono oepoHDoo

LMA790-1

Vz0

A.Orthogonalset

ofVelocities,Vig.

Vyo.

Vzacaleu-

lated

bythe

landing

radar

and

supplied

to

LGC

with

Vyq

coincident

with

cent

erline

of

-rec

tang

le.

Wwva39 ‘LIV

B.Orthogonal

set

ofVelocities

Ving,

Vya,

V'za

suP-

pliedto

thedisplays

with

Beam3Vq

coincident

with

altimeterbeam.

WV39 “LIV

B-20

1LMA10

-49

Figure

3-7,

LandingRadar

Velocity

Components

15October1965

3-25

Page 69: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

LMAT790-1

$-40,

AlignmentOp

tica

lTe

lesc

ope.

‘Thealignmentopticaltelescope(AOT)

{sa

nonarticulating,

unit

power,

60°

field-of-viewperiscope.

The

astronautsderiveinertial-reference

data

by

sigh

ting

twoormore

celestialbodieswith

theAOTand

measuring

theangles

betw

eenthe

linesof

sight,

TheAOT

isinstalledparallel

totheLEM

X-axis.

The

opti

csmechanismhasastowage

posi

tion

andthreede

tent

s.The

detentsare

at0°

(alo

ngth

eZ-

axis

),

60°

tothe

left,and60°

tothe

right.

;

The

reti

clepatternof

theAOT

cons

ists

ofa

setof

crosshairsand

aone-turn

spir

al,

Thecrosshairs

areused

formeasurements

while

inlu

nar

orbit;

the

spiral

isused

forlunar-surfacemeasurements.

The

_astronautsmeasure

theanglesbetween

lines-of-sight

by

rota

ting

there

ticl

eandobservingareadoutde-

vice.

Inor

bit,

thecrosshairsarero

tate

dto

thezero

posi

tion

and

theLEMis

rota

tedto

allowanavi-

gationalstar

tocross

theX-andY-crosshairs,

As

thestarcrosseseach

line

,informationrepresenting

theanglefromzero

ismanua!ly

entered

into

theLGC

intheform

ofamark-Xormark-Y

signal,

The

LGC

uses

this

data

tocheckorupdatethein

erti

alalignmentof

theIMU.

Lunar-surfacemeasurements

aremadeby

rotating

thereticlesoth

atthesp

iral

cross

thetarget

andthen

manually

enteringthe

anglefromzero

into

theLGC.

3-41.

Iner

tial

Measurement

Unit,

The

inertial

measurement

unit

(IMU)

isth

eprimary

iner

tial

sensing

deviceoftheLEM.

Three

rate-integratinggyroscopesandthreependulousaccelerometersare

mountedontheinnermostgimbal

ofathree-degree-of-freedomgimbalsystem.

Theinnermostgimbal

isheldno

nrot

atin

gwith

respect

toinertial

spacebythreegimbal

servos,

whichderive

theirinput

error

signalsfrom

thethreegyroscopes.

The

inputaxes

ofthethreeaccelerometersrepresent

the

X-,

Y-,

andZ-axis

oftheLEM.

Allchanges

invelccity,

exceptthosebyth

eeffectsof

thegr

avit

a-tional

fiel

dsof

theearthor

themoon,aresensedby

theaccelerometers,

The

outp

utof

eachaccelerom-

eter

representsincrementalchanges

inve

loci

tyand

isapplied

totheLGC

for

theca

lcul

atio

nof

total

velo

city

.TheIMU

resolvers,

whicharemountedoneach

ofthethreegimbals,

continuouslymeasure

LEMattitude

with

respect

tothein

nergimbal.

Theanalogoutputsof

theseresolversareconverted

toa

digitalformatandapplied

totheLGC

by

threecouplingdata

units.

TheLGC

usesthe

resolverdata

anddataderivedfrom

star

sightingstakenwith

theAOT

tocomputeerror

sign

als

that

maintain

the.

innergimbal

ofthe

IMUat

thedesiredreference

position,

TheIMU,

theAOT,

and

theabortsensorassembly

(ASA)aremountedonanavigationbase,

TheIMU

ismounted

so that

itsoutergimbalaxis

ispa

rall

elto

theLEM

X-axis.

3-42,

Coup

ling

Data

Unit

s.Eachcoupling

data

unit

(CDU)

cons

ists

ofadi

gita

l-to

-ana

logconverter

andananalog-to-digitalconverter.

FiveCDU'sare

intheGN&C

Subsystem:

one for

the

shaftaxis,

one

for

thetrunnionaxis

oftheRR

ante

nna,

and

one for

each

ofthethreegimbals

ofth

eIMU.

TheLGC

calc

ulat

esdigitalantenna-positioncommands,

whichareconverted

into

analogantenna-drive

signalsbytwoCDU'sandapplied

totheantennadrivemechanism

toaim

theantennaattheorbiting

CSM.

Followingtransponder

acqu

isit

ion,

CSM

tracking

informationis

digitizedbytheseCDU'sand

applied

totheLGC.

ThethreeCDU'susedwith

theIMU

provideinterfaces

between

theIMUandth

eLGC,

andbetweenth

eIM

Uandthe

ControlsandDisplaysSubsystem.

EachIMUgimbalangleresolverprovides

itsCDU

with

analoggimbal-angle

sign

als

that

representacomponent

ofLEMattitude.

TheCDU'sconvertthese

signals

todigitalformandapplythem

totheLGC.

TheLGC

usesthis

data

tocalculateattitudeand

translationcommands,

whicharerouted

totheRCS.

TheLGCgeneratessteering-error

signals,

which

areconverted

to800-cpsanalog

signalsandapplied

totheattitudeindicators

intheControlsandDisplays

Subsystem,

Inaddition,

theCDU's

couplecoarse-aligncommandsgeneratedby

theLGC

totheIMU.

‘Thedi

gita

l-to

-ana

logconverters

oftheCDU'sarea-c

laddernetworks.

When

aCD

Uis

used

toposi-

tion

agimbal,

theLGC

calculates

thedi

ffer

ence

between

thedesiredgimbalangleand

theactual

gimbal

whichhasaccumulated

intheCDU.

Theaccumulation

ofincrements

resultsinaservoerrorsignal

that

drives

thegimbal

tothedesiredan

gle.

Thean

alog

-to-

digi

talconverteroperatesonanincremental

basi

s.Usingadi

gita

l-an

alog

feedback

techniquewhichuses

theresolversasareference,

theCDU

accumulates

theproperanglevalueby

acceptingincrements

oftheangle

toclose

thefeedback

loop.

These

data

areapplied

toco

unte

rsin

theLGC

forRR

trac

king

information,

and

tocounters

intheLGCand

theabortel

ectr

onic

sassembly

(AEA)

forIMUgimbalangles,

Inth

ismanner,

theAGSattitudereference

isfine-alignedsimultaneously

with

that

ofthePGNS,

3-26

..

15October1965

Page 70: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

ANTENNA

ASSEMBLY

VHF

MC

3-TONES

©

AGC

‘iq

ASH

Ar

ASH

(TOSERVO)

¢———

LATR

(TOSERVO)a

FROM

RESOLVER

LGCSLEW

(TO

SERV

eee

FROM

RESOLVER

LGC

SLEW

(TO

SERV

<<

TRACKING

ANGLES

Page 71: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

[JULATOR

3.4

me(REF.)

6.8mc

(REF

.)

FREQUENCY

SYNTHESIZER

aae

—o—

34

~fd

SH

AFT

»ERROR

RECEIVER

ATR

T

ANGLE

TRACK

MODULE

ASH

At

SUM

1.7me

CHANNEL

RECEIVER

6.2

mc

a

FREQUENCY

TRACKER

6.8

-fd

TRUNNION

3.4

meERROR

(REF)

RECEIVER

>

6.8mc

,

--3TONES

.Ly

|PRFCONTROL

(SKIN’

SURFACEMODE)

y3-TONES

wd

RANGE

TRACKER

RANG

RANC

SHAFT

ANGLE

CDU

SHAFTSLEWCOMMAND

(FROM

LGC)

TRUNNION

ANGLE

CcDU

TRUNNION

SLEWCOMMAND

(FROM

LGC)

IM

RESOLVERS

(TO

DISPLAYS)

15Octc

Page 72: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

LOGIC

SIGNALS

212.5

-fd

3E(TXP

MODE)

——__—_——_———_

5E(SKIN

’SURF)

LMA790-1

eB

RR_DATAGOOD

RR_ANTENNA

SHAFTANGLE

¢—

RRANTENNA

SHAFTCOMMAND

RR_ANTENNA

TRUNNIONANGLE

RENDEZVOUS

beg

—RRANTENNA

TRUNNIONCOMMAND

RADAR

LOGIC

RRRANGE

CIRCUITS

RRRANGE

RATE

RRRANGE

RATE

STROBE

RRRANGE

RATEGATE

STROBE

g—

¢—

¢SYNC

SIGN

AL

ber

1965

Figure

3-8.

RendezvousRadar

BlockDiagram

—»>

LEM

GUIDANCE

COMPUTER

(LGC)

4

B-201LMAI0-44

3-27/3-28

Page 73: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

MOoOVTIMIMBMOANDGOonooo oop

LMA790-1

3-43.

LEM

GuidanceComputer.

TheLEM

guidancecomputer(LGC)

isth

ecentraldata-processingdevice

oftheGN&C

Subsystem.

Itig

aparallel,

fixed-point,

one’s-complement,

general-purpose

digitalcomputer

with

afi

xedropecore

memoryand

anerasable

ferritecorememory.

Ithasa

limi

tedself-check

capability.

Inputs

toth

eLGC

arereceivedfrom

theLRandRR,

from

theIMU

through

theCDU'sandfromanastronaut

via

thedata

entrykeyboardon

theprimaryguidanceandnavigation

panel,

TheLGC

perf

ormsfour

major

functions:

(1)ca

lcul

ates

steering

sign

alsandgeneratesengineand

RCSjetcommandsto

keep

the

LEM

onarequired

traj

ecto

ry,

(2)al

igns

thestable

member

(innermostgimbal)

oftheIMUtoaco-

ordinatesystem

definedbyprecise

opticalmeasurements,

(3)conducts

limitedmalfunction

isolation

oftheGN&C

Subsystem,

and

(4)computes

pertinentnavigationinformation

fordisplay

totheastro-

naut

s.Usinginformationfrom

navi

gati

onfi

xes,

theLGC

determines

theamountof

deviationfromthe

requiredtrajectory

and

calculates

thene

cess

aryattitudeand

thru

stcorrectivecommands.

Velo

city

correctionsaremeasured

bytheIMUandco

ntro

lled

bytheLGC.

Duringcoasting

phasesof

themis-

sion,

velocitycorrectionsare

notmade

continuously,

butare

init

iate

datpredeterminedcheckpoints.

TheLGC

memoryconsists

ofanerasableanda

fixedmagneticcorememory

withacombinedcapacity

of38,912

16-bitwords,The

erasablememoryisa

coincident-current,

ferritecorearray

witha

tota

lcapacity

of2,048words;

itis

characterizedbydestructivereadout,

The

fixedmemory

consists

of

threemagnetic-coreropemodules,

Eachmodule

cont

ains

two

sections;each

sect

ionco

ntai

ns51

2magnetic

cores.

The

capacityof

eachcore

is12

words,

makinga

total

of36,864words

inthe

fixed

memory.

Readoutfrom

thefixedmemory

isnondestructive.

The

logicoperations

oftheLGC

aremechanizedusingmicrologicelements,

inwhich

thenecessary

resistorsandtransistorsare

diffuzed

intosingle

siliconwafers,

OnecompleteNOR

gate,

which

isthebasic

buildingblockfor

allLGC

circuitry,

isinapackage

thesize

ofanaspirin

tablet.

Flip-

flops,

registers,

counters,

etc.

aremadefrom

thesestandardNOR

elementsin

differentwiringcon-

figurations,

TheLGC

performsall

necessaryarithmeticoperationsby

addition,

addingtwocomplete

wordsandpreparing

forthenextoperation

inapproximately24microseconds,

To

subtract,

theLGC

adds

thecomplementof

thesubtrahend.

Multiplication

isperformed

bysuccessiveadditionsand

shifting;

division,

bysuccessiveadditionofcomplementsand

shifting.

3-44.

PowerandServoAssembly.

Thepowerandservoassembly

(PSA)providesace

ntra

lmounting

place

formost

ofthePGNS

amplifiers,

modular

electroniccomponents,

andpower

supplies,

The

PSAcomprises

thefollowingsubassemblies:

gimbalservoalignandpower

amplifiers,

gyroandac-

celerometeramplifiersand

electronics,CDU

electronics,

powerdiodesand

signalconditioners,

and

power

supplies,

Acold

plate,

throughwhichwater-glycolcoolantfromthe

Environmental

Control

Subsystem

flow

s,is

mountedunder

thePSA

subassemblies

todissipate

heat,

3-45,

ABORTGUIDANCESECTION.

(See

figure

3-9.)

Theabortguidance

section(AGS)consists

ofanabortsensorassembly

(ASA)whichcansenseaccclera-

tionsalong,

andangularrates

ofmotionabouttheLEM

axes;an

abortelectronicsassembly

(AEA),

which

fulf

ills

allth

ecomputationalrequirements

oftheAGS;andada

taentryanddisplayassembly

(DEDA).

TheDEDA

usesmanuallyenteredinformation

tocontrol

theAGS

modesof

oper

atio

n,to

inse

rtdata

into

theAEA,

and

tocommandthecontents

ofadesiredAEAmemorycore

tobedisplayedon

theDEDA.

Two

functionsareprovidedby

theAGS;abort

capabilitiesduringanyphase

oftheLEM

mussion,

and

an

inertial

referenceframewhichcanbeusedasan

attitude

reference

forLEMstabilizationduring

anyphase

(inc

ludi

ngabort)

oftheLEM

mission.

TheAGS

generatesengineon-offcommas

andLEM

attitudeerror

signals

that

,afterpassingthrough

theCES,

actuateappropriateRCS

thrusters.

TheAGShasthreemodes

ofop

erat

ion:

offmode,

standbymode,

andoperatemode.

3-46,

OffMode.

The

offmodeprepares

the

AGSfor

operation30minutes

afterentering

this

mode,

3-47,

StandbyMode.

The

standbymode

prepares

theAGS

teenter

theAGS

alignmentmode

aftera

25-minute

period,

Inthismode,theAGS

acceptsPGNSalignmentinformationafter20seconds

ofelapsed

time.

oF

nertialreference

3-48.

OperateMode.

The

operatemode

incorporates

thealignmentmodeand

the

irmode.

Selection

ofthedesiredmode

iscontrolledbymanuaily

insertingthepropercommandsinto

theDEDA.

@AlignmentMode.

Thealignmentmodehasthreesubmodes:

IMUalignment,

body

axisalignment,

andlunaralignment

oftheAGS,

Alignment

oftheIMU

isaccomplished

by

settingtheAGS

iner

tial

reference

tothecalculated

value

ofthePGNSinertialrefer-

15October

1965

3-29

Page 74: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

LMA790-1

-encewhich

isobtainedfromIMUgimbalanglein

form

atio

n,Bodyaxisalignment

isac-

complishedby

settingtheAGS

inertialreferencecoincidentwiththeLEM

body

axis,

Lunaralignment

isaccomplishedbyusing

thestoredAGSazimuthinformationorthe

PGNSazimuthangleinformationdependinguponwhetherthePGNS

malfunctionsprior

toor

afterlunartouchdown,

The local

vert

ical

information

isob

tain

edfrom

theASA

accelerometers,

@In

erti

alReferenceMode.

The

iner

tial

referencemodehasthreesubmodes,

namely

therendezvous,

attitude

hold,

andCSM

acquisitionsubmodes.

In

therendezvoussub-

mode,

theAGSprovides

thest

eeri

ngan¢é4V

commands

necessary

forrendezvous

withtheCSM.

The

attitude

hold

submode

functionsso

that

thecommandedattitude

ofthevehicle

ismaintainedbyac

tiva

ting

theat

titu

decommands

generatedby

theAGS,

IntheCSM

acquisitionsubmode,

theZ-axis

oftheLEMis

directedtowardtheCSM

oyapplyingtheat

titu

decommands

generatedbytheAGS,

3-49.

AbortSensorAssembly.

Theabortsensorassembly

(ASA)

is4strap-down

inertial

sensorpack-

age

that

contains

eegyroscopes,

threeaccelerometers,

and

theassociatedelectronicsandpower

supply.

TheASA,

theIMU,

and

theAOT

aremountedona

navigationbase.

TheASA

ismountedso

that

itscoordinateaxescorrespond

totheX-,

Y-,

and

Z-ax

is,

Theoutputsof

thegyroscopesand

accelerometersrepresentincrementalanglesandincrementalvelocity.

Thesedataareappliedto

theabortelectronicsassembly

fordirectionco

sine

,gu

idan

ce,

navigation,

andst

eeri

ngcalculations,

andforconversionto

Euleranglesfordisplay.

3-50.

AbortElectronicsAssembly.

Theabortelectronicsassembly(AEA)

isa4096-word,

general-

purp

osedigitalcomputer.

Itusesdata

manuallyenteredby

theastronautsandgyroandaccelerometer

datafrom

theASA

toperform

basicstrap-downcalculations

and

allnecessaryabortguidance,

navi-

gation

andsteering

cont

rol,

anddisplay-quantity

calculations.

ThethreeCDU's

that

func

tion

primarily

asinterfaces

between

theIMUandtheLGC

applyIMUgimbal-angledata

simultaneously

toth

eLGC

and

theAEA.

This

ensuresthat

theabortguidance

attitude

reference

isalignedsimultaneouslywith

that

ofthePGNS.

Thecataen

tryanddisplayassembly(DEDA)

enablestheastronauts

toenterdata

into

theAEA

and

tocommand

variousdisplays.

.

3-51.

CONTROLELECTRONICSSECTION,

(See

figure

3-10.)

.

The

controlelectronicssection(CES)consists

ofacontrolpanel,

an

attitude

andtranslationcontrol

:assembly(ATCS),

adescentenginecontrolassembly(DECA),

twogimbaldriveactuatorassemblies

(GDA's),two

thru

sttr

ansl

atio

ncontroller

assemblies(TTCA's)twoattitude

cont

roll

erassemblies

{ACA's),

andara

tegyroassembly

(RGA).

TheCES

provides

signals

tofire

anycombination

ofthe

16thrustersin

theReactionControlSubsystem

(RCS)

tostabilizetheLEM

vehicleduring

allphases

ofthemission,

These

signalscontroltheLEM

atti

tude

andtranslationaboutoralong

allaxesduring

theLEM

mission,

The attitudeandtr

ansl

atio

ncontroldata

inputs

originatefrom

thePGNS

during

normal

autornaticoperation,-from

theACA

andTTCA

duringmanual

operations,

orfrom

theAGS

in

anabort

situ

atio

n,TheCES

converts

attitude

error

signals,

rate

commands,

ortranslationcom-

mands

into

pulse-ratio-modulatedpulsedor

full

-onsignalsforfiring

theappropriateRCS

thrusters,

Inaddition,

rate

and

attitude

error

signalsfrom

theCESaredisplayedon

the

flight

director

attitude

indicator,

TheCES

alsoprocesses

on-off

commandsfor

theascentanddescenten

gine

s,androutes

automaticandmanual

throttle

commandsto

thedescentengine.

Trim

controlof

thegimballeddescent

engine

isalsoprovided

toassure

that

thethrust

vectoroperatesthroughtheLEM

center

ofgravity.

3-52.

Attitude

Cont

rol.

TherearetwonormalCES

modesof

operationof

theLEM:

automaticand

attitude

hold.

Inad

diti

onto

thes

etwemodes,

apulsedmode,

atwo-jetdirect

mode,anda

four

-jet

manualoverridemodeare

available.

Either

ofthetwonormal

modesof

operationmay

beselected

by

settingtheMODE

SELECTswitch

on

thestabilizationandcontrolpanel

totheproper

position

(see

figure

3-2)

.The

pulsemodeandtwo-jetdirect

modeare

sele

cted

on

thesame

panel,

ona

single-axisbasis.

Themanualoverridemode

ofoperationis

always

available.

The

pulsesubmode

anddirectmodeareusedonly

intheabortguidancemode.

The+Xaxistranslationcommandis

auto-

maticallyaccomplishedbytheLGC

whenthe

primaryguidancepaih

isin

oper

atio

n.When

theabort

guidancepath

isin

operation,

andtheX-TRANSL

switchon

thecontro!panel

ispushed,

itprovides

anoverride

of+X-axis

tran

slat

iondata

dire

ctto

theRCSsecondarysolenoids,

°

3-53

,ThrustTranslationControllerAssemblies.

The

thrust

translationco

ntro

ller

assemblies

(TTCA's)are

three-axis,

T-handle,

handcontrollersusedby

theastronauts

tocommandLEMtrans-

lati

onand

tothrottle

thedescentenginebetween10%and100%

ofmaximum

thrust.

Amanuallyoper-

atedleverontheTTCA

enables

theastronaut

toselecteitheroftwocontrolfunctions:

tocontrol

translationin

theY-axisandZ-axisand

throttling

ofthedescentengine;

tocontro!tr

ansl

atio

nin

all

threeaxes.

Leftor

rightmovements

oftheT-handlecommands

translationalongtheY-axis,

fore

or

aftmovementcommandstranslationalong

the

Z-ax

is,

andupordownmovementcommandstrans-

lation

alongtheX-axisor

throttling

ofthedescenten

gine

.,

3-30

15October1965

Page 75: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

¢

ABORT

ELECTRONICS

ASSEMBLY

(AEA)

DIRECTION

COSINE

INFORMATION

L ATTITUD!

ERRO!

INFORMATIOb

|ci

| L_.

TOTAL

ATTITUDE

SIGNALS

- |E

| Lo.

BODY

INFORMA

AGS

INITIALIZATION

FROM

tGC

|

Page 76: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

‘To

bins mi

DRDINATE

NVERTER

-———

\

BODY

ATTITUDE

ERROR

SIGNALS

MODE

SELE

CTCOMMANDS

im

NTROLAND

LIGNMENT

LOGIC

le |e

MODE

SELECT

MANUAL

OR

ALIGNMENTCOMMANDS

ABORT

SIGNAL

COMMANDSIGNAL

LERANGLE

ENERATOR

<n

ATE

ON

I

ABORT

TRAJECTORY

“COMPUTATION

CIRCUIT

|

ABORT

SENSOR

\SSEMBLY

(ASA

)

BODY

ACCELERATION

INFORMATION

15

Octe

Page 77: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

LMA790-1

CONT

ROL

,ELECTRONICS

SECT

ION

(CES

)

INCREMENTAL

TOTAL

ATTI

TUDE

SIGN

ALPR

IMAR

YGU

IDAN

CEAND

NAVIGATION

SECTION

(PGNS)

DATA

ENTRY

AND

DISPLAYASSEMBLY

(DEDA)

C

ONTROL

sb

er1965

ELECTRONICS

SECTION

>(ces)

ENGINECOMMANDS

AGS

TELEMETER

OUTPUT

INFORMATION

>INSTRUMENTATION

INSTRUMENTATION

TELEMETER

TIMING

SIGNALS

SUBSYSTEM

TOTAL

ATTITUDE

SIGNAL

>

TODI

SPLA

YV_INFORMATION

A_»

B-201LMA10-36

Figure

3-9,

AbortGuidince

SectionBlockDiagram

3-31,3-32

Page 78: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

TO

ELECTROEXPLOSIVE

<<DEVICES

ENGINE—ONAND

ENGINE—OFF

ABORT

“COMMAND

PULSES

ELECTRONICSi

ASSEMBLY

ENGINE—ONAND

ASCENT

EN(

‘.

ENGINE—OFF

AND

SEQUE

LEMGUIDANCE

COMMAND

PULSES

COMPUTER

(LGC)

ENGINE—ONAND

ENGINE—OFF

COMMANDS

THROTTLECOMMANDS

LEMGUIDANCE

COMPUTER

(LGC)

TRIMCOMMANDS

Page 79: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

oo,

ATTI

TUDE

RATE

COMMANDS

RATE

GYRO

..

['

ASSEMBLY

AND

PULSECOMMANDS

/

(RGA)

|A

ro

RATE

DAMPING

SIGNALS

TRIMCOMMANDS

ATTITL

CONi

rIN

ELA

TCHI

NGENGINE—ON

/ICER

(AELD/S)

¥.

ATTITUDE

ERRORSIGNALS

DESC

ENT

ENGI

NECO

NTRO

LTRIM

COMMANDS

ASSEMBLY

(DEC

A)

+

il

x

.TRANSLATIONCOMMANDS

.TH!

cc

THROTTLECOMMANDS

Y}

ENGI

NE-O

NAN

DEN

GINE

—OFF

COMMANDS

15Oct

H1

Page 80: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

LMA790-1

}REACTION

CONTROL

SUBSYSTEM

DIRECTCOMMANDS

ATTITUDE

CONTROL

.SSEMBLIES

(ACA’S)

HARDOVER

COMMANDS

JDEAN

DTR

ANSL

ATIO

N"ROL

ASSEMBLY

(ATC

A)PROPULSION

SUBSYSTEM

ENGINE

| | | |

||

sND

ENGI

NE—O

FFCOMMANDS

||.

ASCE

NT

| | |

IMBAL

DRIV

CNCT

UATO

RSL.

GIMB

ALCOMMANDS

A’.

(GDA'S)

DESCENT

ENGINE

YNTROL

ASSEMBLIES

| |RUST

TRAN

SLAT

ION.

|

(TTC

A’S)

| |

A-201LMAI0-37

Figure3-

10.

ControlElectronicsSectionBlockDiagram

-ober1965

3-33/3-34

Page 81: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

MmOoOo orn omnonongog moo on momo

LMA790-1

3-54,

DescentEngineControlAssembly.

Thedescentengineco

ntro

lassembly(DECA)providesregu-

lation

andcontrolof

thedescentengine.

Itaccepts

throttle

commandsfrom

theLGC

and

theTTCA,

engine-onandengine-off

commandsfrom

theAELD/S,

andtrimcommandsfrom

theLGC

or

theATCA.

Conversionof

theseinputs

todescent-enginecommandsis

performedbydemodulators,

comparators,

andcounters

intheDECA,

whichalsoincludes

automatictrim-malfunction

logi

cthat

dete

ctsgimbal

motor

failures

andremovespowerfrom

thecorrespondingGDAwhenfailureoccurs.

TheDECA

appliesthrottle

commandsandengine-onandengine-off

commandsto

thedescentengine,androutes

trimcommands

totheGDA's.

3-55,

Gimbal

Drive

Actu

ator

s,Twogimbaldriveactuators(GDA's)areusedwith

thedescenten

gine

:One tilts

theengine+6”about

theY-

axis

;the

other tilts

theengine+6°abouttheZ-axis.

TheGDA's

arelow-speedactuatorsused

totrim

thedescentengineonly

when

theth

rust

vector

ofth

edescent

enginedoesnotpassthrough

theLEM

center-of-gravity,

3-56,

Attitude

ControllerAssemblies,

The

atti

tude

cont

roll

erassemblies

(ASA's)arethree-axis,

pistol-griphandcontrollers

that

areusedbytheastronauts

tocommandchanges

inLEMattitude.

Each

ACAisinstalledwith

itslongitudinal

axis

parallel

totheLEM

X-axis;LEM

atti

tude

changes

correspond

tomovements

ofthepistol

grip

.Clockwiseorcounterclockwisemovements

ofthepistol

gripca

usesattitudechangesabout

theX-axis,

fore

or

aftmovement

causesattitudechangesabout

|th

eY-axis,

and

left

or

rightmovement

causesattitudechangesabouttheZ-axis.

Aposition-sensing

transducer,

apair

ofdetent

(bre

akou

t)switches,

andapair

oflimitswitchesare

installedabouteach

axisof

theACA,

The

transducersprovide

atti

tude

rate

command

signalsthat

areproportional

tothe

ACA

displacement.

The

detent

switchesprovidepulsedor

direct

firing

cftheRCA

jets

when

either

correspondingmode

ofoperation

isselected,

The

limitswitchesarewiredto

thesecondarysolenoids

oftheRCS

jets.

These

switchesprovidethehardovercommands

that

overridetheautomatic

attitude

controlsignalsfrom

theATCA,

3-57.

RateGyroAssembly.

The

rate

gyroassembly(RCA)

cont

ains

threesubminiature

single-

degree-of-freedomgyroscopes

that

aremounted

tosenseLEM

roll,

pitch,

andyaw

rates.

Theout-

puts

ofthegyroscopesareusedby

theATCAas

rate-damping

sign

als,

3-58.

Ascent

Engine

LatchingDeviceandSequencer.

Theascentengine

latching

deviceandsequencer

(AELD/S)receivesengine-onandengine-off

commandsfor

theascentanddescentenginesfrom

the

LGC

or

theAEA,

Thesecommandsarein

adigital-pulseformat,

TheAELD/Sconvertsthesecom-

mands

tosustainedengine-onor

engi

ne-o

ffsignalsandappliesthem

totheascentengineor

theDECA,

inadditiontosupplying

thepowerrequiredby

theenginesolenoidvalves.

IftheLEM

mission

isaborted

inthedescentphase,

theAELD/S

causesthe

descentengine

tobeturned

off,

routesrelay-

closuresignalstotheelectroexplosivedeviceforstaging,

andcausestheascentengine

tobeturned

-on,

Inad

diti

on,

asignal

isrouted

totheATCA

which

selectsminimumdeadbandandfour-je

tRCS

operation,

3-59,

Atti

tude

andTranslationControlAssembly.

Theattitudeandtranslationcontrolassembly

(ATCA)

cont

rols

LEMaltitudeandtranslationmotions,

Intheprimaryguidance

path,

attitude

and

tran

slat

ioncommandsare

generatedby

theLGCandap

plie

ddi

rect

lyto

theATCA

jetdr

iver

s.In

the

abortguidance

path,

theATCA

receivestranslationcommandsfrom

theTTCA,

rate-dampingsignals

from

theRGA,and

attitude

rate

commandsandpulsecommandsfrom

theACA.

TheATCA

sums,

amplifies,

limits,

demodulates,

ordead-bandsthese

signals

toproduce

theappropriatethruster-on

and

thruster-offcommands.

TheATCA

combinesattitudeand

translationcommandsin

itslogicnet-

workto

selectthepulseratiomodulatorsandjet-solenoiddrivers

that

accomplish

thedesiredcombi-

nation

oftr

ansl

atio

nand

rotation,

Thedead-bandci

rcui

tryof

theATCA

cont

rols

theLEM

limi

t-cy

cle

range.

Theattitudeerror

signalsgeneratedby

theATCA

areapplied

totheGDA's

duringoperation

inth

eabortguidance

path,

3-60.

REACTIONCONTROLSUBSYSTEM,

TheReactionControlSubsystem

(RCS)providessmallrocketth

rust

impulses

tostabilizeth

eLEM

duringdescentandas

cent

,and

tocontroltheLEMattitudeand

tran

slat

ionaboutoralong

allaxes

duringhover,

rendezvous,

anddockingmaneuvers.

TheRCS

consistsbasicallyof16thrustchamber

assemblies

suppliedbytwoseparatepr

opel

lant

pressurizationandsupply

sect

icns

.The

thru

stcham-

bersand

thedualpropellantpressurizationandsupply

sectionsmakeuptwo

parallel,independent

systems

{Aand

B),asshown

infigures3-11and3-12.

The

16thrustchamberassembliesaremounted

inclusters

offour;

theclustersare

equallyspacedaround

theLEM

ascent

stage,

andarenumberedL

Il,

Wi,

and

IV,

asshown

infi

gure

3-11.

The

individual

thrust

chamberassemblies

ineachcluster

are

iden

tifi

edas

u,d,

s,and(up,

down,

side,and

fore-aft),

Thearrangementis

such

that

two

ofth

eth

rust

chamberassemblies

ineachclusteraremounted

para

llel

tothevehicle'sX-axis,

facing

inoppositedi

rect

ions

(upanddown);

theothertwoarespaced90

°apart

(one

facing

tothe

side,

and

'th

eother

facing

forwardor

aft)

inaplanenormal

totheX-axis,

Two

thru

stchamberassemblies

in

15October1965

72

335

Page 82: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

er arene

LMA790-1

each

clusteraresuppliedbysystem

A;theothertwobysystem

B,Normally,

bothsystemsareoper-

atedsimultaneously;however,

thevariationin

systemsAandB

orfentationin

eachcluster

issuch

that

completecontrolon

allaxes

ispo

ssib

ledespiteafailure

ineither

system.

Aschematicdiagram

of

theRCS

isshownin

figu

re3-

12,

3-61

.PROPELLANTS,

TheRCSuseshypergolicpropellantsco

nsis

ting

ofa50-50

fuel

mixture

ofhydrazine(NgH4)andun-

symmetricaldimethylhydrazine(UDMH),

with

nitrogente

trox

ide(NoO4)asth

eoxidizer.

emixture

rati

oof

oxidizer

tofu

elis

2to

1bywe

ight

.The

samepropellantsareusedin

theLEM

ascentand

descentpropulsionsubsystems,

,

3-62,

PROPELLANTPRESSURIZATIONANDSUPPLYSECTIONS.

The

propellant

pressurizaticn

andsu

pply

sect

ions

ineach

ofthesystems

(Aand

B)in

clud

eall

ofth

epropellant

stor

age,

pres

suri

zati

on,

andfeedcomponentsnecessary

forde

live

ryof

fuel

andox

idiz

er

totheth

rust

chamberassemblies.

Eachsystemhastwocylindricaltanks

(one

for

fuel

andone

for

oxidizer)withhemisphericalends.

The

propellantsarecontainedin

positive

expulsionbladders

supportedby

standpipes

thatrunlengthwisethrougheachtank,

Bothtanks

ineach

ofthedualsupply

’sections

arepressurizedbyan

individual

helium

supply

that

actsupon

thetank

blad

dersto

forcefuel

andox

idiz

erin

toamanifold

that

supp

lies

theeightth

rust

chambersof

therelatedsystem.

Eachhelium

supply

isstored

inasp

heri

caltankat

apr

essu

reof

3,000

to3,100

psi.

Two

parallel,

explosive-operated

(squib)valves

seal

offth

esu

pply

unti

lth

eyarefi

redforthe

init

ialRCS

start.

Downstream

ofthesquibvalves,

thehelium

pass

esthrougha

filter

and

thesupply

line

isdi

vide

din

to

para

llel

legs

,eachcontaining

twopressureregulators

inseries.

Thepressure

regulatorsreduce

theheliumpressure

toapproximately

180

psi,

Sole

noid

valves

(one

ineach

legimmediatelydown-

streamof

thepressurere

gula

tors

)areoperatedso

that

only

one

legof

theregulator

set

isopened

at

atime.

Ifthenormallyopen

legmalfunctions,

itcanbeclosed

offand

thepa

rall

ellegopened.

Thehelium

supplythen

branches

into

oxid

izer

tank

and

fuel

tank

pressurization

line

s,with

a-

quadruplecheckvalve

setandapressure

reli

efassembly

ineach.

The

reli

efvalve

issetat

approxi-

mately250ps

iandprevents

thepossibility

ofaca

tast

roph

icsystem:overpressurization

ifth

eregu-

lator

setfailscompletely.

Aburstdisk

inthepressure

reli

efassembly

isse

tto

ruptureata

slig

htly

lowerpressurethan

that

necessary

tocrack

therelief

valve,

toensureagainstpossiblehelium

leak-

agethroughth

ere

lief

valveduringnormal

oper

atio

n,A

filt

er(betweentheburstdiskand

therelief

valv

e)retainsbu

rstdisk

frag

ment

s,

Normallyopenso

leno

idvalves

intheou

tlet

linesof

thepr

opel

lant

tankscanbe

closedto

isolateth

e

prop

ella

ntsupply

ifamalfunctionoccurs,

Ifanoverpressurizationshouldoccur

insystem

A,for

inst

ance

,theheliumsupplymay

be

lost

andth

esystemA

prop

ella

ntsupplywouldthen

haveto

be

isolated

byclosingtheso

leno

idvalves

(9and

10,

figu

re3-

12),

Ifonepr

opel

lant

supplymustbe

shut

down

inth

ismanner,

normally-closedsolenoidvalves

(14and

17,

figure

3-12)

inacrossfeedpiping

arrangementbetweenthesystemAandsystemB

propellantmanifoldscanbeopened

toprovidepropel-

lant

flow

frem

theremainingpr

opel

lant

supply

toall16

thru

stchamberassemblies.

Inaddition,

therearesimilarsolenoidvalves

(13,

15,

16,and

18,

figure3-12)infeed

linesthatcon-

nectth

eRCS

manifoldsand

theascentpropulsionpr

opel

lant

supp

lylinesfor

thetransfer

ofascent

enginepropellant

totheRCS

propellantsupply

(duringpositiveX-axis

thrustingonly)

ifneeded.

To

preventpossiblepr

opel

lant

loss

throughamalfunctioningth

rust

chamberassemblyoradamaged

clus

ter,

solenoid-operatedvalves

(1through

8and23

through

30,

figure

3-12)

inth

epr

opel

lant

mani-

fold

sju

stupstreamofeachclustercanbe

clos

edto

isolateei

ther

theA

orB

portions,

or

theen

tire

clus

ter,

asre

quir

ed,

3-63

,PROPELLANTQUANTITYGAGINGEQUIPMENT,

Aneucleonic

quan

tity

gagingsystem

with

acobalt

60ra

dioi

soto

pesource

isused

todetermine

thepropel-

lant

quan

tity

intheRCS

posi

tive

expulsionbl

adde

rs,

and

isfu

ncti

onal

under

allco

ndit

ions

,including

zero

grav

ity,

Thesystem

consists

ofsensor

units

(onth

efo

urpropellant

tank

s)linked

toa

soli

d-st

ate

digi

talcomputer.

Thesensorsregisterthequantity

ofpropellant

ineachtankandtransmit

this

data

tothecomputerasavariablefrequency.

Thecomputerconverts

this

frequency

intoapercentage

of

the

initialpropellantsupplyandcalculatestheremainingmass

rati

o.A

digi

talquantityreadout

isthen

displayedon

theappropriate

panel.

An

addi

tion

alsi

gnal

isalso

transmitted

tothecautionandwarning

lights

ifthepr

opel

lant

mass

ratioexceedsapresetra

nge.

3-36

ae

,15October

1965

Page 83: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

ere pn men

THRUST

CHAMBER

ASSEMBLY

CLUSTER

RE

THRUSTCHAMBER

ASSEMBLY

{TYPICAL)

AXES

ORIENTAT

+X

_¢yY +Z

Page 84: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

3HELIUM

PRESSURE

IULATINGPACKAGE

\

gS5) 7

3OSS

{\—_\

: ey

\e \

AE

7

\FUEL

“A”

NY >>SAVATED \0 —{ x» Wey

\ ~

. > MESs P

ION

RS

"A"

OXIDIZER

FUEL

"B”

==OX

IDIZ

ER“B”

ee,

ron

pod

Figure

3-11

.Rea

15October

1965

|Wi

Page 85: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

rere pee en

LMA790-1

PROPELLANT

CROSSFEED

AND

INTERCONNECT

VALVES

/a!

THRUSTCHAMBER

Ew

\rf

©WWee

©

rT

HELIUM

TANK

SYSTEM

“A” “”

a

[> Bp

SYSTEM

ctionControlSubsystemInstallation

a

ISOLATION

VALVES

"MAIN:

SHUTOFF

VALVE

(TYPICAL)

B-2016MA10.9

3-37/3-38

Page 86: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

A-B

OXIDIZERE

CROS

SFEE

DVALVE

FU!

up

ASCENT

——

PROPULSION

INTERCONNECT

Ox

INTERCONNECT

VALVES

A-B

FUEL

CROSSFEED

VALVE

FI

LTER

S

ISOLATION

VALVES

Page 87: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

a“

FUEL

“8”

NO.

“ea-

as

OXIDIZER

“B”

FUEL

“A”

N.O.

N.O.

OXIDIZER

“A”

N.O.

SYSTEM

“A”

N.O.

HELIUM

“A

++

+e

=]ods

N.C.

ZER

?G

+|

myNO.

]ESST

river

|SQUIB.

-valve

|

dq

dl

REGULATORS_

\/

RELIEF

VALVE

FFSYSTEM

"B”

N.O.

OXIDIZER

“A”

C/t

VEHICLE

FUEL

ope TANK

BLADDER

OXIDIZER

“BY

=OPO

meen

ett

eee

te,’

.se

bectet,”

.

FUEL

“B”

oy

OXIDIZER

“B”

28

FUEL

“A”

15

Octob.

Page 88: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

LMA790-1

LEGEND

ir

]

“A”

THRUST

CHAMBER

ASSEMBLY

Sr]

“B”THRUST

CHAMBER

ASSEMBLY

FILTER

(HELIUM)

= FI

LTER

(PROPELLANT)

SOLENOID

VALVE

N.C.

(NORMALLY

CLOSED}

iF

"SOLENOID

VALVE

N.O.

(NORMALLY

OPEN)

ip

TT

«FUELA"

ihhc

hait

rter

tcte

aiac

inta

taie

FUEL

“B”’

OXIDIZER

“A”

teawaeeene,OXIDIZER

“B”

HEATER

C-201LMAIO-31

Figure.3-12.

ReactionControlSubsystemSchematic

er

1965

3-39/3-40

Page 89: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

MaIanmMrO ON ODO OD DOoOog oOo

LMA790-1

3-64,

THRUSTCHAMBERASSEMBLIES,

(See

figu

re3-13,

)

Each

thru

stchamberassembly

isasmallrocketengine

that

develops

100pounds

ofth

rust

and

iscapable

ofei

ther

pulse-modeor

stea

dy-s

tate

oper

atio

n.Theengineconsistsprimarilyof

acombustionchamber

andnozz

le,

an

injector

assembly,

andseparate

fuel

andoxidizer

solenoid

valv

es,

Fuelandoxidizer

.arepipedthroughthecores

ofthesolenoidvalves,

thearmatures

ofwhicharenormallyseatedonthe

injectorinlets

toclose

offflow

tothecombustionchamber.

When

the"engine-on"signal

isreceived,

both

solenoidsareenergized

tolift

thearmaturesfrom

their

seat

s.

During

thefirstinstantof

theengine

startsequence,

the

init

ialflow

passesthrough

jets

todoublet

orificesina

preignitercup,where

the

initialcombustionoccurs

tominimizeoverpressurizationor

"spiking".

‘The

fuelflowthenpassesthroughan

annulusto

fuelorifices;oxidizerpasses

intooxidizer

orif

ices

that

surround

thepreigniter

cup.

These

orif

ices

arealso

arranged

indoublets

(atangles

to

each

other)so

thattheemerging

fuel

andoxidizerstreams

impinge,

completing

theengine

start.

Addi

tion

alflow

isprovidedfrom

the

fuel

annulusto

orif

ices

that

spray

fuel

onth

einnerwall

ofth

e

combustionchamberandaround

theouterperiphery

ofth

epreigniter

cup

forcoolingpurposes.

Each

thru

stchamberassembly

clus

terhastwoel

ectr

ical

ly-o

pera

tedheaters

thatwarm

thecluster

structure

topreventfreezingofthethrustchamberassembliesduringthelunar

stay.

3-65,

RCSOPERATIONALMODES.

Eachthrustchamberassembly

solenoidvalve

(fuelandoxidizer)containsparallel-connectedprimary

coilsandseries-connectedsecondary

coils.

Inthenormalmode,

theprimary

coilsreceive

signals

from

theprimaryguidance

pathoftheGuidance,

NavigationandControl(GN&

C)Subsystem

through

jetdriverci

rcui

try

intheat

titu

de-t

rans

lati

oncontrolassembly.

Theabort

guid

ancepath

ofth

e

GN&CSubsystemcana!so

controltheprimary

coil

s,asabackup

toth

eprimary

guidancepath.

Theseco

ntro

lcommandsactuate

thevalves

inei

ther

pulse-modeor

steady-state

oper

atio

n.The

secondary

coilsareconnecteddirectly

totheattitudecontrollerassemblyandareenergizedwhen

the

Controllerhandle

ismoved

tothe

full

extentof

itstravel(hardover

position).

Forafurtherde-

scriptionoftheRCS

operationalmodes,

refer

totheGuidance,

NavigationandControlSubsystemde-

scri

ptio

n(paragraphs3-34through

3-59

).

3-66

,PROPULSIONSUBSYSTEM,

TheLEM

usesseparateDescentandAscentPropulsionSubsystems,

each

ofwhich

iscompleteand

independentoftheotherandconsistsofa

liquid-propellantrocketenginewith

itspropellantstorage,

pressurization,

andfeedcomponents.

TheDescent

PropulsionSubsystem

iscontainedwithinthe

descentstageandusesa

thro

ttle

able

,gimbzlledengine

thatis

firs

tfiredto

inject

theLEM

into

the

descenttransferorbitandused

inthefinaldescenttrajectoryas

aretrorocket

tocontroltherateof

descentand

toenabletheLEM

tohoverandmove

horizontally.

TheAscentPropulsionSubsystem

is

containedwi

thin

theascentst

ageandusesa

fixed,

constant-thrustengine

tolaunchth

eascentstage

from

thelunarsurfaceand

plac

eit

inor

bit.

Theascentenginecanalsoprovideanygross

orbit

adjustments

thatmay

benecessary

forrendezvouswith

theCommand/Servicemodules.

TheGuidance,

NavigationandControl(GN&

C)Subsystemprovidesautomatic

on-o

ffcommandsfor

both

enginesand

initiatesgimbaldriveac

tuat

orandthrust

leve

lcommandsfor

thedescenten

gine

.Manualoverrideprovisions

force

rtai

nco

ntro

lfunctionsarealsoavailable

totheastronauts.

Opera-

tion

almodesarediscussedfurther

intheGuidance,

NavigationandControlSubsystemwrite-up

(paragraphs3-34through

3-59

);bl

ockdiagramsare

shownin

figures3-3and

3-4.

Bothpropulsionsubsystemsusehypergolicpropellantsconsisting

ofa50-50

fuelmixture

ofhydrazine

(NoH4)andunsymmetricaldimethylhydrazine*UDMH),

withnitrogentetroxide(N204)as

theoxidizer.

Themixture

ratioof

odix

izer

tofuel

is1.6

to1,

byweight,

atin

ject

ion,

Inbo

thst

ages

,thepropel-

lantsaresuppliedfrom

slosh-suppressing

tanks,

withheliumas

thetankpressurant.

3-67,

DESCENTPROPULSIONSUBSYSTEM.

TheDescent

PropulsionSubsystem

cons

ists

oftwo

fuel

andtwoox

idiz

ertankswith

theassociatedpropel-

lant

pressurizationand

feed

components,

anda

thro

ttle

able

rocketengine

that

developsamaximum

thrust

of10,500poundsandcanbeoperated

atanypower

settingdown

toaminimum

thrustof

1,050

pounds.

The

enginecanalsobeshutdownandre-started,

asrequired,

Theengine

ismounted

inthecentercompartmentof

thedescentstagecruciform,

suspendedatthe

thro

atof

thecombustionchamberonagimbalring

that

isanin

tegr

alportion

ofth

eengineassembly.

Thegimbal

ring

ispivoted

inthedescentstagestructurealonganaxis

normal

tothat

oftheengine

pivo

tsso

that

theenginecanbegimballed+6

°in

anydirectionbymeans

ofgimbaldriveactuators

15October1965

3-41

Page 90: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

or-sS96T19Q0}90

CT

OXIDIZERIN

SOLENOIDVALVES

ORIFICE

~~

a

INJECTORSBODY

FUELI]7 ——

ANNULUS Rs,

ESSFESET

SO

ORIFICE(FUEL)

COMBUSTIONCHAMBER

DOUBLETORIFICES

\(FUEL/OXIDIZER)

loaSKIRT

Figure3-13.ReactionControlSubsystemThrusterSchematic

:stiNed

(|nt

PREIGNITERcup

PRIMARYCOIL

SECONDARYCOIL

A201LMA.35

T-O6LVWI

Page 91: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

maoooo0gD ooo Oo nm oOo CS 3 &

LMA790-1

toprovidetrimcontrol

inthe

pitchand

roll

axesduringpowereddescent,

Theengineandtanklocations

inthedescentstagestructureareshown

infigure

2-4,

3-68.

DescentPropulsion

PropellantSupplySe

ctio

ns.

Thedescentpropulsionpr

opel

lant

supplysections

include

allof

thepr

opel

lant

stor

age,

pressurizationandfeed

assembliesnecessary

for

thedelivery

of‘f

uelandoxidizer

toth

eengineva

lves

.A

schematic

ofthese

ctio

nsis

shown

infi

gure

3-14,

Thedescentpr

opel

lant

tanksarepressurizedbyhelium

that

issu

perc

riti

call

ystoredasahigh

dens

ity

gas

inacryogenicstoragevesselandpipedthroughaseriesofvalvesandpreseure-reducingregu-

lators.

Thehelium

isthen

introduceddi

rect

lyin

toth

epropellant

tank

s,where

itacts

on

thesurface

ofthe

fluids

toforcethem

through

thesystem

totheengine.

Themethod

ofheliumstorage

iscurrently

thesu

bjec

tof

apara

llel

development

effort;there

isalsoanotherstudydirectedtowardth

epossible

useof

gaseoushelium

storedat

ambienttemperatures

atapproximately3,500

psi

intwo,

interconnected

mressurevessels.

Supercriticalstorage

ispreferred,

however;

shoulda

satisfactory

supercritical

systembedeveloped,

itwillresult

inthestorage

ofhelium

atamuchhigherdensity(approximately

threetimes

that

ofambientstorage)

and

will

beconsiderably

ligh

ter

inweight.

Ambient

stor

ageis

intended

tobeabackup,

foruseonly

intheeventthatsupercriticalstoragedoes

notprove

tobe

suitable.

Currentsubsystemdesignincludesprovisionsforimmediate

interchangeabilitybetweenthesuper-

criticalandambient

installationsatanytime.

Thetheoryof

supercriticalstoragein

volv

esthedesignof

thestoragevessel,

themannerin

which

itis

fill

ed,and

themethod

ofmaintainingworkingpressuresduringop

erat

ion.

Thevessel

isdoublewalled,

consisting

ofaninnersphericaltank

with

anouter

jack

et;th

evoid

between

thetank

and its

jack

etis

fill

edwithaluminzedmylar

insulationandevacuated

tominimizeambientheattransferfrom

theoutside.

Thevesselis

alsoequippedwi

thassociated

fill,

vent,andpressure-reliefdevicesandanin

tern

alheat

exchanger,

During

fill,

thevessel

isin

itia

llyventedandloadedwith

liqu

idhelium;

the

fill

sequence

isthen

com-

plet

edbycl

osin

gof

ftheventandin

trod

ucin

gahighpressurehead

ofgaseoushelium

atawarmer

temperature

than

that

ofthe

liquid.

As

this

occurs,

thetemperaturetransfer

caus

esthe

liquid

toimmediatelyevaporate

intoahighdensitygas;once

thishashappened,

itcannolongerreturn

toit

sli

quid

stat

e.Thepressure

inthevesselthenstabilizes

and

thetemperatureremains

atabout15°

Rankine,

absolute.

Anormallyclosedsquibvalve

isolates

thissupply

unti

lthevalve

isfiredfor

the

init

ialengine

start(d

esce

nttransfer

orbi

t),

When

thesquib

isfi

red,

thehelium

init

iall

ypasses

throughthefirstloop

ofatwo-passfuel/heliumheatexchanger,

where

itis

permitted

toabsorbheat

from

theengine

fuel,whichhasbeenci

rcul

ated

from

the

fuel

tanksdirectly

totheneat

exchanger,

before

itsultimatedelivery

totheengine

(seefigure3-14).

Thewarmedhelium

isthenroutedback

through

theinternalheatexchanger

insidethestoragevessel;

theresultantheattransfer

tothere-

maininggas

inthevesselmaintainth

econtinuing

pressurerequired

toexpel

theheliumthroughoutth

eentireperiodofoperation.

Afterpassing

thro

ughthe

internalheatexchanger,

thehelium

isrouted

_backthroughth

esecond

loop

ofthefuel/heliumheatexchangerandpost-heatedfo

rtemperaturecon-

ditioningpricy

todelivery

totheregulator

set.

Downstream

ofthefuel/heliumheat

exchanger,

theheliumflow

continuesthrougha

filt

erand

thesupply

line

dividesin

totwopa

rall

ellegs,

with

anormallyopen

solenoid

valveandtwopressureregulators

inseries

ineach

leg.

The

solenoidvalvesareclosedduringthecoastperiod

ofdescent

toprevent

in-

advertenttankoverpressurizationdue

topossibleheliumgasleakagethrough

theregulators.

The

pressureregulator

setst

eps

theheliumpressuredown

toapproximately235

psi.

The

seriesregulators

intheparallellegsarenumbered

1through

4,withregulatorsNo,

3and

4(i

n

one

leg)

set

tode

live

ra

slig

htly

lowerpressurethan

regulators

No,

1and

2(inth

eparallel

leg),

Nor-

mally,

regulators

No,

3and

4remain

lockedup,

andpressure

isreducedthroughregulators

No,

1and

2.In

addi

tion

,upstream

regulatorsNo

.1and

3are

set

todeliver

aslightly

lowerpressurethaneach

ofthedownstream

regulators.

Innormal

operation,

regulator

No.

2remains

full

yopenandsensesa

demandwhile

control!

isob’ainedthroughregulator

No,

1.If

No,

1failsopen,

cont

rol

istakenover

by

No.

2.If

regulator

No.

1or

2failsclosed,

cont

rol

isobtainedina

similarmanner

throughregulators

‘No.

3and

4,

Downstream

oftheregulator

set,

theheliumflowconverges

intoa

singlepressurization

line

andagain

divi

des

into

twoseparatesupply

lines

(one

for

fuel

andone

for

oxid

izer

),wi

thaquadruplecheckvalve

set

ineach.

Areliefvalve

isalsosituatedineachhelium

supply

line

topreventany

possibilityof

catastrophictankoverpressurization,

andaburstdiskupstreamof

each

reliefvalvepreventspossible

leakageduringnormal

oper

atio

n.Downstream

ofthecheckvalves,

the

fuel

and

oxidizer

heliumpres-

suri

zati

onlineseachdi

vide

toprovideflow

toeach

pair

ofta

nks;

thehelium

introducedinto

thetanks

atapproximately225

psi,

acts

directly

on

thesurface

ofthe

flui

dsto

forcethemin

tothepr

opel

lant

feed

lines,

Each

pair

oftanks

ismanifolded

into

acommon

discharge

line

that

contains

afi

lter

andtrim

orifice,fromwhichoxidizer

ispipeddirectly

totheengineand

fuelis

pipeddirectly

tothefuel/helium

15October

1965

-:

,3-43

Page 92: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

CRYOGENIC

STORAGE

VESS

EL

VACUUM

SEAL

AND

PRESSURE

RELIEF

INSULATION

[rc

Lt

aL

SOLENOID

a+O

VALVES

CGR

RPRESSURE

REGULATORS

R

|FUEL/ H

ELIU

MHEAT

EXCH

ANGE

R

oO

_RELIEF

y]-—vatves—l

BURST

DISKS

WOE’

\ Ss

AWN

F

S

|FEED

SECTION/ENGINE

|INTERFACE

1

DESCENT

ENGI

NE

B-201LMA10-4

Figure3-

14.

DescentPropulsionPropellantSupplySectionsSchematic

9-44

.o

..

-15

October

1965

Page 93: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

Moo nmr oon oO om mon OOM of

LMA790-1

heatexchanger,

(Ifambientheliumstorage

isused,

noheatexchanger

isrequiredand

the

fuel,

inUus

case,

islikewisepipeddi

rect

lyto

theengine.)

Both

fuel

and

both

oxidizertanksarealsointerconnectea

byadoublecrossfeedpiping

arrangementfor

thepurpose

ofmaintainingpo

siti

vepressurebalances

acrosstheupper

(hel

ium)

portionsandlower

(pro

pell

ant)

port

ions

ofeach

pair.

Acapacitance-typequ

anti

tygagingsystem

isused

inthedescentpropulsionpr

opel

lant

tank

s;th

issys-

temprovidesacontinuous

digitalqu

anti

tyreadoutonth

eappropriatedisplaypanel

inth

ecrewcom-

partment,

3-69,

DescentEngine.

Thedescentengineconsistsprimarily

ofan

abla

tive

combustionchamber

with

agimbal

ring

,avariablearea

injector,

flowcontroland

shutoffva

lves

,andaradiation-coolednozzle

exte

nsio

n,Thenozzleextension

isdesigned

tocrush,

should

itcontactthelunarsurfaceupon

land

ing.

The

enginehassensors

tomeasure

fuelandoxidizer

inletpressuresandtemperatures,

injector

inlet

pressures,

thrustchamber

pressures,

valve

positions,

vibration,

andexteriorsurfacetemperatures,

Engine

thro

ttli

ngis

accomplishedbyrouting

fuel

andox

idizerthroughseparate,

variable-areaflow

controlvalves

that

aremechanically

linked

toavariable-area

inje

ctor

toseparateth

epr

opel

lant

flow

controlandpropellantinjectionfunctionsso

thateachcanbeoptimizedwithoutcompromising

theother.

This

“hydraulicdecoupling”between

thein

ject

orandflow

contro!valvesensures

that

prop

ella

ntflow

ratesare

notaffectedbydownstreampressurevariations

intheinjectorandcombustionchamberand

maintainsproperpropellantvelocitiesandproperimpingement

anglesat

theinjector

for

stablecom-

bust

ion,

part

icul

arly

atlowthrust

sett

ings

.Engine

startandcutoff

isco

ntro

lled

through

shutoff

valveslocatedbetween

theflowcontrolvalvesand

injector.

Aschematic

oftheengineinjectorand

valves

isshown

infigure

3-15.

Fuelandoxidizerare

inii

tall

yintroducedthrough

flex

ible

inletli

nesnear

thegimbalringat

theengine

thro

atandpipeddi

rect

lyinto

theflow

controlvalves,

Afterpassingthrough

theflow

cont

rolva

lves

,thepropellantspass

intoaseries-parallel

shutoffvalveassembly,

consistingoffuel-pressure-actuated

ball

valv

es,

Fuel

isin

trod

ucedto

thevalveactuatorsthroughsolenoid-operated

pilotvalves,

allof

whichareenergizedsimultaneously

toaccomplish

theengine

start.

During

the

star

t,th

esolenoids

releaseth

ecaged

ballsfrom

theactuator

inletportsandseat

them

agai

nst

theoverboardventpo

rts,

Fuelente~3theactuator

cavitiesand

theactuatorpistons,

connected

torack-and-pinion

linkages,

twist

theball

vaives90°

tothe

fullyopenpo

siti

onto

permitflow

tothein

ject

or.

The

seri

es-p

aral

lelre-

dundancy

intheshutoffvalvearrangementprovides

forpositive

startand

cuto

ff;figure3-15shows

oneactuator

inaclosedposition

toil

lust

rate

this

oper

atio

n.

Duringshutdown,

thesolenoidsaredeenergized,

openingth

eventports,

The

spring-loadedactuators

closetheshutoffvalvesandresidual

fuel

from

theac

tuat

orca

viti

esis

ventedoverboard

into

space.

The

injectorconsistsbasically

ofa

faceplateand

fuelmanifoldassembly

withacoaxialoxidizerfeed

tubeandmovablemetering

sleeve.

Oxidizerentersthrough

thecentertubeandsprays

outbetweena

fixedpintleand

thebottomedge

ofthesleeve;

fuel

isintroduced

intoanouterraceand

the

fuelaperture

isanannularopening

betweenthe

sleeve

side

contourand

thein

ject

orfa

ce.

Thedesignof

thesleeve

issuch

thatbothpropellantaperaturesincrease

inareaasthesleeve

ismovedupward,

awayfrom

the

fixed

pint

le.

The

separate

fuel

andox

idiz

erflowcontrolvalvesareventuris

inwhich

theareas

ofthe

venturithroatsaresimultaneouslyregulatedbycl

ose-

tole

ranc

e,contouredmetering

pintlesthat

are

linkeddirectly

totheinjector

sleeve.

Themechanical

linkageconnecting

thevalve

pintlesand

injectorsleeve

ispivotedaboutafulcrumon

theinjectorbody;

theaccompanying

throttlecontrol

isanelectromechanicallinearservoactuatorwith

redundantd-c

moto

rsthat

positions

thelinkage

inresponseto

electrical

inputsi

gnal

s.Thrust

isthen

regulatedbymovementof

theactuator

tosimultaneouslyadjustthevalve

pintlesand

injector

sleeve.

The

fuelandoxidizerare

thusinjectedatvelocitiesandanglescompatiblewithvariations

inweight

flow,

Atmaximum

thru

st,

theservoactuator

posi

tion

stheli

nkag

eto

settheflow

controlvalvesand

inje

ctor

apertures

tothe

fullyopen

position:

theenginethenoperatesasaconventional,

pressure-fed

rocket.

Asthe

thrust

isreduced,

thepintles

intheflowcontrolvalvesarestroked

todecreasethe

flowcontrol

area

ofeachve

ntur

isothat

thepressuredropacross

thevalvebalancesou

tthe

differential

between

engine

inle

tand

injector

inletpressuresand

theinjectoraperturesareadjustedso

that

the

injection

velocitiesandimpingementangles

offuelandoxidizeraremaintainedatoptimum

conditions.

Atap-

proximately70%

ofmaximumthrust,

cavitationcommences

iathevalve

throats.

From

thisleveldown

to.minimum

thrust,

theflowcontrolvalvesfu

ncti

onas

cavitating

venturis.

Once

cavitation

begins,

thepropellantmetering

func

tion

isen

tire

lyremovedfrom

theinjector;weightflowrateand

thru

stare

controlleden

tire

lyby

theca

vita

ting

vent

uris

.

15October1965

CO

.3245

Page 94: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

LMA790-1

Astemperaturesvary,

however,

therateof

change

inthevaporpressureanddensityof

thefu

elvartes

with

that

oftheoxidizer.

Thesevariations

inpr

opel

lant

propertiesat

off-nominaltemperaturesthus

result

inre

lati

vechanges

inweightflow

ratesof

fuel

tooxidizer,

causingamixture

ratioerror.

To

°*correct

this,

theengine

isequippedwithapr

opel

lant

temperaturecompensation(mixture

ratioco

ntro

l)ac

tuat

orthat

operatesavernieradjustment

inth

elinkage

that

connects

thefuel

andoxidizerflow

control

valve

(venturi)

pintles.

Thisactuatorsensesoxidizertemperaturevariationsandautomaticallychanges

thelinkageadjustmentto

effect

acorrespondingchange

infuel

weightflow.In

doing

this,

the

fuel

pintle

ispivotedabouta

differentcenter,

causinganincrease

inthefuel

flow

gainforsubnominal

temperaturesora

decreasein

thefu

elflowgain

forabove-nominaltemperatures.

Themagnitudeof

the

fue!

flowchangerequiredalso

dependsupon

theflow

regime

(i.e.,

cavi

tati

ngor

non-

cavi

tati

ng).

As

theengine

isthrottledfromoneflow

regime

toanother,

however,

thepr

opel

lant

temperaturecom-

pensationactuator

isalsoautomaticallyswitched

toprovide

thepropergain

inth

efuel

flow.

3-70.

ASCENTPROPULSIONSUBSYSTEM,

TheAscentPropulsionSubsystemusesa

fixed,

constant-thrustrocketenginein

stal

ledalongthecenter-

line

oftheascent

stagemidsectionand

includes

theassociatedpropellantsupplycomponents.

The

en-

ginedevelops

3,500pounds

ofthrustinavacuum,

sufficientto

launchtheascentstagefrom

thelunar

surfaceandplace

itinorbit.

Twomain

propellanttanksareused;one

for

fuelandone

foroxidizer,

The

tanks

areinstalledon

either

sideoftheascentstagestructure.

The

propellantsupplysections

inthissubsystem

includeprovisions

for

fuelandoxidizercrossfeed

totheReactionControlSubsystem

28abackuppropellant

supply

forthe

latter,

Theengineandtank

locations

intheascent

stagestructure

areshown

infigure2-3,

3-71,

AscentPropulsionPropellantSupply

Sections,

Theascentpropulsionpropellant

supply

sections

consistoiheliumpressurizationandpropellantstorageandfeedsections

thatare

functionallysimilar

tothoseused

intheDescent

PropulsionSubsystem.

Aschematic

ofthepropellantsupplysections

isshown

infigure

3-16.

.

Helium

isstoredunderpressure

atambienttemperature

intwoseparatevessels;

anormallyclosed

squibvalve

inthe

lineimmediatelydownstream

ofeachpressurevesselisolates

thissupply

untilthe

valve

isfiredbefore

the

init

ialengine

start.

Theheiiumflowthenpasses

into

two

parallel

regulator

lines,

eachhavinga

filter,

anormally-open

sole

noid

valve,

andtwopressurereducers

inseries,

The

upstreamreducersoneach

sideare

set

toa

slightly

lowerpressurethanthosedownstream;

theseries

pairin

one

line

isalso

set

todelivera

slightly

lowerpressurethan

thepair

inthepa

rall

elline.

Nor-

mally,

theupstreamreducerwiththelowerpressure

sett

inglocksupasthetanksarepressurized;

only

one

oftheparallel

linesoperates

atatime,

Ifeither

reducer

inthe

line

failsclosed,

control

isob-

tained

through

thereducers

intheother

line

with

thelowerpressure

sett

ing.

Ifanupstream

re-

ducer

failsopens,

thedownstreamreducercontinues

toregulatethesupply

atitsownpressure

setting.

Afail-opencondition

inadownstream

redu

ceris

negligblebecause

theupstreamreducer

isalready

incontrol,

Ifboth

reducersina

line

should

fail

open,

theastronautreceivesatank

over-

pressurization

indication,

atwhichtimehe

mustclose

thesolenoidvalve

inthemalfunctioning

line

so

thatnormalpressurereductioncanbeobtainedthroughtheparallel

line,

Downstream

ofthepressurereducer

lines,

theheliumflow

linesaremanifoldedtogetherandthen

divide

into

twoseparatepropellant

tankpressurization

lines,

withaquadruplecheckvalve

setin

each

(the

checkvalves

isolatethefuel

andoxidizer

tanksso

that

thevaporsfromonetankcannotback

upthrough

theheliummanifolds

intotheothertankbeforepressurization,

)A

burstdisk

andrelief

valvearelocatedin

theheliumpressurization

line

adjacentto

eachtank

topreventany

possibil

ity

ofcatastrophictankoverpressurization.

Theburstdisk

isset

torupture

ata

slightlylowerpressure

than

that

required

tocrack

therelief

valve

topreventpossible

helium

loss

duringnormal

pressurization,

Thehelium

isthenpiped

into

thebaffledpropellant

tanks,

whereit

actsdirectly

on

thesurface

ofthe

fluids

toforcethem

through

thesystem

totheengine,

Low-levelsensorsareused

tomonitor

fueland

oxidizerquantities

intheascentpropellant

tanks,

3-72.

Ascent

Engine,

Theascentengine

isaco

nven

tion

al,

restartable,

bipr

opel

lant

rocketengine

withanall-ablative

combustionchamber,

throat,

andnozzle

extension,

Instrumentationincludes

sensors

formeasuring

fuelandoxidizer

inletpressures,

injector

inletpressures,

thrustchamber

pressure,

valve

positions,

vibration,

and

exteriorsurfacetemperatures,

Propellantflow

totheen-

ginecombustionchamber

iscontrolled

through

thevalvepackage,

trim

orifices,

and

injector

assem-

bly,

asshown

infigure

3-17

.At

thefeedsection/engine

interface,

the

fuel

andoxidizer

linesarecon-

nected

tothevalvepackageassembly,

whichconsists

ofsimilarpropellantandisolationvalves,

mounted

back-to-back,

withoxidizerflowonone

sideand

fuelflowontheother

side.

Insidethevalvebody,

both

the

fuel

andoxidizerpassages

divide

into

dual

flow

paths,

with

aseries-parallel

ball

valvearrangement

ineach;

thepaths

rejoin

atthe

outlet.

The

ball

valvesarearranged

infuel-oxidizer

pairs;

each

pair

isoperatedona

sing

le.c

rank

shaf

tassemblybyan

individual

fuel-pressure-operatedactuator.

Shaft

Sealsandventedcavitiesprevent

thepossibility

offuelandoxidizerfromcoming

intocontactwitheach

3-46

_15

October

1965

Page 95: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

3c

J3

moog

LMA790-1

ACTUATORPRESSURE

LINE

SOLENOID

homoge LF]ACTUATORset

mallyCDN voCUuUUoT —_—_

PILOTVALVE

PILOTVALVE(SHOWNCLOSEDTODEMONSTRATELe

OPERATION)

~

/

_

5\Ea

OXSHUTOFF

VALVES.

VENT iLIJ

ACTUATOR7(SHOWNCLOSED)ORIFICE VENT

ADJUSTINGSLEEVE Oerf

200)

FUELORIFICE

OXIDIZER

ORIFICE

Q:eh

VARIABLEAREA

CAVITATINGVENTURI

THROTTLEVALVES

Q

PROPELLANT

TEMPERATURE

COMPENSATION

ACTUATOR

THRUST

CONTROLACTUATOR

PROPELLANTSUPPLY

OXIDIZER

A-201(MA10-26

Figure3-15.DescentEngineInjectorandValves

15October19653-41/3-48

Page 96: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

C37 Oo 3 © CI © onmooMmoonra

+

BURST

DISK

TO

RCS

15October

1965RELIEF

VALVE

FILTER

(FUEL)

LMA790-1

EXPLOSIVEVALVES

HELIUM

'.PUTERS

SOLENOID

VALVES

PRESSURE

REDUCERS

QUAD

CHECK

VALVES

>>

—»

H->

OXIDIZER

TRIM

ORIFICE

F

(O

XIDI

ZER)

FEED

SECTION/ENGINE

INTERFACE

ASCENT

ENGINE

Figure3-16,

AscentPropulsionPropellantSupplySectionSchematicFILTER

TO

RCS

A-201LMAI0-5

3-49

Page 97: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

mao

ll

LMA790-1

otherthroughseepagealongthe

shaf

ts,

Thecompleteassembly

thus

containseightball

valvesonfour

crankshaftassemblies,

fourac

tuat

ors,

andasolenoid-operated,

three-wayvalveforeachactuator,

Fourmanifoldassembliesarealsomountedon

thevalvepackage;thesear

e:oxidizer

shaftse

alvent,

fuel

shaftseal

andactuatorvent,

actuatorfuel

pressure,andsolenoidvalvevent.

Engine

start

isaccomplishedbyenergizingth

esolenoidva

lves

;thevalvepoppetsare

lifted

from

the

fuel

pressureportsandseatedagainstth

eoverboardvent

port

s.Fuelthenpa

ssesto

theactuator

chambersand

theactuatorpistonsareex

tend

ed,

crankingthe

ball

valves

90° to

the

full

open

position,

Fuelandoxidizerthenpassthroughtrim

orif

ices

andarepipeddi

rect

lyto

theinjector.

At

cutoff,

thesolenoidsaredeenergized,

openingth

eactuator

ports

totheoverboard

vent.

Residual

fuel

intheactuators

isventedoverboard

into

spaceand

theac

tuat

orpistonsarereleasedtocloseunder

springpr

essu

reand

pull

the

ball

valvesback

totheclosedposition.

The

inje

ctor

isof

fixed-area,

fixed-orificedesign,

with

theor

ific

esarranged

incircular

patternon

thein

ject

orface

inth

ecombustionchambers.Themain

orif

ices

provide

trip

letspraypa

tter

nsco

nsis

ting

oftwo

fuel

streamsimpingingupononeoxidizer

stream.

Near

theouter

peripheryof

thein

ject

orface,

the

prop

ella

ntorificesare

dril

ledin

doub

lets

(one

fuel

streamimpingingupononeox

idiz

erstream)

toprovidealowtemperatureexhaustgasbarrierneartheablativechamber

wall.

The

inje

ctor

cutawayshown

infi

gure

3-17

refl

ects

thebasicdesignconcept,

only

.Currentexperi-

mentsaredirectedtowardadesignchange

that

invo

lves

thead

diti

onof

three

baff

les,

radi

ally

spaced

120°

aparton

theface

ofth

ein

ject

or.

The

bafflesare

inte

nded

toco

ntri

bute

totheov

eral

lcombustion

stab

ilit

y;th

edevelopmenteffort

conc

ernsitselfwith

arrivingat

anoptimum

meansof

coolingthese

baffles.

Informationconcerning

thefinalizeddesignconfigurationwill

beprovidedwhen

itbecomes

avai

labl

e.

8-73.

INSTRUMENTATIONSUBSYSTEM.

(See

figure

3-18,

)

TheInstrumentationSubsystemsensesphysical

data,

monitors

theLEM

subsystemsduringmanned

phasesof

themission,

perf

ormsaninflightandlunarsurfacech

ecko

ut,

preparesLEM

status

data

fortransmission

toearth,

providestimingfrequenciesfortheLEM

subsystems,

andstoresvoice

datawhen

theLEMis

unable

totransmit

toearth.

TheInstrumentationSubsystemconsists

ofsensors,

thesignal

cond

itio

ning

electronicsassembly

(SCEA),

cautionandwarningelectronicsassembly

(CWEA),

pulsecodemodulationandtimingelectronicsassembly(PCMTEA),

andth

edata

storageelec-

tronicsassembly

(DSEA),

Thesubsystemequipmentoperateson

28voltsde

and

115-volt,

400-cps,

single-phasepower

suppliedbytheEl

ectr

ical

PowerSubsystem,

TheInstrumentationSubsystempro-

vides

theastronautsand

grou

ndfacilitieswithLEM

performanceda

taduring

allphases

ofthemission.

Thisenhancesastronaut

safetyandmissionsuccess.

IncludedwithintheInstrumentationSubsystem

are

scie

ntif

icinstrumentswhich

will

beusedby

theastronautsduringlunar

stay.

3-74,

SENSORSANDSIGNALCONDITIONINGELECTRONICSASSEMBLY,

Thesensors

intheLEM

subsystemssense

data

suchastemperature,

valveaction,

pressure,

switch

position,

volt

age,

andcurrentand

convertthe

data

into

signalswhichareappliedto

theSCEA.

The

SCEA

includes

signal

modifiers,

d-camplifiers,

d-c

attenuators,

andac-to-dcconverters

that

condi-

tion

thesignals

into

aformcompatiblewith

theou

tput

equipment.

Inaddition

totheSignalsfrom

the

sensors,

theSCEA

receives

signalsdirectly

from

othercomponentswithin

theLEM.

Notall

signals

presented

totheSCEA

require

conditioning.

TheoutputsoftheSCEAarefed

totheCWEA

or

PCMTEA,

or

both

.

3-75.

CAUTIONANDWARNINGELECTRONICSASSEMBLY,

~

TheCWEAprovides

theastronautsandground

stationswitharapidcheck

ofLEMstatus

during

the

mannedphase

ofthemission.

The

inputdatafrom

theSCEA

iscontinuouslymonitoredby

theCWEA

todetecta

maifunction,

Ifamalfunction

isdetected,

theCWEA

provides

signals

totheControl

and.

Displays

toac

tiva

teto

negenerators,

toil

lumi

nate

cautionorwarning

ligh

ts,and

illu

mina

tetwo

masteralarm

switch

lights,

Theastronautsaretherebyalerted

tothemalfunctionandaided

inisola-

ting

it.

Thewarning

lightsindicateamalfunction

thatjeopardizestheastronautandrequiresimme-

diateaction,

The

caution

lightsindicateamalfunction

that

does

notrequireimmediate

action,

Signals

that

reflectmalfunctionsareappliedto

thePCMTEAfor

telemetering

toearth,

3-76.

PULSECODEMODULATIONANDTIMINGELECTRONICSASSEMBLY.

ThePCM

changes

allLEMdata

into

digi

talsignalsfortransmission

ioea

rth.

ThePCMTEA

consists

Ofanalogmultiplexers,

ampl

ifie

rs,

ananalog-to-digitalconverter

(cod

er),

adigitalmu

ltip

lexe

r,an

outputregister,

aprogrammer,anda

timinggenerator.

Itcombinesanalog

inputs,

parallel

digital

3-50

15October1965

Page 98: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

cm

Doo

&fo

OMo8 YVONOWAON =

A

-ACTUATORSOLENOIDVALVEACTUATOR

.BALLVALVE.SOLENOIDVALVEVENTMANIFOLDCRANK

ACTUATORPISTONROD.ACTUATORPISTONSPRING.ACTUATORPISTON.OXIDIZERSHAFTSEAL:VENTLINE.TRIMORIFICES7..INJECTORBODY..FUELSHAFTSEALANDACTUATORVENTtINI.PROPELLANTVALVEBODY»SOLENOIDVALVEPRESSUREMANIFOLD(FUEL)»VALVEPOSITIONINDICATORSWITCHES.ISOLATIONVALVEBODY

LMA790-1

FUEL.OXIDIZERIN,IN

Vv

SECTIONA-A

WIAVAAYWAVVATVATWAVVALY,

‘WNJINJNJINJINJWJNANCOMBUSTIONCHAMBER

VANSD-2011MA10-27

Figure3-17.AscentEngineInjectorandValves

15October1965‘3-51/3-52

Page 99: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

NaNO

OIOoOo

©&

OOOFo

oaOo

TD

L

SUBSYSTEMSENSORS

REACTIONCONTROL

ENVIRONMENTAL

CONTROL

bee.eeeememeoe

GUIDANCE,NAVIGATIONANDCONTROL

ELECTRICALPOWER

COMMUNICATIONS

PROPULSION

PHYSICALSENSORS

lieoe

PYROTECHNICS

STRUCTURES

LEMVEHICLE

VOICEFROMCOMMUNICATIONSASSEMBLY

.(OSEA)

IINFLIGHTMEASUREMENTS

CAUTIONANDWARNINGDATA7.

CAUTION

AND

WARNING

LMA790-1

SUBSYSTEMCAUTIONANDWARNINGELECTRONICSPLiGHTSTOCONTROLANDDISPLAYASSEMBLY

(CWEA)

ABORTSIGNALS

TOCREWSYSTEMDISPLAYS

SIGNALCONDITIONINGELECTRONICSASSEMBLY(SCEA)

MASTERALARM

SIGNAL

y HIGHLEVELANALOGSIGNALS ¥V.

SERIALANDPARALLELDIGITALDATA

SERIALDIGITALDATAFROMLEMGUIDANCECOMPUTER(LGC)

Vv

MISSIONELAPSEDTIME(MET)

MODULATION

SCIENTIFICINSTRUMENTATION

PULSE>SERIALDIGITALDATATOCOMMUNICATIONSCODE

AND

SUBSYSTEM

TIMINGpaTIMINGSIGNALSTOSUBSYSTEMSELECTRONICS

ASSEMBLY

(PCMTEA)COMMANDPULSES(SYNC-START-STOP)TOLGC

OTee

eemenoeme

omeme

>“DATAVOXTRIGGERSIGNALSTORAGE——___—__——ELECTRONICS

15October1965

Ca—

Figure3-18,

B-201LMA10-40

InstrumentitionSubsystemBlockDiagram

3-53/3-54

Page 100: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

COO oo oOo Oo co ec 3

LMA790-1

inputs,andse

rial

digitalin

puts

into

ase

rial

digitaldata

trai

nfo

rtransmission

toearthat

one

oftwo

sele

ctab

lera

tes:

1,600

bits

persecondor

51,200

bits

persecond,

Thetiminggeneratorprovides

timingreferencefrequenciesforgu

idan

ce,

telemetry,

DSEA,

anddisplays.

Inaddition,

duringpre-

aceint

thePCMTEA

data

ismonitoredby

theAcceptanceCheckoutEquipment:-Spacecraft

CE-S/C).

3-77.DATASTORAGEELECTRONICSASSEMBLY.

TheDSEA

providestape

storage

forvoiceandtime-correlated

data

;.it

isusedby

theastronautsas

anautomatic

"notepad".

TheDSEA

hasnoplaybackca

pabi

liti

esand

thetape

will

becarriedback

totheCommand/Servicemoduleby

theastronauts

forreturnto

eart

h.

.3-78,

SCIENTIFICINSTRUMENTS,

TheLEM

hasscientificinstruments

forusebyth

eastronauts

insampling,

observingandrecording

selenographicdataduring

thelunar

stay

.The

scientificinstrumentpayloadincludesaself-contained

telemeteringsystem

tobe

setupon

thelunarsurface

toprovidepostmissiondata-transmission

toearth.

Scientificactivitieson

thelunarsurfacearecategorizedasactiveorpassive:

activeexperi-

mentsareperformedduringlunar

stayandrequireastronaut

participation;passiveexperimentsdo

not.

Passiveexperimentsare

init

iall

ysetupbytheastronautsandcontinue

tosend

data

toearthafter

lunarlaunch.

Typicai

scientific

equipmentused

ineach

ofthesecategories

islisted

intable3-3,

Sample-return

will

beanimportantlu

nar

acti

vity

.Twosample-returncontainersarestored

inthe

LEM

andtransferred

totheCommand

Modulefor

earthreturn.

Thesecontainers,

which

theastro-

hautsarerequired

tovacuum-sealonthelunar

surface,

areparellelopipedpressurevessels

thatare

designed

tominimizecontaminationoftheenclosedlunarsamples,

Thecontainers

will

beopened

inamoon-simulatedenvironmentat

theNASA

sample-return

faci

lity

atHouston.

The

extravehicular

astronaut(EVA)willperform

scie

ntif

icoperationssuchasmap

read

ing,

photography,

fieldge

olog

y,core

dril

ling

,seismicexperiments,

and

soil

mechanicsexperiments.

Long-termmeasurements

will

beaccomplishedby

thepassiveequipmentpackages

that

makeup

the

self

-con

tain

edtelemeteringsystem.

Datafrom

theproton

flux

coun

ter,

solarwindinstrument,

meteroidejectainstrument,

magnetometer,

thermocouple,

andotherinstrumentationare

fed

tothe

telemetryequipment

fortransmission

toearth;

thepower

supply

(radioisotopethermoelectricgen-

erator)provides

sufficientenergy

tocperate

thesystem

foratleastayearsubsequent

toabandon-

mentonthelunar

surface.

.

3-79,

COMMUNICATIONSSUBSYSTEM.

(See

figure

3-19.)

TheCommunicationsSubsystem

isthelink

between

theLEM,

theMannedSpace

Fiight

Network

(MSFN),

theCSM,

andth

eEVA.

Various

stat

ions

ofthis

communications

link

arerequired

tocarry

voice,pcm

telemetry

(instrumentationdata),

biomedical

data,

deepspace

in-flighttrackingand

ranging,

television,andemergency-keyedCW.

Acombinationof

sign

alprocessing,

television,

vhf,

andS-bandequipmentis

used

inthesecommunica-

tion

links.

Cablesareusedbetween

thete

levi

sion

cameraand

theLEMand

betw

eenthe

astronauts

and

theLEMwhen

theastronautsare

intheLEM.

VHFcommunication

isusedbetween

theLEM

and

theCSMandbetween

theLEMand

theEVA.

S-bandcommunication

isusedbetween

theLEM

and

MSFN,

Transducers

inthesubsystems

oftheLEM

send

sign

alsrepresenting

thestatus

oftheLEM

and

partic-

ularoperationalequipmentto

theInstrumentationSubsystem.

TheInstrumentationSubsystemconverts

-thesesi

gnal

sto

ausableformandroutesthem

totheCommunicationsSubsystem

fortransmission

toearth.

Thecablebetween

theLEMand

astronautscarriesaudio

totheastronautsandaudioandbiomedicai

information

totheLEM.

This

sameinformation

istransmittedfrom

theEVA

totheLEM,

along

with

.extravehicular

mobi

lity

unit

(EMU)

data,

viaavh

fduplexoperation

link,

whileaudio

istransmitted

toth

eEVA,

Thetelevision

section

isused

totransmitimages

with

intheLEM

andwithin

an80-foot

radius

oftheLEM

during

lunar stay.

Avh

fduplex

link

foraudio

isavailableforusebetweentheLEMastronautand

theEVA.

Asimplex

linkis

usedforaudiobetween

theLEM

and

theCSM.

Inaddition,

aone-way

vhfdata

linkcarrieslow-

bit-ratetelemetry

datafrom

theLEMto

theCSMto

recordtelemetrydatafrom

theLEM

duringthose

portions

oftheLEM

lunarorbitduringwhich

theLEMorbit

isat

thefarsi

deof

themoonand

theLOS

with

earth

isno

t.av

aila

ble.

Thisdata

issubsequentlybroadcast

toearthby

theCSM.

/

15October1965

.oe

3-55

Page 101: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

LMA790-1

Table3-

3.Scientific

Instruments

|Weight

Weight

Active

(Pounds)

Passive

(Pounds)

*Samplecontainers

10.0

Power

supply

(radioisotope

50.0

thermoelectricgenerator)

*Hand-held

stillcamera

6.6

Telemetry

.31.0

*Filmpacks

(2)

0.8

Multiaxisseismometer

34.0

*Accessories

0.5

Moon

tide

meter

4.0

(lens,

filters)

ProtonFluxCounter

.4.0

Tripod

2.0

Solarwindinstrument

3.0

Geologyhand

tools

17.6

Meteriod

ejecta

12.0

Photomosaics

0,2

instrument

Coredrill

30.0

Magnetometer

.9.2

Phototheodoliteattach

3.0

Anchor

bolts

2.0

Heliograph

2.0

Thermalprobeandpacking

.2.0

Thumperplate

(seismic)

4.0

Total

151,

2

Soil

mechanicsequipment

6.0

Geophones(5)

2.5

Seismicrecorder

10,0

#2,000cable

4.0

Crackers

0.1

Total

99.8

E

quipmentNot

Chargedto

Scientific

Payload

Motionpictureorsequencecameraandfilm

TVcameraandaccessories

Medicalorbio-medpackages

*Carried

inLEMascent

stage.

TheS-band

linkcarriesaudiofrom

earth

totheLEM,

andaudio,

biomedicalpulsecodemodulation

(PCM)

telemetryand

televisiontransmissionfrom

theLEMto

earth.

Inaddition,

theS-bandactsas.

atransponder

thatreceivesreceivingpseudorandomnoisesignalsfrom

earthforretransmission

inphase-coherenceto

earthfortrackingandrangingpurposes,

Severalcombinations

ofthesecommunication

linksmaybeused.

Provisionsaremade

forLEM-

earth-CSMandLEM.-earth-EVA

conferences,

theLEMbeingusedasarelaybetween

theEVA

and

earth,

TheMSFN

stationscanbeused

torelaycommunicationsbetweentheLEM

and

theCSM;

inan

emergency,

theLEM

canrelayCSM

transmissions

toearth.

SimultaneousOperation

ispossible

of

differentlinks,

suchaspcm

telemetry

toea

rthviaS-bandandtwo-wayLEM-EVA

via

vhf.

3-56

:15

October1965

Page 102: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

7TTanelll

TOCSM

.TO"

7EMU

VHF

EVA

PRE-EGRESS

INFLIGHT

ANTENNA

TEST

JACK

ANTENNA

VHF

INFLIGHT

ANTENNA

CHANNEL

A

VHF

RECE!VER

296.8MC

-

VHF

TRANSMITTER

296.8MC

CHANNEL

6

VHF

RECEIVER

259.7MC

DIPLEXER

VHF

TRANSMITTER

259.7MC

VHF

SECTION

| dh!

|PART

OFSPACE

SUIT

ASSEMBLY

1]OF

2:

BIOMEDICAL

suiT

SENSORS

DATA

AND

|SIGNAL

|

BACKPACK

ANTENNA

PRE-EGRESS

VHF

TEST

JACK

DIPLEXER

¢——____.

TRANSMITTER

>

1

CONDITIONERS

PART

OF

PLSS

‘BACKPACK:

ASSEMBLY

1OF2}

,VHF

|—>

RECEIVER

AAIXE

1.

|L

VHF

TRANSMITTER

2

VHF

Le

RECEIVER

L-

Page 103: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

EVOICE

VOICE

VOICEANDOR

EMU

2VOICE

USBAND

SEC

| PCM

SPLIT

PHASE

PCM

UNSTRUMENTATION.

SUBSYSTEM}

SUITDATA

;|

BIOMED

DATA

k

a Bi—eee

eee

|

ees

SUITDATA

BIOMED

DATA

MICROPHONE

Ul,

HEADSET

VOICE

-—HEADSET

Vorce|

1

AND

TIMING

SIGNAL

PROCESSING

ASSEMBLY

VOICE

VOICE

AND

PCM’NRZ9

t

VOICE

PCM

NRZ

o—

EMU

viva G3wolg

~\

JDIOA INOHdOADIW

ve v oO > ~ uw

wn Qa < uu x

O3dIA TV CAMERA

RECORDER

(INSTRUMENTATION

_SUBSYSTEM)

Page 104: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

EARTH

SENSOR

MANUALai

TION

$-BAND

PSEUDORANDOM

RECEIVER

1}|NOISE

(PRN}RANGING

/

S-BAND

RECEIVER

2

PHASE

MODULATOR

1

A

S-BAND

-—P

DRIVERAND

MULT

IPLI

ER|

FREQUENCYJ

power

[sl

pc»|

MODULATOR

aAMPL

AS-BAND

|Pi

DRIVER

AND

MULTIPLIER

i

PHASE

MODULATOR

2POWER

PCSUPPLY

Su

PSEUDORANDOM

NOISE

(PRN)RANGING

a

NOTE:

EMU-EXTRAVEHICULAR

MOBILITY

UNIT

TRANSMITS

BOTH

EVA

VOICEAND

DATA

Figure3-19,

Cc

15October

1965

Page 105: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

AaAa

LMA790-1

TO

;CO

S-BANO

S-BAND

STEERABLE

ERECTABLI

ANTENNA

ANTENNA

i

'Bis ng

7a

t

1aCFO

ipLexer

/-—>—

“l

VER

PLY

tio pond

|

municationsSubsystemBlock

Diagr:

Page 106: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

MSFN

nr

‘“

S-BA

NDS-BAND

INFLIGHT

INFLIGHT

=ANTENNA

ANTENNA

.(O

MNI)

(OMN

I)

ET

-~——

—_J

8-20

11MA

10.3

8

am

3-57/3-58

_

Page 107: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

ono oO Oooo oO 5S© Coo

LMA790-1

3-80,

IN-FLIGHTOPERATIONS.

(See

figures3-20and3-21.)

The

in-flightLEM

communications

schedulerequiresoperationof

theS-bandequipment

totransmit

astronautvo

ice,

biomedicaldata

from

eith

erLEMastronaut,

andsubsystemtelemetry(TM)

toMSFN;

toretransmitpseudorandom

noise

(prn)rangingSignals

toMSFN;and

toreceivevoiceand

PRN

ranging

sign

als.fromMSFN,

Theoutgoing

signalsarecombinedbeforephase-modulating

the2282.5-me

carriertransmitted

toMSFN,

Adiplexernetworkpermitsuse

ofa

singleantennafor2282.5-me

transmissionandsimul-

taneousreception

ofthe2101.8-mc

carrierfromMSFN,

The

in-f

ligh

tschedulealso

requiresoperationof

thevh

fequipment

totransmitastronautvoice

tothe

CSM,

toreceivevoicefrom

theastronaut

intheCSM,

and

totransmitPCMto

theCSM

duringthose

portionsof

theLEM

lunarorbit

inwhich

line

ofsight(LOS)withearth

islo

st.

During

theportionoftheLEM

lunar

orbit

inwhich

theLEM

hasLOS

withearthandwiththeCSM,

andbothastronautsare

intheLEM,

S-bandtransmissiontakesplaceasalreadydescribed.

Inaddi-

tion,

thevhfequipment

isused

tocommunicate

with

theCSM

usingduplexoperation.

Transmission

isonchannelA

(296.8mc);reception

isonchannelB

(259.7mc).

During

theportionof

theLEM

lunar

orbit

inwhichtheLEM

andCSM

do

nothaveLOS

with

earthbut

haveLOS

witheach

other,

allS-bandequipmentis

turned

off.

VHF

audiocommunicationbetween

the

LEM

and

theCSMis

accomplishedonchannelA

(simplexop

erat

ion)

;lo

w-bi

t-ra

tePCM

istransmitted

from

theLEM

totheCSM

onchannel

B.

Thisdata

isrecorded

intheCSM

forretransmission

toearth

whenLOS

isac

hiev

ed,

Thecommunications

linksand

theirfunctionsare

listedin

table3-4.

Table

3-4.

Communications

Links

Link

-Mode

Band

Purpose E

arth-LEM-earth

Pseudorandom

noise

S-band

Rangingandtr

acki

ng

LEM-earth

.Voice

oO

S-band

In-flightandlunar

stay

LEM-EVA

Voice-EMU

data

VHF

duplex

Lunar

stay

LEM-CSM

Voice

VHF

simplex

In-flightand

lunar

stay

LEM-CSM-earth

Voice

©S-band

-VHF

Conference

LEM-earth

Video

S-bandfm

Television

LEM-CSM

LOBT

telemetry

VHF

(oneway}

Recordandretransmit

toearth

Earth-LEM

Voice

_S-band

In-flightan

dlu

narstay

LEM-earth

Biomedpem

telemetry

S-band

In-flightand

lunar

stay

LEM-earth-CSM

-]|Voice

S-band

Conference

(wit

hearthas

rela

y)

3-81,

LUNAR-STAYOPERATION,

(See

figu

re3-22.

)

TheLEM-CSM-MSFNcommunications

link

isexpandedduring

lunar

stay

toin

clud

etheEVA

andtrans-

mission

oftelevisedlunar-surfaceimages,

S-bandand

vhflunar-stayoperations

differsomewhat

from

thein-flightschedule.

Inaddition

toS-banddi

rect

communications

with

MSFN,

thelu

nar-

stay

LEM

communications

schedulerequiresoperation

oftheLEM

vhfequipmentto

transmitvoicefrom

theastronaut

intheLEMorto

relayvoicefrom

theEVA

totheastronaut

intheCSM,

toreceivevoice

andbiomedicalandEMU

datafrom

theEVA,

and

toreceivevoicefrom

theastronaut

intheCSM.

The

primarymode

ofcommunicationbetween

theLEM

and

theCSMat

this

time

isvia

eart

h,usingS-band

equipment,

VHF

transmitter-receiverA

isused

forLEM-CSM

simplexvoicecommunicationduring

thetime

that

theCSM

hasLOS

with

theLEM.

.

15October1965

,3-59

Page 108: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

LMA790-1

(IN-FLIGHT my

>.

EVA

TEST

|

Di

PLEXER

Ry

Te

Rb

296.89‘.

9507e

9

Ty,

VOx

|VOX

SIGNA

PROCESS

L OR

96.8MCVOICE

—_

nonesennsssassee?

a= 25

9.7MCVOICE

Figure

3-20.

In-F

ligh

tCommunications

(Ear

thSide)

15October1965,

Page 109: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

3-61

_

—~)

EVA

TEST

QS

DIPLEXER

259.

7?%

Rb

VOX

SIGNAL

PROCESSOR

,

VOX.

e-——

—-PCM

"{N-FLIGHT

'LMA790-1

(— 296.8

Figure

3-21,

In-FlightCommunications

(Far

Side

)

15October

1965

moon n oop ODD OOOOooo oD

Page 110: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

LMA790-1

2282.5MC

2101.8MC

TVCAMERA

A-201LMA10-46

___

Figure3-22.

LEM

Lunar

Stay

Communications

3-62

‘15October

1965

Page 111: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

ooo oO © ©} Oooo oOo 3 C9 5 ©

LMA790-1

LEM-EVAvoice

transmission

isareversibleduplexoperation,

theprimary

link

beingvh

ftransmitter

Aon296.8meandreceiverBon259.7

mc;

thesecondary

link

isvhftransmitterBon259.7me

and

receiverA

on296.8

mc.

Ifth

eLEM-EVAprimary

link

fail

s,theEVAmust

return

totheLEM,

Duringth

eEVA'sreturnto

theLEM,

communicationsareswitched

tothesecondary

link.

During

operationof

theprimary

link

,EVA

voiceandEMU

data

arereceivedonVHF

B,EMU

data

cannotbe

transmittedfrom

theEVA

totheLEM

duringbackupvoiceoperation.

TheLEMvhf

equipmentis

switchedfrom

in-flightantenna

toEVA

antennaduringcommunicationwith

theEVA.

Adiplexerper-

mitsuseof

thesi

ngle

antenna

forbo

thtransmittersandre

ceiv

ers.

The

lunar-stayLEM

communications

schedulerequiresoperation

oftheS-bandequipmentto

relay

veiceandbiomedicalandEMUsuit

data

from

theEVA

toMSFN,

totransmitvoiceandbiomedical

data

from

theastronaut

intheLEM

toMSFN,

totransmitsubsystemTM

toMSFN,to

transmitvideo

from

theextravehicular

tele

visi

oncamera

toMSFN,

and

toreceivevoiceor

igin

atin

gfromMSFN

orCSM

voicerelayed

totheLEM

fromMSFN.

S-bandcommunicationsduringlu

nar

stay

will

be

inone

oftwobasicmodes

ofop

erat

ion:

mode

1is

_the

high-powermode

(20wa

tts)

;mode

2,thelow-powermode

(3/4

watt).

Mode

1transmissionisa

frequency-modulatedcarrierco

ntai

ning

voice,

biomedicalandEMU

data,PCM,

and

vide

o.Mode

2

transmission

isaphase-modulatedcarriercontaining

allsignals,

exceptvideo,

used

inmode

1

transmission.

Duringlunar-stayanerectableantenna

isused

insteadofthein-flightsteerableor

omnidirectionalantenna

TheEVA

erectstheS-bandantennaonthelunarsurfaceand

installsthe

cablingprovided

toconnect

theantennaandtheLEM

rf.

The

EVAsets

up

thetelevision

camera

onthe

lunarsurface

utilizingan80-footcable

toconnect

the

TVcamera

totheLEM.

3-82,

MSFNRADIORELAYOPERATION.

The

r-fcarriersused

forcommunicationsduring

allphases

oftheLEM

missionare

inthevh

fand

S-bandranges;

theseareLOS

carriersandtherefore

limitcommunications

tocertaintimesduring

theLEM

mission.

During

lunar

stay,theLEM

hasLOS

withearth;LOSbetween

theLEM

andCSM

occursonly

while

theCSM

isabove

thelunarhorizonwith

respect

toth

eLEM.

Theprimemode

ofcommunicationbe-

tween

theLEM

and

theCSM

duringlunar

stay

isth

eMSFN

radiorelaymode,

inwhichMSFNis

used

asa

radiorelay

stat

ion.

During

this

operation,

communicationbetween

theLEM

and

theCSM

can

bemaintainedas

long

asth

eCSM

hasLOS

with

earth.

Thetimerequired

foraradiotransmission

totraverse

thedistancebetweenearthandthemoonis

1.2

to1.5seconds;LEM

astronautscallingthe

astronaut

intheCSM

viatheMSFN

radiorelaymust

wait

4.8

to6.0seconds

for

theCSMreply,

as

compared

tovirtuallyinstantaneousrespcnsesexperiencedduringdirectLOSLEM-CSMtransmissions,

3-83

,S-BANDCOMMUNICATIONS,

TheS-bandsectionprovides

theLEM-earthcommunication

link

,Allcommunication

isaccomplished

duringLOS

phases

ofthemission.

S-bandcommunicationco

nsis

tsof

voicebetween

theLEM

and

earth;biomedicaldatafrom

theastronauts

toearth;subsystemtelemetry

data

toearth;trackingand

rangingsignalsfrom

earth,

whichareretransmitted

toearth;

televisionfrom

within

theLEM

and

of

thelunarsurface

toea

rth;

andemergencykeying

toearthwhenvoicetransmission

toea

rthis

lost

.

TheS-band

sectionconsists

ofatransmitter/receiverassembly,

apoweramplifierassembly,

adi-

plexer,an

r-f{

switch,

two

in-f

ligh

tantennas,

asteerableantenna,

anerectableantenna,

atelevision

camera,

andpower

supplies.

.

3-84,

Transmitter/ReceiverAssembly.

Thetransmitter/receiverassembly

cont

ains

two

identical

phase-lockedreceivers,

phasemodulators,

and

multiplierchains,

These

circuitspermitranging

to

theLEMby

earth

stationsand

transmissionof

voice,

telemetry,

biomedical,

andEMU

datafromLEM

toth

eground

stat

ion,

Afrequencymodulator

isprovidedforvideoandEMU

data

transmission.

Itcanalso

beused

forvoice

andpulsecode

modulation

nonreturn

tozero

(PCM/NRZ)

data

tran

smis

sion

,Thetr

ansm

itte

r/re

ceiv

er

assembly

consists

ofminiaturized

solid-stateci

rcui

tscapable

ofproducinganr-fou

tput

of750

milli-

~

wattsminimum.

TheS-bandreceiversreceivevoiceandPRN

rangingsignalsfromMSFN

duri

ngflight,

andvoicefrom

MSFN

during

lunar

stay.

Onereceiverservesasa

backupto

thenormallyused

unit.

Received

signals

areroutedfrom

theS-bendantenna

toareceiver

switchviatheantennar-fswitchanddiplexer.

The

receiverswitchroutesthereceived

signalstothenormallyusedreceiveror

tothebackupS-bandre-

15October

1965

.3-63

Page 112: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

LMA790-1

ceiver.

Inflight,

thereceivedpseudorandom

noise(PRN)

signalsareroutedfrom

thereceiver

toth

e

operatingphasemodulatorandaretherebyrelayedback

toMSFN.

Receivervoiceou

tput

sare

fedvia

asummingnetwork

into

thesignal-processing

section.

Duringlunar

stay,

thePRN

function

ispassive

andvoicefromMSFNis

processed

inthesame

mannerasin

flight,fromS-bandreceiver

output

tothe

'astronautheadsets.

In-flightLEM-MSFN

S-bandcommunicationsrequireoperation

ofth

eLEMPRN

rangingtransponder

inaddition

totransmission

ofwide-band

sign

als.

AphasemodulatorreceivesPRN

andwide-band

in-

puts

andgeneratesamodulatedsubcarrier

for

inputto

atransmitterchain,

Thephasemodulatorde-

riveswide-bandmodulation

inputs

from

thesignal-processing

sectionvi

aasumming

network,

These

inputsarecompositewaveforms

thatconsistofvoice,

telemetry,

andbiomedical

signalcomponents.

ThePRN

ranging

inputto

thephasemodulator

isderiveddirectly

from

theoutput

ofth

eoperatingS-

bandreceiver.

Carrier-frequency

multiplicationandanincrease

inr-fpower

levelareprovidedby

thetransmitter

chain.

Themodulatedr-foutput

from

thetransmitterchain

isfe

dviaasumming

net-

work

toapower

amplifier

(PA)

stage.

Astandbytransmitterchainandphasemodulatorarealso

connectedto

thePA

inputviathesummingnetworkandareoperated

ifnormallyusedequipment

fails.

Thefrequencymodulatorprovidesth

ewide-band

signals

fortransmissionfrom

theLEM

toMSFN

duringlunar

stay,when

thePRN

rangingandtrackingfu

ncti

onis

notrequired,

Thefrequencymodu-

latorderivesmodulationinputsfrom

thesignal-processing

section,

These

inputsconsist

ofacom-

positewaveform

thatcontainstelemetry,

voice,

andbiomedical

signalcomponents.

The

cutputof

thefrequencymodulator

isamodulatedsubcarrier

that

isfe

dviaasumming

network

toeither

S-band

transmitter

chain.

Acarrier-frequency

multiplicationoccurs

atthispoint

inthetransmitter.chain,

thepower

level

israised

intheoperatingPA,

and

output

poweris

fedthroughthediplexerandr-f

switchto

theS-banderectablean

tenn

a.,

3-85.

Power

Amplifier.

Thepoweramplifierprovidespower

amplificationat

2282,5

mc.

The

assembly

cons

ists

oftwodc-to-dcconverterpower

supp

lies

,twoamplitrons,

an

inputis

olat

or,

and

anoutputisolator,

The

r-fcircuit

isaseriesinterconnection

oftheisolatorsandtwoamplitrons,

Eachamplitron

isconnected

toitsownpower

supply;onlyone

amplitronoperates

atagiventime.

When

neitheramplitron

isoperating,

theyprovidealowr-flossfeedthrough

pathdirectly

tothe

antenna.

.

3-86

.DiplexerandR-F

Switch.

The

dipl

exer

permitsforwardflow

oftransmitterpower

tothese-

lected

S-band

antenna

simultaneouslywithreception

oflow-levelMSFNPRN

andvoice

signals.

The

r-{sw

itch

,on

theco

ntro

lpanel,

ismanuallyoperatedby

theastronautto

sele

ctthedesiredan

tenn

a.

3-87.

Antennas,

The

in-f

ligh

tantennasareomnidirectionalantennasmatchedto

theoutput

ofthe

transmitterthrough

ther-

fsw

itch

,Theyareforwardand

aftof

thecenter

oftheLEMand

haveright-

handci

rcul

ator

polarization.

The

steerableantenna

isamedium-gain,

unidirectionalantenna

thatprovideshemisphericalcoverage

aroundtheLEM

+X-axis.

Itis

mountedon

theLEMona

doubleelevationgi

mbalthat

isservo-con-

trol

ledin

response

toautomaticormanualslewingcontrol

signals,

and

isusedduringlunar

orbi

t,

descent,

lunar

stay,

ascent,

rendezvous,

anddocking.

TheSystemsEngineeruses

theantenna-

positioningcontrolsonhiscommunicationsANTENNAScontrol

pane

lto

pointth

eantennatoward

the

earthwhere

theautomatic

trackingsystemcantakeover.

Theantennagimbalattitude

isindicated

(indegrees)ontwopanelinstruments,

AthirdpanelindicatormonitorsreceivedS-band

signal

strength;indicatorreadout

involtsandmaximum

readoutasafunctionofoptimumantenna

attitude.

Subsequent

tomanual

acquisition

ofoptimumantenna

atti

tude

,theSystemsEngineer

selects

theauto-

matictrackmode

ofoperationforthesteerablean

tenn

a.In

this

mode,

an

r-f{

sensorderivestr

acki

ng-

errorsignals

that

areapplied

tothesteerableantennaservodriveunit

toalterantenna

attitu

deauto-

maticallyandcontinuouslyformaximum

reception

ofS-bandtransmissionfromMSFN,

The

erectableantenna

isahigh-gain

unit

that

consistsofahelix-fedparabolic

reflectormountedona

tripodsupportandprovidedwithanopticaltelescope.

The

eractableantenna

isusedduringlunar

stay,

forS-bandcommunicationsbetween

theLEM

andMSFN

stations,

When

theLEMis

on

thelunarsur-

face,

theEVA

removesthe

erectableantennafrom

theLEM

descent

stage,

erects

theantennasome

dist

ance

from

theLEM,

andaims

ittowards

earth.

Theantennacanbeadjusted

totheslope

ofthe

luna

rterrainand

totheposition

oftheearth

inthelunar

sky.

TheEVA

connects

thedeployable

r-f

cablefrom

theerectableantenna

totheLEMS-band

outputtermination,

TheEVAcancarryandas-

sembly

theantennaandconnect

thedeployablecableup

to25

feetfrom

theLEMsite;

noequipmentor

toolsareneededforassembling,

erecting,

orpointing

theantenna.

3-88

.S-BandPower

Supplies.

TheS-band

sectioncontainsfo

urpower

supply

units.

Onephase

modulator-transmitterchainreceivercombinationobtainspowerfrom

asingleassociatedsupply;a

similarsupplyoperates

theotherreceiverphasemodulator-transmitter

chaincombination.

Either

3-64

“15October1965

Page 113: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

oooe9oo8 mooo 8

LMA790-1.

ofth

etwosuppliescanbeselectedwith

apower

supplyswitch

tooperatethefrequencymodulatorduring

lunar

stay.

Thetwoamplitron-typePA'sareoperatedby

individual

power

supp

lies

.—

3-89

.TelevisionCamera

Equipment.A

portabletelevision

camerapermitshigh-resolutionimages

of

theLEM(insideand

outs

ide)

and

ofthelunarsurface

tobetransmitted

toearth.

An

80-footcable

providespower

tothetelevisioncameraand

retu

rnsthe

video

signal

totheLEM.

Thevideo

signal

is

feddirectly

totheS-bandfrequencymodulator

inth

eLEM,

3-90.

VHFCOMMUNICATION,

The

vhfse

ctio

nprovidescommunicationsbetween

theLEM

andth

eCSM,

andbetween

theLEM

andthe

EVAduring

lunar

stay.

Italso

isused

toreceiveEMU

andbiomedicaldata

andtransmit

this

data

to

theCSM.

The

vhfsectionconsistsof

atransmitter-receiverassembly,

diplexerandanantennaselec-

torswitch,

two

in-flightantennas,

andanEVA

ante

nna.

.

3-91.

Transmitter-ReceiverAssembly.

The

vhftransmitter-receiverassembly

isanal

l-so

lid-

stat

e

device

that

containstwoa-m

transmitters,

twoa-m

receivers,anda

diplexer.

The

transmitter-

receivercombinationsprovidea296,

8-mc

channelanda269.7-mc

chan

nel,

Eachtransmitter-receiver

combinationpermitssimplex

oper

atio

n;that

is,transmissionfrom

theLEMto

theCSM

andreception

byLEM

oftransmissionfrom

theCSM

onthesa

mefrequency.

TheprimaryLEM-CSM

link

provices

fora-m

voiceon296.8

mc;

thebackup

link

,fora-m

voiceon259.7

mc.

ASimplextransmit

capa

bili

ty

providesfo

rLEM-CSM

tran3mission

ofpcm

data

on259.7

mc,

The

unit

canalso

provideduplexer

LEM-EVAvoice

transmissionon296,8mcandEVA-LEM

voiceandbiomedicalda

tareceptionon

259.7

mc.

Eitherof

thevhfchannelscanbecontrolled

remotely.

3-92.

DiplexerandAntenna

Sele

ctor

Swit

ch.

The

dipl

exer

ismountedas

partof

thetransmitter-

receiverassemblyandpermits

thereceiversandtransmitter

touse

thesameantenna,

althoughthe

transmittersandreceiversarenotoperatingon

thesame

frequency.

Theantenna

selectorswitches

areoperatedbyanastronautattheCOMMUNICATIONSANTENNAScontrol

panelandpermits

selection

ofthedesiredantenna.

3-93.

Antennas.

Thevh

fsectioncontainstwoomnidirectionalantennas

foruseduring

the

in-flight

portionsofthemission,

Theyarecircularlypolarizedandarematched

tothefeedsource,

The

sectionalsocontainsa

verticallypolarizedantennamountedontheLEMfor

usewhencommunicating

withtheEVA

duringthelunar

stay

.

3-94,

VHF

Transmission.

Thetwotransmitters

inthevhfsectionderivevoicemodulationand

carrierturn-oncontrolsignalsfrom

theaudio

cent

ersin

thesignal-processing

section,

Carrier

turn-on

isinitiatedbyvoice-actuatedkey(VOX)oroperationofpush-to-talk(PTT)

switches,

One

audiocenter

isconnected

totheCommander'sEMU

microphonecircuitand

tothemodulation

inputs

of

thevhftransmitter;anotheraudiocenter

isconnectedthesameway

for

theSystems

Engineer.

The

modulationinput

tochannelB

transmittercanbeswitchedfromvoice

toPCM

by

theastronauts,

The

PCMsignalsarereceivedfrom

thepulsecodemodulationandtimingequipment(PCMTE)

intheLEM

InstrumentationSubsystem.

The

outputsfrom

thetransmittersarerouted

totheantenna

selector

switchand

totheantenna

viaadiplexerunitthatpermitsoperation

ofanyvhftransmittersorreceivers

ona

singleantenna.

Infl

ight

,theSystemsEngineeruses

theantennaselectorswitchon

theCOMMUNI-

CATIONSANTENNASpanelof

hislower

sideconsole

toselecteitheromnidirectional

in-flightantenna,

This

switchalsopermits

switchingthediplexeroutput

totheEVA

antennaor

tothepreegresscheck

circ

uitbeforeandduringan

EVAactivity.

Telemetry

data

cons

isti

ngof

low-bit-ratePCM

data

are

transmitted

totheCSM,

where

they

arerecordedandsubsequentlyplayedback

toea

rth.

3-95.

Modulation.TheLEM

vhftransmittersuse

infi

nite

lycl

ippe

dspeechmodulationwherebyspeech

waveformsarereduced

tosquare

wavesthat

pulsethetransmitteronand

off.

A30-kc

signal

isintro-

ducedwi

thin

theamplitude

limi

ters

tocapture

thesystemduringintersyllablepauses

inspeechand

in

theabsence

ofspeech

input.

Inaddition,

thehigherfrequencies

ofthespeechspectrumareem-

phasized

toimprovein

tell

igib

ilit

y.

3-96.

VHF

Reception,

Thetworeceiver

circuits

inthevh

fsectionderiveinputs

from

thediplexer

via

-transmit-receive

(1/R)switches.

Thereceiverportion

ofchannel!B

istuned

totheEVA

duplex

fre-

quency

(259.7

mc),

Thereceiverportionof

channelis

tuned

totheCSM

simplexfrequency

(296.8

me).

The

outputsfrom

both

vhfreceiversare

fedin

tobo

thaudiocentersfrom

thesignal-processing

section.

-9-97,

PreegressCheckoutandEVA

Communications,

Before

leavingtheLEM,

theEVA

checkshis

PLSSvhfcommunicationsequipment

forproperoperationwith

theLEM,

CSM,

andMSFN.

Because

use

ofthetelescopingantenna

isnotpracticable

insidetheLEM,

atestcable

isused

totransmit

the

modulated

r-{carrierfrom

thePLSSantennanetwork

totheLEM

antennanetwork.

The

testconnector

on

thePLSS

isinternallywired

tothePLSSwhipviaa

coaxialtee

fitt

ing.

The

testcablehas

sufficient

15October1965

.,

oe

3-65

Page 114: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

LMA790-1

attenuationto

simulate

normally

received

signa!

strength

attheEVA

antenna;

theLEM

test

receptacle

feeds

thetest-cable-attenuatedinputinto

theLEMvhf

sectionvia

theantenna

selector

switch.

The

followingswitchingrequiredforpreegresscheckoutaremade

attheAudioControl

panels:

theLEM

vhfswitch

issettoPRE-EGRESSCHECK,and

theEVAPLSS

isac

tiva

ted,

TheEMU-to-PLSScable

carriesEVA

voice,

biomedical,

andEMU-environment

signalsfrom

theEMU

microphoneandsensor

networks

toPLSSmixer

circuitry.

ThePLSSduplexandsimplexunitsareexercisedduring

thepre-

egressprocedure,

therebyensuringproperoperation

oftheEVA-LEM,

EVA-CSM,

andEVA-MSFN

communication

links.

The

firstpreegresscheckoutusestheS-bandsteerableantennaor

either

S-bandomnidirectionalantenna;

after

theerectableantenna

issetuponth

elunar

surfaceandits

cables

connected

totheLEM,

this

antenna

isusedfo

ral

lsubsequent

S-bandoperations,

includingpre-

egresscheckouts.

3-98.

SIGNAL-PROCESSING.ASSEMBLY,

The

signal-processingassembly

(SPA)may

beconsideredthe

focalpointof

theCommunicationsSub-

system.

Allsignalstransmittedorreceivedby

thesubsystemareprocessedbythesignal

processor.

TheSPAreceivesvoiceandbiomedicaldata

fromeachastronautandprocesses

this

informationso

that

thevh

fandS-bandtransmittersmay

bemodulatedby

theproper

signals

forcommunications

with

thecommand

module,

earth,

and

theEVA.

Italsopermits

theCommunicationsSubsystem

tobe

usedasarelay

stationso

that

theEVA

orCSMvhf

signalscanbetransmittedto

earthviatheS-band

equipment.

Inaddition,

thesignal

processorprovidesvoice-conference

capability

between

theEVA,

theastronautinside

theLEM,

theCSM,

and

eart

h,

Receivedvoiceandvoicebiomeddataareobtainedfrom

thevhfandS-bandreceivers,

processed,

and

thedesired

signalsselectedforretransmissionviaS-bandor

vhf.

Thevoiceportionsarerouted

totheastronauts’headphones,

TheSPA

also

processespem-nrz

data

andvideosignalsandapplies

thisinformation

tothepropersubcarrier

for

phas

eor

frequencymodulation

oftheS-bandtransmitter.

Foremergency

conditions,

thesignal

processorprovidesdirect

voicemodulationof

theS-bandtrans-

_mitterandasubcarrier

thatmaybe

keyedforcodetransmission.

TheSPA

containspremodulationprocessing

circuits

that

consistof

filters,

subcarrier

oscillators,

mixingnetworks,

switching

circuits,

andaudio-processing

circuits,

whichprovide

isolation,

switching,

andamplificationof

voice

signals.

Theaudio-processingcircuits

containtwoaudiocenters:

one

for

‘theCommander;

theother,

for

theSystems

Engineer.

EachaudiocenterenablestheOperator

tomonitor

individual

signals,

3-99.

ELECTRICALPOWERSUBSYSTEM.

(Seefigure

3-23.

)

The

Electrical

PowerSubsystem

(EPS)provides

electrical

power

toailcircuits

intheLEM.

Thepower

originatesattwobatteries

intheascent

stage,

and

four

batteries

inthedescent

stage.

The

batteries

are

installedandactivated

16hoursbefore

launch.

Thepower

distribution

section

intheascentstage

iscriticalforastronaut

survival,

Therefore,

eachascentbatterycansupply

the

totalascentloads

duringanabort,

Thepower

distribution

section

inthedescent

stage

iscritical

formissionperformance.

Allfourdescentbatteriesarerequired

toperform

thecompletemission;however,

acurtailedmission

'canbeperformed

usingthreedescent

batteries.

Iftwodescentbatteries

fail,

themissionmustbe

aborted,

TheEPS

consists

ofad-c

sectionandana-c

section.

3-100.

D-CSECTION.

(See

figure

3-24.)

Thed-c

sectionconsistsof

four

silver-zincdescent

batteries,

two

silver-zincascentbatteries,

two

descent

electricalcontrolassemblies

(ECA's),

twoascentECA's,

arelayjunctionbox,

several

relays,

acontrolpanel,

abort

logic,

descentECA/battery

logiccontrol,

andtwo

circuitbreaker

panels.

3-101.

Descent

Batteries,

Four

28-voltd-cdescent

batteries,

ratedat

400ampere

hour

s,supply

power

toth

eLEM

duringanormalmissionfromT-30minutes

tolunarascent,

exceptduringtranslunar

coast,

Intheeventof

abattery

failure,

curtailedmissionobjectives

may

bepursued

with

thethreeremaining

descentbatteries.

Due

tothe

inhe

rentinitia}high-voltagecharacteristicsofthedescent

batteriesa

tap

isprovidedat

the

17th

cell

ofeach20-celldescentbattery.

3-102,

Ascent

Batteries.

Thetwo28-voltd-cascent

batt

erie

s,ratedat

400ampere

hours,

areused

duringanormalmissionfrompoweredascent

todockingorduringanabortrequiringseparation

ofthe

ascent

stag

e.To

eliminate

the

initialhigh-voltagecharacteristics

ofthese

bati

erie

s,th

eywill

bepre-

dischargédunder

cont

roll

edco

ndit

ions

before

installation,

3-103,

Descent

Elec

tric

alControlAssemblies.

Eachdescent

electrical

controlassembly(ECA)pro-

tectsandcontrolstwodescent

batteriesand

theirrespectivewiring.

Protectivecircuitsautomatically

disconnectadescentbattery

intheevent

ofanovercurrentandprovidean

indi

cati

onon

theEl

ectr

ical

3-66

bo

15October

1965

Page 115: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

OOM

OONMoOoODOoOoOo

oOoOoOooooD

LMA790-1

ECA

ASCENTBATTERIES

INVERTERS

ATTEQUIPMENT

BAY

RELAYJUNCTIONtEM/CSMBOXUMBILICAL

LEM/SLAUMBILICALDEADFACERELAYBOX

U/HCBPANEL

U/HCENTERSIDEPANEL

R/HCBPANEL

R/HCENTERSIDEPANEL

INTERSTAGECONNECTORASSEMBLY

LIGHTINGCONTROLASSEMBLY

BATTERIES

DESCENTSTAGE4thQUADRANTECA

BATTERIES

Ty2)

A-2OILMAIO-48

Figure3-23,ElectricalPowerSubsystemEquipmentLocation

15October1965.3-67/3-68

Page 116: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

DESCENT

BATTERYNO.

1

DESCENT

BATTERYNO.

2

DESCENT

BATTERY

NO.

3

DESCENT

BATTERY

NO,

4.

28VDC

28VOC

28VDC

28VDC

ECA

NO.

1

ECA

NO.

2

4LNJ3S3G

INJDSV

Page 117: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

DEADFACE

RELAY

PROTECTIVE

b>COMMA

DEVICE

BUS

ASCENT

BATTERY

NO.

5

ECA

NO..3

ASCENT

BATTERY

NO.

6

ECA

NO.

4

RELAY

JUNCTION

BOX

PROTECTIVE

SYSTEM

DEVICE

pa

ENGINE

BUS

15Oct

Page 118: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

iDER

COMM

PGNS

LIGHTING

RCS

CES

DAND

C

INST

EcS

INVERTER

NO.

1

:

INVERTER

SELECTOR

(ACPOWER

SWITCH)

I IN

VERT

ERNO

.2

28VDC

4

p>

> >

>COMM

LIGHTING

RCS

CES

DANDC

INST

ECS

LMA799-1

»28

VOC

N5V

AC

400CPS

BUS

»28

VOC

STEERINGANT.)

PGNS

DAND

C

LIGHTING

CSE

(DECA)

AGS

INST

PROP

GAGE

DSEA

Figure

3-24,

Electrical

PowerSubsystem

FunctionBlockDiagram

ober

1965

115VAC

400CPS

2O1LMATI0-55

3-69,/'3-70

Page 119: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

MaInNoOnMNAnoODMDOOOO Goo coG

LMA790-1

PowerSubsystem

(EPS)panelwhenreversecurrent

exists,

When

this

overcurrentconditionoccurs,

manualresetoftheprotectivecircuits

isrequired;whenreversecurrentoccurs,

itsindicationwill

requiremanualcorrectionat

theEPS

pane

l,Control

circ

uits

provideon-off

cont

rolof

twocontactors

that

connecteachdescentba

tter

yto

thesystem

wiring.

Interlocks

precludesimultaneousoperation

ofbothco

ntac

tors

.Currentflow

cont

rol,

voltagemonitoring,

anddi

stri

buti

onlogic,

arepartof

the

descentECA's.

3-10

4.AscentECA's.

AnascentECA

protects

andcontrolseachascentba

tter

y.Thepr

otec

tive

circuits

aresimilar

tothose

ofthedescentECA's,

Two

contactorsenableon-offcontrolof

current

flow

fromeach

batt

ery

toseparatefeedersystems.

Thisenablesuse

ofth

ebattery

inth

eeventof

afeeder

fail

ure,

oruse

ofafeeder

intheeventof

aba

tter

yfa

ilur

e.Batterycurrent-flow

control,

voltagemonitoring,

and

dist

ribu

tion

logicare

prov

ided

.

3-105,

Relay

JunctionBox.

The

rela

yju

ncti

onbox(RJB)provides

logi

cand

junc

tion

points

forcon-

necting

exte

rnal

power

totheLEM

from

theCSM

and the

launchumbilicaltower

(LUT).

Inaddition,

theRJB

providescontrol

andpower

junc

tion

points

forth

eascentanddescentECA'sanddeadfacing

forhalfof

themainpower

cablesbetweenascentanddescentstages;

theother

halfis

handledby

the

deadfacerelay.

3-106,

DescentECA/Battery

Logic

Cont

rol.

ThedescentECA/battery

logi

ccontrolprovides

indi-

vidualcontrol

ofalowvoltagecontactor(LVC)andamainfeedcontactor(MFC),

from

theELEC-

TRICALPOWERCONTROLpanel;

simultaneouscontrol

oftheon-off

circ

uitr

yfrom

allLVC's,

fromLUT;

simultaneousco

ntro

lof

theon-off

circuitry

ofal

lLVC's,

from

theCSM;andsimul-

taneous

offsi

gnal

sto

theMFC's,

fromabort

logi

c.

3-107.

Abort

Logi

c.Two

redundantrelays

tomaintainvo

ltag

eareenergizeduponre

ceip

tof

an

abort

signal,

and

immediatelyprovide

logicforswitchingfromdescent

toascent

batteries.

3-10

8,Relay

JunctionBoxDeadfaceRe

lay.

Therelayju

ncti

onbox(RJB)

deadfacerelay

isa

latc

hing

typedpston-offswitchon

theELECTRICALPOWERCONTROLpanel;

itis

automaticallyopenedby

(paragraph3-111)

theabort

logic.

This

relay,

inconjunctionwith

thedeadface

relay,

provides

the

deadfacingforthemainpower

linesbetweenascentanddescent

stages,

3-109.

CSM

DeadfaceRelay

Inte

rfac

eLo

gic.

Two

redundant

latching

relaysconnectpowerfrom

the

CSMto

theLEM

during

translunaroperation,

An

interlockprevents

theLEM

andCSMpower

sup-

pliesfrom

beingonsimultaneously.

3-110,

Launch

UmbilicalTower

Relay.

The

launchumbilicaltower(LUT)

relay

isadpst

latching

relaycontrolled

fromgroundsupportequipment.

Thisrelay

isused

toconnectground

powerto

the

LEMwhen

theLEMFPSbatteriesare

not

inuse.

3-111.

DeadfaceRelay.

Thedeadfacerelay(DFR)

isadpstlatchingrelaywithcontacts

thatoperate

inconjunctionwi

neRJB

deadfacerelaycontacts

toprovide

thedeadfacing

ofthemainpower

lines

between

theascentanddescent

stages,

Thedeadfacerelayoperates

inparallel

with,

andfrom

the

same

controlsand

logicas

theRJBdeadface

relay,

themanual

on-o

ffswitchfromELECTRICAL

POWERCONTROLpanel,

and

theautomatic

offsignalfrom

theabortcontrol

logic.

3-112.

Control

Pane

l.(See

figure

3-2.)

Control

oftheEPS

isprovided

attheELECTRICALPOWER

CONTROLpanel

on

theSystems

Engineer'scenter

sideconsole.

3-113.

Circ

uitBreaker

Panels.

Twod-cbusses

(one

each

attheCommander'sandSystems

Engi-

neer'spanels)areconnectedby

theascentfeederwiresystem.

Recundantor

functionallyredundant

equipment

isplacedon

differentbusses,

enablingeachbus

toperformanabbreviatedabortmission

should

itbecome

necessary,

.

3-114.

A-CSECTION,

(See

figu

re3-24

,)

Thea-c

sectionusestwosingle-phase,

115-volt,

400-cps,

350-volt-ampere

inverters,

Ana-c

bus

inthea-c

sect

iondi

stri

bute

spower

toLEM

equipment

that

requiresal

tner

atin

gcurrent,

3-115.

ELECTRICALPOWERSUBSYSTEMOPERATION,

After

theba

tter

iesare

installed

intheLEM

onth

elaunching

pad,

thepower

dist

ribu

tion

sect

ion(PDS)

and

batteriesarechecked.

Aftercheckout,

theLVC

switcheson

theELECTRICALPOWERCONTROL

panel

foreachdescentbatteryaremomentarily

set

toONand

theAUTOTRNFR

Switch

isse

tto

INHIBIT.

Thisallowsexternalcontrolofthedescent

batteriesand

inhibitstheuse

ofascent

batteries

byLUT.

GSEpower

issupplied

totheLEMuntilT-30minutes,

atwhichtime

thedescent

batteries

15October

1965

,3-71

Page 120: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

8

LMA790-1

areconnected

totheLEMdistributionsystem.

Thedescentba

tter

iespower

theLEM

fromT-30minutes

unti

ltranspositionanddocking.

Afte

rtr

ansp

osit

ionanddo

ckin

g,th

edescentbatteriesare

shut

down

throughuse

ofCSM

cont

roland

theRJB

logi

c.TheLEMis

then

poweredby

theCSM.

During

this

translunarph

ase,

thenegativereturn

for

theLEMloads

istransferredfrom

theLEMsingle-point

groundto

that

oftheCSM.

Inlu

nar

orbit,

beforepreseparationcheckout,

thepower

sour

ceis

trans-

ferredfrom

theCSM

totheLEMdescent

batteries.

Allpreseparationcheckoutpower

issuppliedby

theLEM

batt

erie

s.Manual

switchover

toth

e20

-cel

lta

psof

thedescentba

tter

iesoccursduringpre-

separationcheckout.

Eachascentbatteryand

thePDS

ischeckedoutduring

thisphase.

To

control

descentpower

duringpa

rall

eloperation

ofascentanddescent

batteries,

thedeadfacingswitchcanbe

used,

Thedescentbatteriesareusedthrough

lunar

stay

;theascentbatteriesareusedfrom

aperiod

justbeforelunarascentthroughdocking

oftheLEMwith

theCSMafter

lunar

launch.

Anyof

the

fol-

lowingfailuresintheEPS

isreason

foranabort:

failureofanytwodescentbatteries,

anyfeeder

shor

t,failureof

eith

erascentbattery,

bus

failure,

loss

ofco

ntro

lforei

ther

ascenthatteryor

for

anytwodescent

batteries.

Adescent

battery

failure

isindicatedbyreversecurrentandcausesacaution

indicatoron

theELECTRICALPOWERCONTROL

panel.

Manual

shutdownof

thebatteryextinguishes

theindicator,andacurtailedmission

ispossible.

Failure

ofaseconddescent

battery

iscause

foran

abortrequiringmanuallyturningon

oftheascent

batteries,

and

shut

ting

down

theremainingtwodescent

batt

erie

s.If

,duringperiodic

checks

oftheascent

batteries,

afa

iled

batt

ery

isde

tect

ed,

anabortcon-

ditionexists.

Eachascentbatterycan

beconnected

totwoseparatefeeders(normalandalternatecon-

tactors).

Lfanascentbattery

fails,

theother

battery

isconnected

tobothfeedersystems.

Afeeder

shor

t,whileoperatingon

thedescent

batteries,

automaticallyremoves

thetwodescentba

tter

iesas-

sociatedwith

theshortedfeeder.

Thisoccurs

after

theshortedfeeder

isisolatedfromabusbya

diod

e-ci

rcui

tbreakerarrangement.

Logic

within

theECA'scausesboth

ascent

batteries

tobecon-

nected

totheotherfeedersystem.

Simi

larl

y,when

operatingontwoascent

batt

erie

s,ashortedfeeder

canbe

isolated.

However,

manualoperation

isrequired

.oconnectth

eascentba

tter

yassociatedwith

theshortedfeeder

totheot

herfeedersystem.

Ashorted

bus is

isol

ated

from

thebatteriesautomatically.

When

theABORTSTAGE

switch

ispressed,

two

isol

ated

sign

als

(onlyone

sign

alis

needed)areap

plie

dto

theabortrelays

intheRJB,

causing

thefollowingsequence

ofevents

tooccurautomatically:

the

RJB

abortrelaysareenergized,

theascent

batt

erie

sareconnected

tothedi

stri

buti

onnetwork,

the

fourdescent

batteriesaredisconnectedfrom

thedistributionnetwork,

deadfacerelaysopen

themain

powerlines

between

theascentanddescentstages,and

theabortrelaysaredeenergized.

Atthestartof

thepreseparationch

ecko

ut,

inve

rter

No.

1is

energizedbycl

osin

git

sci

rcui

tbreaker

ontheEPS

bus;its

outp

utis

then

connected

tothea-c

busby

settingtheACPWR

switchon

theELEC-

TRICALPOWERCONTROLpanel

toINV

1.TheAC

PWRswitch

isused

tose

lect

inverterNo.

1or

No,

2throughseparatefeeder

lines

tothea-c

bus,

or

toexternal

power

beforeearthlaunch.

Ifin

vert

erNo,

1fails,

orafeedershorts

(indicated

by

thecaution

ligh

tsat

theEPS

pane

l)theAC

PWRswitchmust

besetto

INV

2,Se

ttin

gtheACBUSFEED

TIE

circ

uitbreakerthenrestorespower

tothea-cbu

s.

3-11

6.ENVIRONMENTALCONTROLSUBSYSTEM.

(See

figures3-25and

3-26.

)

TheEnvironmentalControlSubsystem(ECA)

consists

offiveintegratedsections:

Atmosphererevitaliza-

tion,oxygen

supp

lyandcabinpressure

cont

rol,

heat

tran

spor

t,watermanagement,

andcold

plat

e.Themajorportionof

theECS

isin

thepressurizedcompartment

inth

eascent

stage.

The

glycol

loop

andtwogaseousoxygentanks

for

theECSare

intheascentstage

inthe

aftequipment

bay;

athird

(larger)gaseousoxygentank

islocated

inthedescent

stage.

TwoECSwater

tanksare

inthetankage

sectionoftheascent

stage;a

third

(larger)water

tank

isin

thedescent

stage.

TheECS

controls

theoxygen

forpressurizationandventilationof

thecabinand

thepressuregarment

assembly(PGA)wornby

thetwoastronauts,

andcabinandPGA

temperature.

Itprovidesbreathing

oxygenfortheportable

life

supportsystem

(PLSS)and

thecabin,

limitsthelevelofcarbon

dioxide,

removesodorsandmoisturefrom

thePGAand

particulatematterfrom

theoxygenbreathedby

the

astronauts,

andautomaticallycontrols

thetemperature

oftheelectronicequipment.

TheECA

also

storeswater

fordrinking,

foodpreparation,

and

thePLSS,

-3-117.

ATMOSPHEREREVITALIZATIONSECTION,

Theatmosphererevitalization

sect

ion(ARS)

cond

itio

nsandprovidesoxygen

tocoo!

and

vent

ilat

ethe

PGAandmoni.ors

cabinoxygenrecirculationandtemperature,

Theatmosphere

revitalizationsection

monitors

thecarbondioxide

leve

lof

theatmospherebreathedby

theastronauts,

removes-odorsand

noxiousgases

fromthisatmosphere,

removes

foreignobjectsandparticulatematter

thatoriginate

withintheLEM,

removesexcessmoisturefrom

thecabinatmosphere

tomaintainarelativehumidity

of40%

to70c,

andco

ntro

lstheoxygentemperatureandflow

through

thePGA.

3-72.

.,

"15

Octo

ber

1965

Page 121: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

PNOIOoOONOOAOGoOMPaAoooe-:LMA790-1

COLDPLATE(REDUNDANT)COLOPLATE(LONG)COOLANTWATEREVAPORATORCOOLANTACCUMULATORFREONBOILER

.PRIMARYBOILERFEEDSQUIBVALVE»GASEOUSOXYGENTANKS.SUITCIRCUITASSEMBLY.CABINPRESSURERELIEFANDDUMPVALVE

10.ASCENTSTAGEWATERTANK.Tt.COLOPLATE(PSA)12.COLDPLATE(RGA)13.COLDPLATE(ASA}14.COLDPLATE(SHORT)1S.WATERHOSEASSEMBLY16.OXYGENHOSEASSEMBLY17,COLDPLATE(DSE}18.CABINPRESSURERELIEFANDDUMPVALVE19.COLOPLATE(FDAI}20.COLDPLATE(LGC)21.CABINAIRRECIRCULATIONASSEMBLY22.WATERCONTROLMODULE23.COOLANTREGENERATIVEHEATEXCHANGER24.COOLANTRECIRCULATIONASSEMBLY25.FILTERSECONDARYCOOLLOOP26.CONTROLAUTOPUMPSWITCH27.CABINPRESSURESWITCH28GSEQUICKDISCONNECT(FEMALE)27.GSEQUICKDISCONNECT(MALE)30.GSEQUICKDISCONNECT(FEMALE)31.COOLANTWATEREVAPORATOR{REDUNDANT)32.OXYGENHEATEXCHANGER

PPNOBWRON

A-2OULMAIO-SO-

Figure3-25,EnvironmentalContro!SubsystemInstallation

15October1965°,3-73/3-74

Page 122: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

nomen,

(JOV1S INIDSV) WasV AVE IN3WdINOI LIV

§DE

SCEN

TSTAGE

<¢——

Lhhhhdhh

COLD

PLATE

{

BATT

ECA

LMMhe

SSSSSS

COLD

PLATE

,BATT

ECA

SSS

hhhhh

COLD

PLATE

|

COLD

PLATE

BATT

BATT

i

wnnnnnnnnnn

A

SBPA

$8X

COLD

PLATE

SP

LON

i

AEA

COLD

PLATE

VHF

LySS

j

Ne

ATCA

COLD

PLATE

INV

LLLUf

Y .

TTT?

LL,

,

INV|

YMMMMs

\\

N

BATT

BATT

q—

LULLUfMULL

SSSSSSSSSSSSSEN

b

SS

YY

f

BS

SCEA

COLD

PLATE

i

PCM

COLD

PLATE

f

sc

COLD

A LATE

wu &

f

NENTeeeeetehoaeee

PQGS COLD

PLATE

RRE

Page 123: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

CABIN

TEMPERATURE

CONTROL

VALVEAND

THERMAL

SENSOR

(Al)

CABIN

{FANS

(i)

SUITTEMPERATURE

CONTROL

VALVE

—>

{VENT

SECONDARY

COOLANT

WATER

EVAPORATOR

PRIMARY

-DESCENTSTAGE

'WATER

;'

EVAP

ORATOR

‘VENT

OVERBO:

L = a oe we we ee we ee es es oe

= on om om om om Og

Page 124: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

Falinatene) PRETney

CIRCUITFANS

©)

WATER

SEPARATORS

BY

©

PLSS

DRINKING

WATER

DISCONNECT

Wut S

E P

RE

PRIMARY

PRESSURE

REGULATORS

Page 125: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

CABINAND

TUNNEL

WALLS

VIF

(PRESSURIZED

)AREA)

roeettoteceeee

SUIT

CIRCUIT

#DIVERTER

VALVE

c:

1CO2

PARTIAL

2]PRESSURE

SENSOR TO

COCKPIT

——->DISPLAYAND

TELEMETRY

Tee mee mm om

PT

C

on

xoOOo

oT

)

=)

oP

14

d\

\

CABIN

GOx

PRESSURIZATION

AND

EMERGENCY

OXYGEN

bs

GSE

Hou

)

PT

15Oc

Page 126: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

.SUIT

FLOWCONTROL

VALVES

-CO2

ANDODOR

REMOVAL

CANNISTERS

.SUIT

CIRCUITHEATEXCHANGER

.SUIT

CIRCUITWATER

EVAPORATER

(EMERGENCYWATER

BOILER)

.WATER

SEPARATOR

SELECTOR

VALVE

nm NOS

-OXYGENDEMAND

REGULATOR

.WATER

TANK

SELECTOR

VALVE

.WATER-COOLANT

ISOLATION

VALVE

.WATER

SHUTOFF

VALVE

.PRIMARYCOOLANT

PUMP

.SECONDARYCOOLANT

PUMP

.RELIEF

VALVE

COOLANT

ACCUMULATOR

ASCENT

STAGEWATER

TANK

.DESCENT

STAGEWATER

TANK

.CABIN

PRESSURE

RELIEFAND

DUMP

VALVE

.CABIN

HEATEXCHANGER

NON DWOO—NAWYHOKR BOO

ASCENT

STAGE

rererreeeewwwwwaa

'DESCENT

STAGE

FILLVALVE

.SUIT

CIRCUIT

REGENERATIVE

HEAT

EXCHANGER

.WATER

EVAPORATORMANUAL

FEED

VALVE

COOLANT

REGENERATIVE

HEAT

EXCHANGER

LMA790-1

PRESSURE

PT

REGULATORS

iH

RELIEF

jt

VALVE

é i § ‘ i t i 1 1 ! i t t i {ae

| i { a i i 5 i i 1 { |

GASEOUS

OXYGEN

MANUAL

DIVERTERVALVE

MANUALMODULATING

VALVE

SHUT-OFFVALVE

FILTER

CHECK

VALVE

WITH

MANUAL

OVERRIDE

CHECK

VALVE

RELI

EFVALVE

DISCONNECT

GSE

FLOW

LIMITER

CABINAND

TUNNEL

WALLS

(PRE

SSUR

IZED

)

MECHANICAL

LINKAGE

CONDITIONEDOXYGEN

PRIMARYCOOLANT

SECONDARYCOOLANT

WATER

PUREOXYGEN

GOX

B-201LMATO-11

Figure

3-26

.EnvironmentalControlSubsystemSchematic

‘tob

er1965

t$-75/3-76

Page 127: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

moomoo oOano go i as at

LMA790-1

TheARS

consists

ofacabinre

circ

ulat

ionas

semb

ly,

two

suit

circ

uitfans

(ons

redundant),

asu

ltci

rcui

theatexchangerandwaterevaporator,

andtwowaterseparators

(one

redu

ndan

t),

Inad

diti

on,

theARS

containsaregenerativeheatexchanger;acarbondioxidepa

rtia

lpressuresensor;twocarbondi

oxid

eandodorremoval

cani

ster

s,eachco

nsis

ting

ofacanisterandreplaceablecartridge;

are

lief

valv

e;checkva

lves

;andinterconnectingtubing.

Oxygenfrom

theoxygen

supp

lyandca

binpr

essu

recontrolse

ctio

n(OSCPCS)

iscirculated

through

the

ARS

byoneof

thetwo

suit

circ

uitfa

ns.

Because

eith

erfa

ncanmaintainth

erequired

suit

circuitoxygen

flow

,only

onefa

nis

operatedata

time.

Afterleavingthe

fan,

theoxygenpasses

throughthe

suit

cir-

cuit

heatexchanger,

whichtransfersexcessheat

from

theoxygen

toth

eheat

transportsectioncoolant,

The

suit

circuitwaterevaporatorremoves

theexcessheat

ifthe

suitcircuitheatexchanger

fail

s,

Excessmoisture

that

condenses.whenth

eoxygenpassesthrough

the

suit

circuitheat

exchangeror

suit

circuitwaterevaporator

isremovedfrom

theoxygenbyone

ofthetwowaterseparators.

Each

sep-

aratorcanmeet

thewaterremovalrequirements

but,

dependingon

thepo

siti

onof

themanuallyoper-

atedwaterseparator

sele

ctor

valve,

only

oneseparatorfunctionsat

ati

me.

Downstream

ofboth

waterseparators

isth

esu

itci

rcui

tregenerativeheatexchanger,

whichpermits

theoxygentemperature

tobemanuallyco

ntro

lled

by

theastronautbeforetheoxygenentersthePGA,

Warm

coolantfrom

theheattransportsectionflowsthroughtheheatexchanger,

transferringheatto

theoxygen.

Theoxygentemperature

iscontrolledbyvarying

theflow

ofcoolantthrough

theheatex-

changer;

theastronautmanuallycontrols

this

flow

with

the

suit

temperaturecontrolva

lve.

Inaddi-

tion,

theastronautscontroltheircomfortwiththeirindividualflowcontrolvalve.Thecarbondioxide

partialpressuresensormonitorsthepartialgaspressuredue

tocarbon

dioxide,

ata

safepartial

pressure

leve

l.The

partialpressure

isdisplayedon

theenvironmentalco

ntro

lpanel

atthesystem

engineer'scenter

panel.

Theoxygenthenpassesthro2ghone

ofthetwocarbondioxideandodor

removalcanisters,

intoa

suitcircuitfan.

Thecycle

isrepeated.

Duringopen-faceplateoperation(normalpressurization

leve

l),

the

suit

circ

uitdivertervalve

isopened

topassth

eentire

oxygenflow

from

theARS

ofthe

suit

circ

uitassembly

into

theca

bin.

This

ensuresthat

sufficientcabinoxygen

iscirculatedthrough

theARS

tomaintainthedesiredcarbon

'dioxideandhumidity

levels

inthecabin.

Intheeventofdepressurizationofthecabinatmosphere,

the

cabinpressureswitchprovidesasignalthatautomaticallycloses

thediverter

valve,

The

suit

circuit

reli

efvalvepreventsoverpressurizationof

thePGA.

WhenPGA

pressure

is4,4psia

ormore,

the

reli

efvalve

isfu

llyopen;whenPGA

pres

sureis

less

than4.1

psia

,th

erelief

valve

isfu

llyclosed.

Recirculationandtemperatureco

ntro

lof

thecabinoxygen

isprovidedby

thecabinre

circ

ulat

ionas-

sembly.

Theassembly

containstwofans

that

reci

rcul

ateth

eoxygen,

acabinheat

exchanger

that

automaticallyheatsorcools

theoxygen,

atransitionduct,anda

sumpfor

collectionofwaterduring

themissionwhencondensationco

llec

tsin

thecabinheatexchanger.

The

duct,

fans

,andsumpare

mountedon

theheatexchanger.

Heat

istransferred

tothecabinoxygenfrom

theheat

transport

sectioncoolantthatflowsthrough

thecabinheatexchanger.

Thetemperatureofthecoolant

iscon-

trol

ledin

theheat

transport

section.

(Ref

erto

paragraph3-

106,

)

3-118.

OXYGENSUPPLYANDCABINPRESSURECONTROLSECTION,

Theoxygensupplyandcabinpressureco

ntro

lse

ctio

n(OSCPCS)providesandregulatesth

eoxygen

requiredby

theARSand

supp

lies

oxygen

tore

fill

thePLSS.

TheOSCPCS

maintainscabinpressure

bysupplyingoxygenat

arate

equal

tocabinleakageplus

astronautconsumption,

permitscabinde-

pressurizationandsubsequentpressurizationbytheastronauts,andmaintainsPGA

pressureduring

depressurizedcabinoperation.

TheOSCPCSalso

providesdelayofcabinpressuredecay(oxygen

loss)re

sult

ingfromapressure-shellpu

nctu

re.

TheOSCPCSconsists

ofthreeoxygen

tanks,

twosmalitanks

intheascentstageandala

rger

one

inthedescent

stage,

twooxygendemand

regulators

(oneredundant),

checkvalves,

shutoffvalves,

andinterconnectingtubing,

mountedonacastmunifoldwith

allthenecessary

interconnectinggas

passages,

Atth

enormalpressurization

level,

thepressure

ofthecabinandPGA

ismaintainedat

5:0.

2ps

ia,

whichpermits

theastronauts

toopen

theirfaceplates

andremove

theirgl

oves

.When

thecabin

isdepressurized,

thePGA'smustbesealedand

theirpressurereduced

totheemergency

level(egress

mode)

of3.

7+0,

2,-0.00

psia

.

Theoxygenusedby

theECS

isstored

inthreegaseousoxygen

tank

s.Theoxygen

issu

ffic

ient

for

fourcabinrepressurizationsand

sixrefillsof

thePLSSprimaryoxygenstorage

tanks,

inaddition

tonormalastronautconsumptionandLEM

andPGA

leakage.

Pureoxygenfrom

thecabinrepres-

surization

valve

isused

forcabinrepressurizations

tiat

requirehigh

oxyg

enflow

rate

s.

15October

1965

.,

3-77

Page 128: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

tt

LMA780-1

Theoxygentanksfeedoxygen

tobo

thoxygendemandregulators,

eachwithamanualoverrideandco

ntro

l

thede

live

ryof

oxygen

toth

eARS

inresponse

tosignalsfrompressuresensors.

Thecabinrepressurizationandemergencyoxygenvalvedeliversoxygen

tothecabinforrepressuriza-

tion

or

todelaycabinpressureif

thepressure

shell

ispunctured,

inresponse

tosi

gnal

sfrom

the

cabinpressure

swit

ch,

Thevalvehasamanualov

erri

de.

Overpressurizationof

theOSCPCSis

preventedbyth

eoxygen

pres

surereliefva

lve,

Thevalveauto-

maticallyrelievesexcesspressureby

ventingoxygen

into

theca

bin.

Overpressurizationof

thecabin

ispreventedbythecabinpressure

relief

anddump

valv

es.

Thesevalvesautomaticallyrelieveexcess

cabinpressurebyve

ntin

goxygenoverboard,

Thevalvescanbeoperatedmanually,

from

insi

deor

outs

ide

thecabin,

todump

cabinpressureoverboard,

3-119.

HEATTRANSPORTSECTION,

Theheattransportsection(HTS)co

nsis

tsof

aprimaryandasecondaryclosed-loopsystem.

Each

system

circ

ulat

es.a

nethyleneglycol-watercoolant

toco

ntro

lth

etemperatureof

theel

ectr

onic

equip-

ment.

Inaddition,

theprimarysystem

controls

thetemperatureof

theoxygenci

rcul

ated

through

the

cabinand

thePGA's,

Theprimarysystem

consists

oftwocoolantpumps

(oneredundant),

acabintemperaturecontrolvalve,

coolantregenerativeheatexchanger,

Freon

boiler,

coolantwaterevaporator,

coolantaccumulator,

cool

ant

filter,

valv

es,

andin

terc

onne

ctin

gtubing.

Thesecondarysystem,

used

forcoolingof

crit

ical

equipmentif

theprimarysystem

fail

s,consists

ofaco

olan

tpump,

coolantwater

evaporator,filter,

valves,

andinterconnectingtubing.

Intheprimarysystem,

thecoolant

isci

rcul

ated

byone

ofth

etwoco

olan

tpumps.

Each

pumpcan

pro-

videnorma]

flow;onlyonepumpis

operated

atatime.

Afterleavingthepump,

someof

thecoolant

flowsthrough

the

suit

circuitheat

exchangerandheatfrom

theoxygen

istransferred

totheco

olan

t;th

eremainder

ofthecoolantflowsthroughpart

ofthecold

plate

sect

ion,

where

itabsorbsheatfrom

theel

ectr

onic

equipment,

Theflow

thendi

vide

sbetweenth

eregenerativeheat

exchangerand

its

bypass,

providingtherequiredheatforth

ecabinheat

exchangerfrom

theregenerativeheatexchanger.

The

flowis

dividedby

thecabintemperatureco

ntro

lva

lve,

which

isco

ntro

lled

by

thecabinheat

ex-

changerglycol-waterdischargetemperature.

The

temperatureof

theco

olan

tleavingth

ecabinheat

exchanger

ismaintainedwithinanarrowrangeby

thecabintemperature

controlvalve,

Thistem-

peraturerange

inturn

maintains

theheatexchangerdischargetemperatureandth

ecabintemperatur

withintherequiredrange.

.

The

coolantthenpassesthroughanother

para

llel

coldplate

section,

where

theco

olan

tremoves

heat

from

theel

ectr

onic

equipmentandtheba

tter

ysectionof

thedescent

stag

e.Afterpassingthrough

the

coldplatese

ctio

n,thecoolantflows

tothe

suit

circuitregenerativeheat

exchanger

forPGA

heating,

and

iscontrolled

by

the

suit

temperaturecontrolva

lve.

Waste

heat

isremovedfrom

theco

olan

tby

thewaterevaporatororsublimatorremoves

heatfrom

thecoolant;theproductsofthesublimation

processaredischargedoverboard,

The

coolantthenflowsthrough

the

cool

antfilter,

whichremoves

particles

that

couldcauseamalfunction,

and

into

thecoolantpumps

tore

peatthe

cycl

e.

The

cool

antaccumulatormaintainspressureabove

theco

olan

tvapor

pres

surein

theheat

transport

sectionandaccommodatesvolumetricchanges

ofth

eco

olan

t,.

Ground

supportequipment(GSE)provisionsareprovided

fortheprimaryandsecondarysystemsby

two

sets

oftwo

self

-sea

ling

quick-disconnectson

therightsi

deof

the

aftequipmentbaybu

lkhe

ad,

in-

sidethethermal

skin.

Each

setof

quick-disconnectsprovides

forsupplyandreturn

oftheGSE

coolantand

isused

fercoolant

fill

inganddraining

andgroundco

olin

gof

theLEM

duringequipment

andsystem

checkout.

Thesecondarysystem

coolantpump,

whichonlyoperatesduring

flig

htwhen

theprimarysystem

fail

s,

circulatescoolantthrough

theemergency

(safereturn)equipment:

cold

plates,

water

boiler,

and

filter.

Thewater

boilerremoves

heatfrom

thecoolantbyevaporation;

itis

theredundantcoolantwaterevapor-

atorand

isintheaftequipment

bay.

3-120.

WATERMANAGEMENTSECTION.

Thewatermanagement

section(WMS)

storespotablewater

forthemetabolicneeds

oftheastronauts,

LEMevaporative

cooling,

andPLSSwatertank

fillsand

refills.

TheWMS

controlsth

edi

stri

buti

onof

waterreclaimed

bythe

suitcircuitassemblywater

separatorsandthedistributionofthestoredwater.

Reclaimedwater

isusedforevaporativeco

olin

gin

theECSwater

evaporators,

3-78

.‘

15October

1965

Page 129: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

LMA790-1

TheWMS

consists

ofa

larg

e,sp

heri

cal,

bladder-typewatertank

inthedescentstage,

two

identical

smallertanks

intheupper

portionof

themidsectionof

theascent

stag

e,waterpressureregulators,

checkva

lves

,sh

utof

fvalves,

andin

terc

onne

ctin

gtu

bing

.Thewater

fill

connections

for

allthree

tanksareon

therightside

ofthe

aftequipmentbaybulkhead.

Thewatertanksarepressurizedbeforeearthlaunch,

tomaintaintherequiredpumpingpressure

inthetanks,

The

pressurizationconnections

forthetanksin

theascentstageareon

theta

nks;

for

the

tankin

thedescent

stage,

theconnection

isona

bracketremotefromthe

tank,

Thewaterco

ntro

lvalvesandregulatorsforstoredandredundantorreclaimedwateraremounted

inacast

manifold

inthewatercontrolmodule

inthecabin,

Thewatertank

inthedescentstagesu

ppli

esthewaterrequiredup

tolunar

launch,

Afterlunar

launch,

water

isobtainedfrom

thetanks

inth

eascent

stage.

Inad

diti

onto

waterfrom

thetanks,

waterfrom

theARSwaterseparators

isused

intheWMS.

The

self

-sea

ling

PLSSwaterdisconnect

permits

fillingand

refillingthePLSSwatertanksandde

live

ring

water

fordrinking

andfood

prepara-

tion,

3-12

1.COLDPLATESECTION.

Thecoldplatesection(CPS)providesheat

sinksforeachpiece

ofelectronic

equipment

that

requires

acti

vethermal

cont

rol.

The

coldplates

passcoolantfrom

theHTSandremoveheatfrom

theelec-

tronicequipment.

Structuralcoldplatesare

eithersingleorredundantandareusedas

structural

mounts

fortheelectronicsequipmentthey

cool.

The

singlecoldplatescontainonlyonepassage

throughwhich

theHTSprimarysystem

cool

antis

circulated;they

aresingle-passheatexchangers,

Redundantcold

plates

cont

aintwoindependentpassages:

oneforprimarysystem

cool

ant;

theother,

forsecondarysystem

cool

ant,

The

largestsingle

grou

pofcoldplatesis

attherear

ofthe

aftequipmentbay.

Asmallergroup

isontheaf

tcabinbulkhead,

Theremainingcoldpl

ates

aredi

stri

bute

dwithin

theascentstagenear

the

electronicsth

eycooland

thedescentstageba

tter

iesand

elec

tron

iccontrolassemblies.

3-122,.CREW

PROVISIONS.

3-123.

EXTRAVEHICULARMOBILITYUNIT,

Theextravehicularmo

bili

tyunit

(EMU)

isamultilayered

unit

that

cons

ists

ofaliquid-cooledgarment,

@pressuregarmentassembly,

athermalmeteoroidgarment,

aportable

life

support.system,

an

emergencyoxygensubsystem,

biomedicalandenvironmentalsensors,

anddosimeters,

Toaccomplish

asafe,manned

mission,

theEMUis

constructedasananthropomorphic,

closed-circuit,

pressure

vessel

thatenvelops

theentireastronaut,

With

theportable

life

supportsystemattachedtothepres-

suregarmentassembly,

theastronauthasalivableenvelope

that

cansustainhisactivities

intheLEM

or

inthelunarenvironment.

Insi

detheEMU,

theastronaut

issu

ppli

ed100%oxygen.

~Thenormal

operatingpressure

ofth

eEMU

is3.7

psia;

itweighsapproximately

120pounds.

3-124,

Liguid-CooledGarment.

The

liquid-cooledgarment(LCG),theinnermostcomponentof

the

EMU,

isworn

byeachastronautduring

allLEMoperations.

Itretainsperspirationresidueandmain-

tainsbodytemperature

atacomfortable

levelwhile

theastronautsare

intheLEM.

On

thelunarsur-

face

,theLCG

preventsperspirationandabsorbsbody

heat.

3-125,

PressureGarmentAssembly.

Thepressuregarmentassembly(PGA)

includesatorsoand

limb

suit,ahelmet,

anda

pairofintervehiculargloves.

ThePGA

iswornduring

allLEMoperations.

ThePGAis

themsic

item

ofthelife-supportsystem.

Itaids

inshieldingtheastronautsfrom

the

thermal-vacuumenvironments

ofouterspaceand,

ifthethermalmeteoroidgarment

isworn,

enables

them

toleave

theLEMin

freespace

toperformvarious

functions,

ThePGA

alsoprovidesemergency

backuppr

otec

tion

ifcabinpressure

islo

st.

Thematerials

ofwhich

thePGA

isma

deresist

the

abrasiveand

radiationenvironments

offreespaceandthelunarsurfaceandminimize

thepossibitity

ofdamageto

thePGA

duringastronautingressandegress

viatheforwardorupperentrancehatches,

PGA

construction

isdictatedbymissionobjectivesandthedesignfeaturesoftheLEM.

ThePGA

permits

theastronauttoenterandleaveunaidedthrougheitherhatch

during

themission,

Manipu-

lationofthe

feet,

hands,

legs

,forearms,

arms,

head,

andtorso

ispossible.

Theastronautsare

able

towa

lk,

climb,

crouch,

andrise

{romasupine

toa

stan

ding

position.

Theuse

oftool

sand

LEMcontrols,

voiceandtelemetrycommunications,

and

sigh

ting

s(insideandoutside

theLEM)

are

included

intheEMU'sperformance

capabilities,

3-126,

TorsoandLimb

Suit.

Thetorsoandlimb

suit

isananthropomorphicpressurevessel

that

covers

thebodyandlimbs,

excepttheheadandhands;

intervehicularbootsarepartofthe

suit.A

15October

1965

.3-79

Page 130: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

LMA7

90-1

helmetandapair

ofintervehicular

glovescanbeattached

toth

esuit

tocomplete

theastronaut'senclos-

urewi

thin

thenormal3.7-psiaatmosphere.

The

inte

rveh

icul

arbootsprovidethermal

insu

lati

onpro-

tection;

thebottom

ofth

eboots

iscoveredwith

Velcro-hookma

teri

al,

which,

inconjunctionwith

the

Velcro-pilematerialon

thecabinMoor,

provides

addi

tion

alrestraintfor

theastronauts.Assembled

toth

etorsoand

limbsuit,

thebootsbecomepart

ofth

eclosed-circuit

pressurizedenvelopeprovidedbyth

ePGA.

3-127.

Helmet.

Theprimary

func

tion

ofthehelmet

isto

protecttheheadagainsthigh-impactloads

and

toprovidea

life

supportenvironment.

Separateglarevisorsareattached

totheexterior

ofth

ehelmet,

permittingtheastronaut

toreadve

hicl

eandspacedata

underawiderange

ofil

lumi

nati

on,

Amicrophoneandearphonesare

inthehelmet.

Helmetconstruction

iscompatiblewith

physiological

needsandpermits

eati

ngand

drin

king

,

3-128.

Intervehicular

Gloves.

Theintervehicular

glovesprovideadequatefi

nger

dext

erit

yin

all

pressurizedenvironments.

Awrist

seal

inthesleevesofthetorsoandlimb

suitpermitsreplacing

damagedgloveswith

extravehicular

gloveswhilethe

suit

ispressurized,

3-129.

ThermalMeteoroidGarment.

Thethermalmeteoroidgarment

(TMG)includesathermal

meteoroid

suit

,extravehicularglovesandthermal

mittens,

andextravehicularboots,

.Theseitems

do

notbecomepart

ofthepressurizedenvelopeprovidedby

thePGA;

theyarewornover

thePGA,

Themain

functionoftheTMGisto

insulateand

protectagainstharmfulthermal

radiationandpro-

‘tectagainstmicrometeoroids.

3-130.

ThermalMeteoroid

Suit.

Thethermalmeteoroid

suit

providesthermal

insulation

agai

nstthe

lunar-surfaceenvironment,

Itis

wornover

thePGA,

butdoes

notcover

thehe

lmetor

gloves.

Itisa

loose-fitting,

two-piece,

multilayered,

pajama

suit

withanaluminizedoutercoating

thatrenders

the

suit

refl

ecti

ve.

Theastronautcandon

the

suit,

unai

ded,

intheLEM.

3-131,

ExtravehicularGlovesandThermal

Mitt

ens.

Eachastronauthasapa

irof

extravehicular

gloves.

Aianyardpermits

thegloves

tobeattached

to,

orremovedfrom,

thePGA

sleeves.

The

extravehicularglovesprovide

insu

lation

protection

andarewornduring

thelunar

stay.

Thewrist

seal

inthetorsoandlimb

suit

permitsemergency

replacementof

theintervehiculargloveswiththe

extravehiculargloveswhileth

esu

itis

pressurized.

Wearing

theextravehicularglovesdoes

not

hinder

theastronauts

inperformingemergencyandma

inte

nanc

etasks

or

inmanipulatingander

ecti

ngmissiontaskequipment.

Eachastronautalsohasa

pair

ofmittens

that

arewornover

theex

tra-

vehiculargl

oves

.Themittenscanberemoved

forshortin

terv

alsfo

raddedde

xter

ity.

3-132,

Extravehicular

Boots,

Eachastronauthasapa

irof

extravehicularboots

foruseonlu

nar

surface.

Thesebootsareworn

overthe

intervehicularboots

toprovideadditional

insulation.

The

extravehicular

boot

s,li

kethethermal

suit,havea

refl

ecti

veouter

coat

ing.

Theastronautcandon

theboots,

unaided,

intheLEM

beforedescending

tothelunar

surface.

3-133.

Portable

Life

SupportSystem.

(See

figu

re3-27.)

The

portable

life

supportsystem

(PLSS)

isa

self-contained,

rechargeablesystem

that-provideslimited-time

life

support

foranastronaut

exposed

toextravehicularfree

spac

e,adecompressedLEM,or

thelunar-surfaceenvironment.

The

PLSS

consists

ofsubsystemscomponents

that

provideprimaryoxygensupply

storage;

cont

rol

ofcontamination,

humidity,

pressure,

ventilationor

recirculation,

temperature,

and

electricalpower;

voicecommunications

facilities;andtelemetrytransmission

faci

liti

es,

3-134,

PrimaryOxygenSupplySt

orag

e.EachPLSS

includes

apressurizedoxygenreservoir

that

sup-

pliespureoxygen

tosatisfybodyneeds

fornormalandemergency

situation,

Eachreservoir

fill

ingpro-

videsamaximum

supply

ofapproximately4hours

ofoxygen.A

3-hour

supply

ofoxygen

isused

forcom-

pletingthemission,

witha1-hour

supply

ofoxygen

forcontingency.

The

disconnectfittingsused

tocharge

thePLSSreservoirarecommon-usageCSM-LEM

components.

3-135,

Contamination,

Contaminationcontrolincludesremoval

ofexplosive,

noxious,nauseous,

or

toxic

gases,

and

solidpa

rtic

lesandexcessivemoisturefrom

therecirculationsystem

ofthepressurizedEMU.

3-136.

Humidity.

Are

lati

vehumidity

of40%

to70

with

in+66°

to+70°F

ismaintained

inthecon-

trol

lednormalenvironment

ofthepressurizedEMU,

3-137.

Pressure.

Primaryoxygenmaintainsast

eady

3.7-psiaoperatingpressure

with

intheEMU.

3-138.

VentilationorRecirculation.

The

ventilationorrecirculationsystem

conditionsandrecir-

culates

theoxygen

inthepressurizedPGA

forco

olin

g.

surized,

3-80

oe

15Oc

tobe

r1965

Page 131: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

Cy Ooo & oOo on

15October1965

LMA790-1

ANGINA mn SeWw

[7S

nm NO-— oo

.PORTABLE

LIFE

SUPP

ORT

SYST

EM(PLSS)

PLSSSHOULDER

STRAPS

..PL

SSO2

LINE

PLSSSHOULDER

STRAPANCHOR

POINTS

.LEMENVIRONMENTALCONTROL

SYSTEM

(ECS)

.VELCRO-HOOKON

BOOTS

.VELCRO-PILEON

CABINFLOOR

LEM

PLSSLOWERANCHOR

POINTS

(2)

.PLSSWAIST

STRAP

.HOOK

STRAPS

.VELCRO-PILEON

PLSS

.PL

SSSTRAPSANCHORED

TO

LEM

Figure3-

27,

PLSSDonningSiation

6-201LMA10-30

3-81

Page 132: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

ae?

LMA790-1

3-140.

Electrical

Power,

Electrical

power

issu

ppli

edbyaPLSS

batt

ery

toallEMU

equipmentfo

rapproximately4hoursoutside

theLEM.

3-14

1,.VoiceCommunications,

Aduplexsubsystemprovidessimultaneoustwo-waycommunication

between

theastronauton

thelunarsurfaceandtheLEM,

betweentwoextravehicularastronauts

inEMU's,

orbetweentheastronautonthelunarsurfaceandtheCSM

transmitterandreceiver.

The

communicationsystemmicrophoneandearphonesare

inthePGA

helmet.

Theantenna

forthesys-

tem

isonthehelmet.

Asimplexsubsystem

inthePLSS

providesemergencyvoicecommunications

andcontains

itsown

battery,

3-142,

TelemetryTransmission.

Atelemetrysubsystemtransmitsenvironmentalandbiomedical

data

totheDeepSpaceInstrumentation

Facilities

(DSIF),

using

theLEM

subsystemasa

relay link,

Telemetryinformation

istransmittedonly

ondu

plex

.

3-143,

EmergencyOxygenSubsystem,

Theemergencyoxygensectionis

actuatedbyanarming

deviceanda

pull

cablecontrol

ofthe"greenap

ple"type.

3-144,

BiomedicalandEnvironmenta!Sensors.

3-145,

BiomedicalSensors,

TheEMU's

biomedicalsensorsgatherph

ysio

logi

caldata

fortelemetry.

Agovernment-furnishedimpedancepneumographrecordsrespirationandcardiacimpulses.

Body

temperature

isalsoobtainedforte

leme

teri

ng.

3-146,

EnvironmentalSensors.

Theastronautsmonitorsome

oftheEMU

environmentalsensors;

otherdataaretelemetered

forearthmonitoring.

Dataobtainedwiththesesensors

includePGA

inlettemperatureandpressure,

oxygenquantity,

cumulativeradiationdose,

andelapsedtime.

An

audible-warningsysteminforms

theastronautoflow

suit

pressureand

ofhighoxygen

flow.

3-147.

Dosimeters,

Thedosimeters

indi

cate

theamount

ofex

posu

reto

radi

atio

n.Se

riou

s,perhaps

crit

ical

,damageresults

ifradiationdosesexceedapredetermined

level.

Forquickand

easyrefer-

ence,

theastronauthasadosimetermounted

tohisEMU,

3-148,

WASTEMANAGEMENT.

PGA

wastemanagementdevices

includeprovisions

fortemporarystowageandsubsequentremoval

of

urin

e,TheLEM

wastemanagement

section(WMS)usesth

eco

ntro

lled

pressure

diff

eren

tial

between

thePGAandthecabinastheforce

totr

ansf

erwaste

fluidfrom

thePGA

wastemanagementdevices

totheLEM

waste

fluidcollectorassembly.

Operation

oftheWMSis

star

tedandstoppedwith

the

wastecontrolvalve.

Thewastecontro!valvealsoprotectstheastronautfrom

excessivenegative

pressure

differentials,

One

operationalcyclein

clud

esevacuation,

tran

sfer

,andstowage

ofthewaste

fluids.

TheWMScantransferandevacuatewaste

fluidfrom

thePGA

unde

rthe

effects

ofzero-

gravityspaceflightandof1/6-gravitylunar-surfaceconditions.

Thewaste

fluidcollectorassembly

canberemoved

atintervalsandreplacedwith

anunusedcollectorassembly,

3-149,

FOOD,

Preparedfoodsu

itab

leforea

ting

inspaceenvironments

issu

ppli

edto

theastronauts.

Themenus

include

liquidand

solidfoods

ofadequate

nutritionalandcaloricvalue,

withlowresidue-producing

characteristics

tominimize

biologicalwastes.

Reconstitutedfoodcanonlybeconsumed

withthe

helmetremoved,

To

preventspoilageandconservespace,

dehydratedfood

issealed

inpliableplasticpackages,

To

reconstitute

thefood,

thewaterumbjlicalhose

isattached

tothe

inletend

ofthewaterdispenser

(water

gun);

theoutletendofthewaterdispenser

isinserted

intotheneck

ofthefoodpackage.

Squeezing

thetrigger

ofthewaterdispenserregulatestheflow

ofwater

intothe

foodpackage.

The

astronautthenkneads

thefoodandwater

untiltheyarethoroughlymixed.

Squeezingthebagforces

food

intothemouth.

Thewaterdispenser

isalsoused

fordrinkingpotablewater.

Reconstitutedfood

will

notbeeateninapressurizedPGA.

Spec

ialpuree-typefood

intubes

ispro-

videdforemergencyeating.

3-150,

SUPPORTANDRESTRAINTEQUIPMENT.

Supportandrestraintequipment(figure

3-28)

isprovided

atthecrewstations

intheforwardcabin

section,

During

flight

operations,

theconstantforcereelassemblyprovides

theastronautswitha

zero-gtiedownforce

ofapproximately25pounds,

incombinationwi

thth

eVelcro-hook

(int

erve

hicu

lar)

bootsand

theVelcro-pilematerialon

thecabin

floor,

3-82

-15

Octo

ber

1965

Page 133: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

mOImoop oO OOo 8

LMA790-1

HARNESS

OVERHEADDOCKING

RESTRAINT

HANDGRIP

PRE-LANDING

LOCK

~

CONSTANT

FORCE

REEL

ASSEMBLY

AND

LOCK

15October

1965

MECHANISM

VELCRO-PILEON

CABIN

FLOOR

VELC

RO-H

OOKON

INTE

RVEH

ICUL

ARBOOTS

*B201LMAI0-29

Figure3-28,

Zero-GRestraint

3-83

Page 134: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

LMA790-1

Thesupportandrestraintequipmentincludesahandgripandtwoelongated,

U-shaped,

shock-attenutating

armrestassembliesfo

reachastronaut,

When

leaningonthesearmrests,

theastronautshave

suff

icie

nt

freedom

ofmotion

foroperationof

theLEM

controlsand

(after

thereel

1smanually

locked)protection

againstnegative

g's,

3-151.

MEDICINEANDSTORAGE,

Medicalsupplies

(GFE)planned

forthemissionconsistof

sixca

psul

es.

FourcapsulesareDarvon

(pai

nkillers);twoareDexadrine

(pep

pills),

Thepackage

ofcapsules

isto

beattachedwith

Velcro-

pile

totheinterior

ofthefoodcompartment,re

adil

yaccessiblewhen

thecompartment

isopened.

$-152.

ELECTROEXPLOSIVEDEVICESSUBSYSTEM,(See

figu

re3-29and3-30.

)

TheLEM

ElectroexplosiveDevicesSubsystem

(EED),

alsoreferred

toas

theExplosiveDevicesSub-

system

(ED),

isused

toin

itia

tefu

nctionswhichareaccomplishedexplosively.

Apollo

stan

dardiniti-

atorsareusedasthetriggers.

Someof

thesefunctionsareheliumpressurization

ofth

eAscentand

DescentPropulsionSubsystemsand

theRCS,

landinggeardeployment,

andseparation

oftheLEM

ascentstageanddescent

stages.

ThoEED

consists

oftwo

batteries,

anEED

controlpanel,

twoEED

fuseandrelayboxes,

twoEED

pyropower

busses,

and

theexplosivechargesanddevices.

Power

toactuatesquibrelays

intheED

relaybox

isdrawnfrom

themainpower

supply;power

forED

init

iato

rignition

issuppliedby

theED

batteries.

:

EachED

batt

ery

supplies

powerto

an

iden

tica

lredundantbus

forthe

initiation

ofal

lexplosivedevices

ontheLEM,

controlledby

itsswitchontheEXPLOSIVEDEVICES

PANEL(figure

3-2)

.

EachEDpower

switchoperatestwopower

relays.

Theserelaysprovideacontinuous

circ

uitbetween

eachED

batteryand

itsrespectiveEDpower

bus.

Each

functionswitch(STAGE,RCSPRESS,LDG

GEARDEPLOY,DESPRESSandASCPRESS)

actuates

two

rela

ys,

one

ineachED

relaybo

x.Each

relayprovidesacircuitbetween

itsrespectiveEDpower

busand

itsassociatedexplosivedevice.

Each

stagingre

lay,

whenactuated,

providesa

circuit,

betweenanEDpower

busandaredundant

set

ofst

agin

gfu

ncti

onrelays

(for

thedescentde

adfa

ce,

cablecu

tter

s,ascentdeadface,

bolt

sand

nuts).

Two

separateexplosivedevices

(one

redundant)areprovidedat

each

function,

eachdevicedrawing

powerfor

initiationfromaseparateED

powerbus.

Thisprovides,

withtheduplicaterelaysand

para

llel

paths

totheEDpower

busses,

completeredundancy

fortheED

subsystem.

Each

func

tion

swit

ch,

exceptfor

theSTAGE

swit

ch,

hasalever-lockingSAFE

posi

tion

andamomen-

tary

FIRE

position.

TheSTAGE

switchhaslever-locking

inth

eONandOFF

positions,

The

ASCENTHESEL

switchhas

leve

rlockingTANK

1,BOTH

andTANK

2po

siti

ons.

3-84

15October

1965

Page 135: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

LMA790-1

FUSEANDRELAYBOXES

DESCENTSTAGE

ECSWATERFEEDVALVE

EEDCONTROLVALVESPANEL

DESCENTENGINE

RCSHELIUMPRESSURIZING

ASCENTENGINEHELIUMPRESSURIZING

DEADFACEINTERSTAGECONNECTORSUMBILICAL

CUTTERS

HELIUMPRESSURIZINGVALVE

moon

7&&

[Oo&

LANDINGGEARUPLOCK

“YEEDBATTERIES/7?JYDESCENTSTAGECY

Figure3-29.ExplosiveDevicesLucation

15Octuber1965

INTERSTAGESTRUCTURALCONNECTION

A-201UMA10-51

3-85,'3-86

Page 136: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

Oooo Oooo Moo OM OO fo

LMA790-1

EPS

POWER

'

EED

BATTERY

.

SWITCHING

PANEL

EED

BATTERY

FUSEAND

RELAY

BOXA

LANDINGGEAR

UPLOCK

BOX

B

>

—_

FUSEAND

RELAY

15

Octo

ber1965

DESCENT

PROPULSION

HELIUM

PRESSURIZING}j——

VALVE

STAGE

SEPARATION

ASCENT

PROPULSION

HELIUM

PRESSURIZING

A

rd

VALVE

R

CS

HELIUM

PRESSURIZING

VALVE

Figure3-30.

ExplosiveDevicesBlockDiagram

201LMA10-56

3-87/3-88

Page 137: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

OOO MO © oon Im

LMAT790-1

SECTION

IV

PRELAUNCHOPERATIONS

4-1,

GENERAL

This

sectioncovers

theprelaunchoperationsand

faci

liti

esused

forth

eLEM

atth

eKennedySpace

Center(KSC).

Theprimarypurpose

oftheseoperations

isto

veri

fythefu

ncti

onin

gof

eachsubsystem

in

alloperationalmodes

withoutremoving

theequipmentfrom

theLEM.

4-2,

PRELAUNCH

TESTSAND

OPERATIONS.

Functionaland

verificationtestswillbeperformedonthecompleteLEM

systemusing

fluid,

mechanical

andelectrical

groundsupportequipment.

These

testsaremainlyautomatically

cont

roli

edby

theAccept-

ance

Checkout

Equipment

-Spacecraft

(ACE-S/C).

Prelaunch

verificationtestswillbeperformed

insequence

attheHypergolicTest

Building,

theRadio

FrequencySystemsTest

Facility,

theManned

SpacecraftOperations

Building,

andtheVehicleAssem-

blyBuilding

FinalCheckout,

beforecountdown

willbeperformedon

thelaunchpad

(seefigure

4-1)

.

4-3.

ACCEPTANCECHECKOUTEQUIPMENT

-SPACECRAFT.

TheAcceptanceCheckoutEquipment

-Spacecraft(ACE-S/C)

isageneral-purposespacecraftcheckout

system

forautomatic,

semiautomatic,

ormanually

controlledprelaunch

testingoftheLEM

system.

Itsca

pabi

liti

esin

clud

egenerationof

test

commandsand

stim

uli,

monitoringspacecraftsubsystem

performance,

conversionandprocessing

ofdata,measurement

ofsubsystem

resp

onse

stc

test

stimull,

diag

nost

ictesting,

andenablingcommunicationbetween

theLEM

andpersonnel

atACE-S/C

controls.

TheACE-S/C

cons

ists

ofan

ACE-S/CGround

Stat

ion,

ACE-S/C

Carry-On

Equi

pmen

t,an

dACE-S/C

PeripheralEquipment.

TheACE-S/C

GroundStation

isadapted

tosp

ecif

icLEM

subsystemsby

theACE-S/C

Carry-On

Equip-

ment,

and

totheLEM

servicingequipmentby

theACE-S/C

PeripheralEquipment.

TheACE-S/C

Carry-OnEquipmentcomprises

anUp-LinkandaDown-Link.

TheUp-Linkreceives,

decodes,

con-

diti

ons,

andconverts

digi

taltest

commandsfrom

theACE-S/CGround

Stat

ionandroutesthem

tothe

proper

inputpointsofthesubsystemsundergoing

test.

TheDown-Linkmonitors

theperformanceof

the

LEM

subsystems,

and

conditions,

codes,

andmultiplexes

this

data

fortransfer

toth

eACE-S/CGround

Stat

ion,

TheACE-S/C

PeripheralEquipmentperforms

thesame

generalfunctions

fortheLEM

ground

supportequipment

thattheACE-S/CCarry-Onequipmentperforms

fortheLEM

subsystems.

TheACE-

8/C

Carry-OnEquipmentandPeripheralEquipmentaredescribed

ingreater

deta

ilin

SectionV.

TheACE-S/C

Ground

Stat

ion,

Carry-OnEquipment,

Peripheral

Equipment,

andassociatedLEM

groundsupportequipment

completely

testtheLEM

system,

includingtestingacrosssubsystem

inter-

faces;

completely

test

independentsubsystems;

provideanydesireddegree

oftest

automation;pro-

cess

largequantitiesofdataforreal-time

display;

adapt

tosystemortest-modechangesby

easilyac-

complishedprogram

changes;

perform

diagnostictesting

ifamalfunction

isdetected;andperform

self-

checkfunctions,

TheACE-S/C

Grou

ndStation

equipmentis

inthreeprimary

areas:

thecontrolroom,

thecomputerroom,

and

theterminal

faci

lity

room.

The

controlroom,

which

contains

thedatadisplaysubsystem

andpart

ofthecommand-generation

sub-

system,

contains

the

testconductorconsoleand

controlconsoles

forthefollowingLEM

subsystemsand

sections:

Instrumentation,

Communications,

Environmental

Control,

ElectricalPower,

primary

guid-

anceandnavigation,

stabilizationand

cont

rol,

andPropulsionandReactionControl.

Cathode-ray

tubes

that

disp

layrea!-timedatafrom

thecomputerroom

inalpha-numericform

are the

primary

displayde-

vices.

Thesearesupplementedbyanalogand

digitaldisplays.

Asummary

ofth

ecompleteLEMtestis

displayed

tothetestconductor

athisconsole

inthecontrolroom;

detailedsubsystem

testsaredisplayed

tothesubsystemengineers

attheircontrolroom

consoles,

The

controisenablethreemodes

oftesting.

Inthemanualmode,

engineersmanually

sele

ctindividual,programmed,

test

commands.

Inthesemi-

automaticmode,programmed

subroutines

that

cont

ainoneormore

test

commandsare

also

sele

cted

manually.

Intheautomatic-with-manual-overridemode,

testcommands

aregeneratedunderprogram

control,

insynchronizationwithareal-time

clock.

15October

1965

.4-

1

Page 138: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

LMA790-1

Thecomputerroom

contains

thedataacquisitionsubsystem,

thecomputersubsystem,

anddata-

transmissionequipment.

Thedataacquisitionsubsystemprepares

spacecraftcheckoutdataforre-

cord

ing,

display,

and

fortransfer

tothecomputingsubsystem.

Thecomputingsubsystem

cons

ists

ofadata-processingcomputer,

adigitalcommand

computer,

andacommonmemory.

Thedata-

processingcomputercompares

spacecraftcheckoutdatafrom

thedataacquisitionsubsystem

with

programmed

tolerancesand

conditions

itforCRT

disp

lay.

Ifanout-of-tolerance

cond

itio

nis

detec-

ted,

anappropriatein

dica

tion

isprovided

toth

ete

stengineer

atth

emalfunctioningsubsystemstest

console

inth

econtrolroom.

Diagnosticaction

canbe

initiated

atth

ete

stengineer'sdi

scre

tion

.All

spacecraft

test

commands,

generated

inapa

rall

elformatbyth

edigitalcommandcomputer,

arecon-

verted

toaserialformat

fortransmissiontothe

spacecraft.

Theterminalfa

cili

tyroom

contains

part

ofthecommand

generationsubsystem,

part

ofthedatadi

spla

ysubsystem,

timingequipment,

and

theterminalpatch

faci

lity

.Theterminalpatch

facility

transmits

test

datato

andfrom

theLEM

andtheassociatedgroundsupportequipment

viacoaxialhardlinesandrepeater-

amplifiers.

4-4.

PRELAUNCHCHECKOUT.

|

Theprimary

goal

ofth

eprelaunchcheckout

atKSC

isto

asce

rtai

n,onth

eground,

that

theLEM

can

achieve

itsintendedmission.

Toensure

thatthis

goal

isreached,

prelaunch

verificationtests

atthe

EasternTestRange(ETR)

areperformed

(figure4-1).

AbrieidiscussionoftheLEM

checkoutopera-

tions

ateach

facility

ispresented

inthefollowingparagraphs.

4-5.

HYPERGOLICTEST

BUILDING.-

AreceivinginspectionoftheascentstagewillbeperformedintheWest

CelloftheHypergolicTest

Building(HTB).

Checkoutandservicingoftheheattransport

sectionoftheEnvironmental!ControlSub-

system(ECS)

willbeperformed

toprovide

coolingcapabilityduringsubsequent

checkout

test

s.Leak

and

functionalchecks

willbeperformedontheascentpropulsionsystem,

ReactionControlSubsystem,

(RCS),

oxygensupplyand

cabinpressure

cont

rol

sect

ion(OCPS),

andwatermanagement

sect

ion.

The

ascentstagewillthenbetransported

totheRadioFrequencySystemsTest

Facility(RFSTF).

Areceivingin

spec

tion

ofthedescent

stagewill

beperformed

intheEast

Cell

oftheHTB.

TheOCPS

will

bechecked

forle

akag

e,andle

akand

func

tion

alchecks

will

beperformedonth

edescentpropulsion

andsupercriticalhelium

storagesubsystems,

using

bothambientand

supercriticalhelium

inthestorage

subsystem.

Thedescentstage

willthenbetransported

totheRFSTF.

4-6.

RADIOFREQUENCYSYSTEMSTEST

FACILITY.

The

ascent

stag

ewill

bemountedonthethree-axis

positioner,

andtheabortsensorassembly(ASA)

will

be

installed.

Guidanceandna

viga

tion

coefficientdeterminationandrendezvousradar

poin

ting

accuracy

andtrackingtestswillbeperformed.

TheS-band

steerableantenna

will

be

tested,

usingan

rfsource

andmotion

inputs

tothepositioner.

An

agsdynamicscheckandan

rfinterference

test

will

beperformed.

The

ascent

stage

willthenbetransported

totheManned

SpacecraftOperations

Building(MSOB).

The

nonflightlandinggear

will

be

installedonthedescent

stage,

andthest

age

will

then

bemountedonthe

three-axis

positioner.

The

landingradarantennawillbe

opticallyalignedand

thelandingradar

boresight

testwillbeperformed,

The

nonflightlandinggezr

willthenberemoved,

andthedescent

stage

willbe

transported

totheMSOB,

4-7.

MANNEDSPACECRAFTOPERATIONS

BUILDING.

An

ascentstage-to-commandmoduledocking

test

wili

beperformedbeforepreparing

theascent

stage

for

mating

tothedescent

stage.

Acheckof

thedescent

stage-to-spacecraftLEM

adapted

(SLA)fit

will

beperformed,

andth

ehe

attr

ans-

portwatermanagement

sectionsoftheECS

willbechecked

forleakage,

beforepreparing

thedescent

stage

formating

totheascent

stag

e.‘

The

ascent

anddescentstages

will

bemated.

Chec

ksof

electrical

circuitry,

andGuidance

Navigation

andControl(GN&

C)Subsystem

functionaltests,

willbeperformed.

The

alignmentopticaltelescope

—(AOT)

will

be

cali

brat

edand

therendezvousradar

ante

nna,

S-band

ante

nna,

andGN&C

subsystem

will

bechecked

foralignment.

Func

tion

altests

will

beperformed-on

thelandingradar,

therendezvous

radar,

and

thecommunicationssubsystem.

An

integrated

flight

controls

test

andmission

simulation

will

alsobeperformed.

Thevoice-conference

capa

bili

tyof

thecommunicationssubsystem

will

be

verified.

4-2

oe,

-15

October

1965

Page 139: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

PAP PA en

HYPERGOLIC

TES

Receiving

thCatin

Servic

HTS

Leak

CtHTS

Prirur

OCRPSLeak

¢

WMS

LeakC

GSE

Connect

EPS@

trstr.

Laghtns

Fun

Peeqetlant

FRelief

Valve

Engine

Leak

Primary

Che

He

Regu

late

sRedundantC

GaseousHe

RCS

Propel

RCSQuid

C)

He

Relief

Va

RCSKe

Reg.

RCSTCA

L

RCS

Propel

RCSHe

Pre:

RCS

Isolate

RCs

@Enuin

.RCS

Propel!

Catin

Servic

Transporta

HYPERGOLIC

TE:

Receiving

InGSE

Cunnect

OCPS

Leak

¢SHeTank&

SueTank

SHe

Tank

In:

SHe

Rei

Pry

Rehef

Valse

EngineLeak

tadoy

Cha

ulate

RedundantC

GasenusHe

Arcess

Pane

TransportD

Page 140: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

BUILDING

.ASCENTSTAGE ect

gAccess

PanelRemoval

ih&

Servicing

aap

FunctionalCheck&

Servicing(CoolantSupport}

jock

ok

a&

Verdication

wrtationTurm-Onand

Verificativn

bateal

Check

‘9Svstem

Exterior

&@interior

LeakCheck

anctionalCheck

Functiwtal

Checks

‘Noh

ValseLeak@

FunctionalChecks

&He

SO

ValvesLeax

@Functional

Checks

ckValve

Functional

Check

idFlue

Test

{Madders&

DisconnectLow

PressureCheck

*hValves@

Burst

Disc

Leak&

FunctionalChecks

tLeak@

FunctionalChecks

tors@HeSO

ValvesLeak@

FunctionalChecks

WitoldLeakChecks

tFeedSectionGaseuus

S82ColdFlowTest

irigationSectionLeakCheck

Valve&

ManifoldLeakChecis

He

Tank

lauding

@LeakCheck

tGagingSectionVerdication

g.Access

Panel

Installation

ertStage

tyRESTF

RADIOFREQUENCYSYSTEMSTESTFACILITY

-ASCENTSTAGE

MountOn

Three-Axis

Positioner

CabinServicing

GSE

Power&

CoolantConnection&

Veruication

EPS&

InstrumentationTurn-On&

Verdication

ASA

Installation

Communications

Tests

G&N

Turn-On,

Scale

Factor&

IRIG

CoefficientDetermination

EMC

Tests

RendezvousRadar

PointingAccuracy&

Tracking

Tests

S&CTurn-On&AGSDynamicCheck

CabinServicing

TransportAscentStage

toMSOB

BUILDING

-DESCENTSTAGE

‘ction,Access

Pane!Removal

@Vervication

ck

.

nponentsAmbient

LeakCheck

W&

Fill

dion

Inte

yrit

y(HeatLeakCheck

eFunctionalCheck

(System

Eaterior@

Interror

LeakCheck

nctionalCheck

For

thionalChecks

|:

ValveLeak

@Furctional

Checiss

«He

SO

Valves

Leak&

FunctionalChecks

kValve

FunctionalCheck

4Flow

Test

laliation

entStage

toRFSTF

RADIOFREQUENCYSYSTEMSTESTFACILITY

-DESCENTSTAGE

InstallNon-

Flight

LandingGear

MountOn

Three-Aais

Positioner

GSE

Connection©

Werifteation

LandingRudar

Testes

RemoveFrom

Threv-Agts

Positioner

Remove

Non-Fiiytht

LandingGear

TransportDescentStage

toMSOB

Page 141: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

MANNEDSPACECRAFTOPERATIONSBUILDING

-ASCENTSTAGE

Docking

Test:Ascent

Staget.-CM

Inst

allation

Ascent

StageOn

Polarity

Fixture

Mating:AscentStage-lo-DescentStage

MANNEDSPACECRAFTOPERATIONSBUILDING

-MATEDLEM

MANNEDSPACECRAFTOPERATIONS

BUILDING

-DESCENTsTAGE

FitCheck:

DescentStage-toSLA

tnst

allDescentStageOn

Pola

rity

Fisture

HTS

LeakCheck

WMS

LeakCheck

Mating

DescentStuge-to-AscentSuge

nl.

QL

POLARITYFIXTURE

Catin

Servicing

HTS

Prinury

©Re

dund

ant.

Loop

LeakCheck

HTS

Primary

Loop

Servicing,

Evacuste©

Bavkiall

GSE

Power

&CoclantConnection&

Veri

fica

tion

EPS

€InstrumentationTurn-On@

Veritication

InstrumentationTests

EPS

Saitchover

&Made

Select

Test

PyrotechnicsCarcuitry

Resistance&

IsolationTest.

Pyrotechnics

Circuit

Functional

Test

G6é

NSNTern-On.

Functional

Test.PTC

Temperature

Cor

GON

Checkout,

Seale

Factur

@TRIG

Coctficsent

Deters

LGC

Clock

Test

Stal

aliz

atio

nLaopResponse

Test

LGCROPE

Module

Veri

fica

tion

LGC

Margin

Test

LEM

Alignment

RendezvousRadarAntennaG

@N

AlsenmentCheck

G4&N

FineAlisnment

AOT

CalibrationTest

$&C

Turn-On,AGS

FunctionalCheckout,

&Jet

Locic

:

RendezvousRadar&

LandingRaderTurn-On&RF

Chec

RendezvousRadarAntennaCoverace

Test

RendezvousRadarSurface&

SkinModes

Tracking

Test

CommunicationsSystem

Functional

Evaluation

Pola

rity

Checks

FCSCheckout

MissionSamutation

CabinServicing

InstallLEM

InAl

titu

deChamber

ALTITLTECHAMBER

A.Sea

LevelTests

CabinServicing

GSE

Power&

Coolant

Connection

&Verdication

EPS

€@InstrumentationTurn-On

&Ve

rifi

cati

on

WMS

LeakCheck&

Servicing

OCPS

Leak

Check@

Servicing

LightingCheck

-Exterior&

Interior

Crew

Support

RestraintsCheck

WasteManasement

Section

Leak

&FunctionalChecks

HTS

Redundant

LoopServicing

Evacuate&

Backiill

HTS

FunctionalCheck

OCPS

Servicing&

FunctionalCheck

WMS

FunctionalCheck

ARSWMS

LeakCneck

Cabin&

Test

HatchLeakCheon

FlightHatch

FitCheck

OCPS

Servicing:

Evacuate&

Backfill

WMS

Servicing:

Evacuate

&@Backfill

ARS

Servicing

CahinServicing

Unmanned

Tests

Chamber

Evacuation

ECS

FunctionalChecks

Chamber

Repressurization

CahinServicing

ARS

Servicing

HTS

Servicing

OCPS

Servicing

WAS

Servicing

CatinServicing

MannedTests

Chamber

Evacuation

ECS

&@Crew

Provisions

Test

Chamber

Repressurization

CabinServicing

Post-Servicing

Cabin

Servicis

TranspoctLEMtu

LandingGear

Installation

Fisture

LANDINGGEARINSTALLATIONFIXTURE

LandingGear

instaliatiun@

FunctionalTest

Pyerotects

Mechanieal

Installation

Installation

&@Exterioe

Refurbishroent

TransportLEM

tySLA

Stand

SLASTAND

N+LEM-to-CSM

SLA

IrstullPlathorms

&ACE

Carcy-On

Equipment

Transport

Spacecraft

toVAB

Page 142: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

Yr i i

iClose-out

biti

on

eck

VEHICLEASSEMBLYBUILDING

SpacecraltStackWithLauech

Vehaele

CalanServing

GSE

Power@

Coolant

Gouancction

&@Veritiestion

UnitulicalCommection

&@Veriiscation

EPS

€InstrumentatessTurn-On

&Veriacation

Radar

Tests

G@

SNTurn-On,

Functional

Chevhk,

State

Factor@

'RIG

Coeis.

S$@C

Torn-On

@AGSFam

tion

alCaceh

FOS

Cheehout

FOS-RCUS

Chethout

Conmuntications

Tests

LEMCSM

DheosterEMC

Tests

LEM

RendesyousRedarOSM

Transpender

Compatitabty

Test

RCSHe

Rezulators

Leak@

FunctionalChecks

HOS

Propellant

Bladder

Lean(neck

GaseousHe

ColdFlow

Test

PressureDecoy

Tests

TransportSpace

Vehicte

toLauachPad

Determination

15

October

1965

Page 143: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

‘LMA790-1

LAtTNCHPAD

1FINALCHECKOUT

LEATRELChecks

Modi

ileServiceStructureMoved

inPlice

CatanSeruieine

GSE

Poser&Cotant

Connection@

Verification

EPS@

lostrumentationTurn-On€

Veri

fica

tion

S44C

Turn-Ou

@AGS

Functional

Cheek

GEN

Turn-On,

FunctionalCheck,

Scale

Factor@

TRIGCuc@

Deters

-atcan

GEN

Tests

RadarTests

:LEM

RendesiousRadarCSM

Transponder

Compatitubity

Tost

Conmunicatrars

Tests

FCS

Test

PressureDecay

Tests

Pyrotechnics

FunctionalCheck

uw.

COUNTDOWNDEMONSTRATION

Water

Loading

CountdeanDemonstration

ECS

Func

tion

alCheck

aCOUNTDOWN

———)>

RCS

Prop

ella

rtGasinsSection

Veri

ftca

tiin

€@Moperwahe

Deai

tieg

GSE

Power

@Cotant

Connection@

Veri

tiea

tien

EPS

€tnstrumentationTurn-On

@Veriicater

Radar

Tests

.SEC

Tests

GEN

Tests

FCS

Checkout

G&NURCoctlicient&

Svate

PacturDetermination

-Communications

Tests

,EPS

Flcht

Batt

ery

Installation

EPS

Switchover

@In

tern

alPowerCheckout

ACE

Carry-OnEquipmentRemoval

AftEquipment

Bay

Close-out

Pyrotechnics

Initiator

Installation

‘Pyrotechnics

Rattery

Inst

alla

tion

Cabin

LightingsCheck

LiquidHe

Loading

GaseousHe

Laouding

GaseousOxygen

Loading

CatunClose-out

inst

allLEM

ForwardHatch@RemoveGSE

Tunnel

Cabin

Purge&ARS

Purge

SLA

PlatformRenovals@SLA

Close-out

-Move

MobileServiceStructure

toLaunch

Posi

tion

SwitchoverFromGroundPower

toFl

ieht

Batt

ers

Power

B-201LMA10-41

e4-1,

ETR

CheckoutTestSummary

Chart

4-3/4-4

Page 144: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

0 0 Gj 0 0 0 0 0 0 9 0 J J J J J ] J ]

LMA790-1

TheLEM

will

thenbe

installed

inth

ealtitude

chamberand

allECS

sea-levelleakandfu

ncti

onal

checks

will

beperformed,

TheECS

will

then

beserviced

inpreparationforunmannedLEM

alti

tude

test

ing,

which

will

demonstrateth

estructural

integrityof

theLEM

andth

ecapability

ofth

eECS

tosupport

manned

altitudetests.

Manned

altitudetestswillthenbeperformed

todemonstrateECS

andcrew-pro-

visions

capa

bili

ties

withaman

inth

esystem.

TheLEM

will

then

betransported

toth

ela

ndin

ggear

fixt

ure,

whereth

efl

ight

land

inggear

will

be

inst

alle

dandchecked.

Explosivedevices

will

thenbe

in-

stal

led,

and

inst

alla

tion

ofth

ethermal

shield

will

becompleted.

TheLEM

will

thenbemated

toth

eCSM/

SLA,

andtransported

toth

eVehicleAssembly

Buil

ding

(VAB).

4-8.

VEHICLEASSEMBLY

BUILDING.

‘TheLEM,

mated

totheCSM/SLA,

will

bestackedonth

elaunchve

hicl

e;spacecraft-to-launchvehicleand

GSEinterfaces

will

be

veri

fied

;al

lLEM

subsystems

will

bechecked;

andtwooveralltests

will

beper-

formed.

The

fullyassembledApolloSpaceVehicle

will

then

betransported

(inth

eve

rtic

alposition

ona

tractor-crawler)

toth

elaunchpa

d.

4-9.

LAUNCH

PAD.

On

thelaunchpa

d,testsofLEM

subsystems

wili

includeaLEM-to-launchpadEMI

check,RCS

andpro-

puls

ionsubsystemspressure-decay

tests,

GN&C

andradar

func

tion

alte

sts,

andcommunications

veri-

fica

tion

.A

countdowndemonstration

will

beperformed

toverify

thattheterminalcountdownprocedures

canbeaccomplished

inth

eal

lott

edtime.

Aftersimulated

flight

test

(inc

ludi

ngLEM

subsystems),

all

hypergolicservicingand

supercriticalhelium

servicingwillbeaccomplished,

flight

batteries

willbe

in-

stalled,ECS

servicingwillbecompleted,

allACE-S/CCarry-OnEquipment

willberemoved

(followinga

fina

lsubsystems

checkout)

pyrotechnics

will

be

inst

alle

d,and

a!!

fina

llaunchpreparations

will

bemade

(including

closingof

thecabinandSLA

hatc

hes)

.

15October

1965

4-5/4-6

Page 145: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

Oooo mono

LMA790-1.

SECTIONV

GROUNDSUPPORTEQUIPMENT

5-1.

GENERAL.

TheLEM

GroundSupportEquipment(GSE)

cons

ists

oftheACE-S/CCarry-On

EquipmentandPeripheral

Equipment,

SpacecraftandServicingEquipment

ControlandCheckoutEquipment,

ServicingEquipment,

ConditionandEquipmentSimulators,

HandlingandTransportationEquipmentandWorkstands,

andBench

MaintenanceEquipment.

Common

andconcurrentusageGSEcomprisesNAAGSE

and itemsthat

canbe

used

forch

ecko

ut,servicing,

hand

ling

,and

auxi

liar

yfu

ncti

onsof

theLEM

andCommand/Servicemodules.

5-2.

ACE-S/CCARRY-ONEQUIPMENTANDPERIPHERAL

EQUIPMENT.

‘TheACE-S/C

Carry-OnEquipmentandPeripheralEquipment

arespacecraft-associatedextensionsof

theAcceptanceCheckoutEquipment

-Spacecraft(ACE-S/C)Ground

Stat

ion.

TheACE-S/CCarry-On

Equipment

adaptstheACE-S/CGround

Station

totheLEM

subsystemsand

is,

forthemost

part,

car-

ried

into

theLEM

whenACE-S/C-controlledprelaunchtestsare

tobeperformed.

TheACE-S/C

PeripheralEquipmentadapts

theACE-S/CGround

Stationto

theLEM

ground

supportequipmentand

servicingequipment,

enablingACE-S/C

cont

rolof

nonelectronicfu

ncti

ons

oftheLEM

and

theuse

ofspecialelectronic

testcircuitry

inelectronicground

supportequipment.

5-3.

ACE-S/CCARRY-ON

EQUIPMENT.

TheACE-S/C

Carry-OnEquipmentcomprisesanUp-LinkandaDown-Link.

TheUp-Linkreceives

digitaltestcommands

generatedby

theACE-S/CGround

Stat

ion,

decodesthem,

and

appliesprepro-

grammed

stimuli

toaddressed

inputs

intheLEM

subsystems.

TheDown-Link

continuouslymonitors,

samples,

conditions,

codes,

andinterleavesLEM

subsystemperformancedataservicingequipment

response

data,

andLEM

telemetry

data;

theresultantserialdatatrain

istransmitted

totheACE-8/C

GroundStation.

.

2,048

stimuli(discreteor

anal

og),

or

128single-point

diff

eren

tial

output

analog

sign

als,

orvarious

combinations

thereof,

androutesthesestimuli

totheproperLEM

subsystem

inputor

inputsuponre-

ceiptofcoded

testcommandsfrom

theACE-S/C

GroundStation.

Inaddition,

theDTCS

transmitsa

check-status-reply

signal

totheACE-S/CGround

Stationwhenever

testcommands

arereceived,

auto-

maticallyprovidingself-checkinformation

for

validityanalysisandassuringtheoperatorsof

theac-

curacy

ofthecheckoutdataprocessedby

theDTCS.

TheDTCSused

intheLEM

comprises

are-

ceiver-decoder,

guidanceandnavigation(G&

N)

computer

buffer

unit,

baseplate

unit,

conventional

relaymodule,

latchingrelaymodule,

anddigital-to-anaiogconvertermodule.

Thereceiver-decoderreceivesACE-S/C

Ground

Stationtest

commands

atratesup

toonemillion

bits

persecondandroutes

test

commandsto

abaseplate

unit

groupor

totheG&Ncomputer

buffer

unit

.‘

TheG&N

computer

buffer

unit

processes,

checks,

androutes

test

commands

receivedfrom

there-

ceiver-decoderandaddressed

totheLEM

guidancecomputer(LGC)

oftheGN&C

Subsystem,

Up

toeightbaseplateunitscanbeused

toformonebaseplate

unit

group;

up

tofour

baseplate

unit

groups

canbeusedsimultaneously.

Allreceiver-decoderoutputsnotintended

for

theLGC

areaddressed

toone

baseplate

unitgroupand

toonebaseplate

unitwithin

that

group.

Theaddressed

baseplate

unitselectsone

offour

modulesat.

itsoutput.

The

four

outp

utmodulescanbeanycombination

ofconventionalrelay

modules,

latchingrelaymodules,

anddigital-to-analogconvertermodules.

The

combination

ofmodules

useddependsupon

thetype

ofinputrequiredby

theLEM

subsystem

undergoingtest.

The

conventionalrelaymodule

controlstheapplicationofstimulitotheLEM

subsystemsuponACE-S/C

Ground

Stationcommand

appliedto

itbya

baseplate

unit.

The

latchingrelaymoduleperforms

thesame

functionastheconventionalrelaymodule.

The

latchingre-

laymodulerelayschange

stateonly

uponDTCScommand,

notuponpower

appl

icat

ionorremoval.

The

15October1965

5-1

Page 146: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

lelaatt

LMA790-1

latc

hing

relaymodule

isused

insi

tuat

ions

where

loss

ofpower

toaconventionalrelay

that

controlsa

crit

ical

signal

orbias

wouldcausetherelay

todropou

tandtherebydamage

thesubsystemundergoing

test.

The

digi

tal-

to-a

nalo

gconvertermoduleconverts

itsbinary

inpu

tfrom

thebaseplate

unit

into

analog

sign

als

forapplication

totheLEM

subsystems.

,

ReceiverandBaseplate

Unit,

PartNo.

410-92200,

comprises.onerecetver-decoder,

onebaseplate

unit,

andfour

modules

(any

combination

ofrelaymodulesanddi

gita

l-to

-ana

logconvertermodules).

Carry-On

Command

Unit,

PartNo.

410-92201,

comprises

twobaseplate

units,

and

eigh

tmodules(any

combination

ofrelaymodulesordigital-to-analogconvertermodules).

5-5.

Down-Link,

Theresponses

oftheLEM

subsystemsto

test

stim

uliap

plie

dby

theDTCS

aremon-

itored

bytheDown-Link,which

isadigitalte

stmeasuringsystem(DTMS).

TheDTMSreceivesperform-

anceandresponsedatafrom

theLEM

subsystemsfromLEM

telemetry,

andtrom

theACE-S/C

Peripheral

Equipment,

part

ofwhichmonitors

theperformance

oftheLEM

servicingequipment.

TheDTMS

con-

tinu

ousl

ymonitorsandcodes

theresponse

data,

arrangesthem

into

atelemetryformat,

androutesthem

totheACE-S/C

Grou

ndStation

forpr

oces

sing

anddi

spla

y.

TheDTMS

performstwomajor

functions:

thatofapcm

response

sectionandadata-interleavingsec-

-ti

on.

The

analogportionofthepcm

response

sectionconditionsandcommutates

analogresponsedata

andconverts

thedata

into

analogparametersand

into

variousdiscretevalues,

providingparallel,

8-

bitbinaryrepresentations

ofthecommutated

test-pointoutputs.

The

digitalportion

ofthepem

response

sectionconditionsandcommutatesdigitalparameters,

providingsinglebinary-digitrepresentations

of

the

individualtest-pointoutputs.

These

singlebinary

digitsarethenmultiplexedwithother

digi

taldata

toform

parallel

8-bi

twords.

Thesewordsaremultiplexedwith

theoutputs

ofth

eanalogportionof

the

pcm

response

section,

converted

toaserialformat,

and

applied

tothedata-interleavingsection.

The

data-interleavingsectionmultiplexesthesedatawithdatareceivedfromLEM

telemetryandfrom

the

ACE-S/C

PeripheralEquipment

andtransmits

theresultant

seri

aldatatrainto

theACE-S/C

Ground

Station.

Thepcm

response

sectioncomprises

adi

gita

lsignalconditioningandmultiplexing

unit,

analog

Signalconditioningandsampling

unit,

G&N

signalconditioningandswitchingmatrix

unit,

highsampling

ratesignalconditioning

unit,

andacarry-onpcm

system.

The

DigitalSi

gnal

ConditioningandMultiplexing

Unit,

PartNo.

410-92211,

usestiming

signalsfrom

the

carry-onpcm

system

toco

ndit

ionandtime-multiplexup

to320

event

(on-

off)

signalsfrom

theLEM

sub-

systems

into

an

eigh

t-li

nepa

rall

elformat

fortransmission

tothecarry-onpcm

system.

TheAnalog

Signal

CcnditioningandSampling

Unit,

PartNo.410-92212,

usescarry-onpem

system

timing

Signals

tosampleup

to250

analog

signalsfrom

theLEM

subsystemsat

arate

of

1samplepersecond

andup

to100analog

signals

atara

teof

10samplespersecond.

Thesearetransferred

tothecarry-on

pem

system

inapulse-amplitude-modulated(pam),

non-return-to-zero

(nrz)format.

The

G&N

Signal

ConditioningandSwitchingMatrix

Unit,

PartNo.

410-92213,

receives

39uncondi-

tionedanalog

signalsand

11conditionedanalog

signalsfrom

theLEMGN&C

Subsystem.

Of

the39un-

conditionedanalog

signals,

32arerouted

tothisassembly's

switchingmatrix

unit,whereone

ofthe

sig-

nals

isselectedforsampling

atarate

of400samplesper

second.

Allthe

inputsignalsareappliedto

thisassembly's

50-channelsubcommutator,where

theyaresubcommutated

into

apam

datatrainand

routedto

thecarry-onpem

system.

The

HighSamplingRate

Signal

Conditioning

Unit,

PartNo.

410-92214,

usestiming

signalsfrom

the

carry-onpcm

system

toaccept

50unconditionedand20conditionedsignalsfrom

theLEM

subsystems.

Ofthe

50unconditioned

signa!s,

20are

conditionedandapplied

tothecarry-onpcm

system.

The

re-

maining

30unconditionedsi

gnal

sare

cond

itio

nedandsubcommutatedwiththe20

conditioned

input

sig-

nals.

These

areapplied

tothecarry-onpem

systeminapam

format.

:

TheCarry-OnPCM

System,

PartNo.

410-92210,

receivestimingsignalsfrom

thedata-interleaving

section,

and

128

channels

ofanalog.data,pam-nrz

data,

and

digitaldatafrom

the

signalconditioning

unitsdescribedpreviously.

Thecarry-onpcm

system

suppliestiming

signals

tothepreviously

de-

scribed

signalconditioning

units;

commutates

preconditionedanalogdata;

subcommutates

andsuper-

commutates

conditionedanalog

data;

converts

allanalogdata

into

parallel,

8-bit

digitalwords,

multi-

plexesanalogwords

andeventwords

into

spec

ific

word

loca

tion

swi

thin

therequireddataformat;and

convertspa

rall

eldi

gita

ldata

into

aserial,pcm-nrz

datatr

ainfortr

ansf

erto

thedata-interleaving

section.

The

functions

ofthedata-interleavingsectionareperformedbyDataInterleaver,

Part

No.

410-92232.

This

unitinterleavesLEM

subsystemperformancedatafrom

thecarry-onpcm

system,

datasupplied

byLEM

telemetry,

anddatafrom

theservicingequipment-ACE-S/C

adapter,

which

ispart

ofthe

5-2

15October

1965

Page 147: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

oom oo

OOo oO

LMA790-1

ACE-S/C

PeripheralEquipment.

Operationofth

edatainterleaver

Iscontrolled

bycommand

signals

from

theDTCS

andtimingsignalsfromLEM

telemetry.

The

interleavedLEM-subsystem,

telemetry,

andservicing-equipment

dataaretransmitted

tnareturn-to-zero,

bi-phase,pcm

format

totheACE-

8/CGround

Station.

The

datainterleavingsystemassembly

alsosendsnoninterleavedtelemetrydata

totheACE-S/C

Grou

ndStation.

5-6.

ACE-S/CPERIPHERAL

EQUIPMENT.

TheACE-S/C

Peripheral

Equipmentcomprises

ServicingEquipment

Digi

talCommand

System,

Part

No,

410-92241,

andServicingEquipment-ACE-S/C

Adapter,

PartNo.

410-92240.

Generally,

the

servicingequipment

digi

talcommandsystem

functionsasaDTCSfor

allservicingequipmentand

groundsupportequipment

involved

inthetestingoftheLEM

withACE-S/C.

Itincludesareceiver-

decoder,

baseplate

units,

conventionalrelaymodules,

latchingrelaymodules,

anddigital-to-analog

convertermodules,

allof

which

function

asdescribed

inparagraph

5-4.

The

servicingequipment-

ACE-S/C

adapterreceivertimingsignalsfrom

thedatainterleaver,

andup

to1,000

eventsignalsand

200analogsignalsfrom

theLEM

servicingequipmentandground

supportequipment.

Thesearemul-

tiplexed

into

apcm-nrz

datatrainandtransferred

tothedata

interleaver.

5-7.

EQUIPMENT

FORCONTROLANDCHECKOUTOFSPACECRAFTAND

SERVICINGEQUIPMENT.

5-8.

RENDEZVOUSRADAR/TRANSPONDERANTENNA

HAT,

PART

NO.

410-11960.

Therendezvousradartransponderantenna

hatsuppressesrendezvousradar/transponderantennaradia-

tion

without

substantially

altering

thevoltage-standing-wave-ratio(VSWR)

oftheantenna.

Theantenna

hat

isused

insamplingantennaacquisitionthresholdand

acquisitiontime,

r-ftransmittercharacteris-

tics,

and

inconductingLEM

-CSM

compatibility

tests.

The

hat

isametallic

shell

that

fits

around

the

antenna.

Itcontainsr-flossymaterial

toabsorbtheindicatedpower

atmicrowave

frequencies.

5-9.

CIRCUITANALYZER

TEST

SET,

PART

NO.

410-12920.

The

circuitanalyzer

test

setisarack-mounted,programmed

test

unit

used

toautomaticallycheck

groundsupportequipment

interfacewiring.

The

test

setconsists

basically,

ofaprogrammer,

volt-

age

supplies,

test

circuits,

andaprintout

device.

Itis

used

toperiodically

checkand

calibratedirect

and

indirect

cablerunsbetweenconnectors

atthecontrolcenterandthose

atthecontrolled

unitsand

thetestvehicles;

automatically

controlmore

than100

relays;

verifytheassociatedrelayresponse

lines;

andchecktransistor

circuitsdrivingtheserelays.

The

test

printsout

allindicationsofcircuit

failures,

out-of-tolerancevoltages

andresistances,

anddiscontinuities

athigh

potentials.

5-10.

RENDEZVOUSRADARANDLANDINGRADARELECTRONICCHECKOUT

ADAPTER,

PART

NO.

410-31010.

Therendezvousradarand

landingradar

electroniccheckoutadapteroperates

intwomodesandpro-

videsbufferand

line

driver

circuitsforGSE

teststimuliandmeasurement

data

that

areroutedbetween

theradar

testpointsand

theRadar

SectionCheckoutStation(RSCS).

The

checkoutadaptercontains

two

identicalservo

loopsandanumberof

attenuators,

buffer/driveramplifiers,

andswitches,

forming

twogimbalangleandcommandcircuits

forcheckout

oftheRR

shaftandtrunnionservo

loops.

Inthe

readoutmode,

theservoloops

followthegimbalangledatafrom

theradarresolvers,

convert

itto

apulseformat

(usinganincremental

shaftencoder),

andsend

itto

up-downcounters

intheRSCS.

Inthe

programmode,

themotors

intheserve

loonsaredrivenby

test

signalsfrom

theprogrammer.

The

landingradarquadraturedoppler

signalsareselectedandrouted

totheRSCS

formeasurementand

dis-

play.

5-11.

LANDINGRADARANTENNACHECKOUT

ADAPTER,

PART

NO.

410-31020.

The

landingradarantennacheckoutadapter,

controlled

bytheRadar

SectionCheckout

Station(RCSCS),

exercises

thelandingradarreceiverchannelsduringsystem

checkcut.

The

checkoutadapter

receives,

throughtwowaveguides,

aportion

ofthelandingradartransmitterssignalsand

distributes,modu-

lates,

andattenuates

thesignals

toprovidecoherent

test

stimuli

totherecéiver

channels.

The

landing

radartransmitteroutputs

arecoupledthroughwaveguide

switches

totheSingle

SidebandModulator/

(SSBM)

forstimulus

insertion.

The

velocitysensortransmitter

output

isfirst

split

into

threeequal

Signalsbeforemodulation.

TheSSBM

outputsarethen

attenuated

androuted

tothelandingradarre-

ceiver

test

input.

TheRSCS

controls

allwaveguide

switchesandprogramstheattenuatorsastestre-

quirements

dictate.

Beforestimulatingthereceiver,

theRSCS

selectstheappropriatetransmitterand

SSBM

outputs

fortransmission

totheRSCS

formeasurementand

calibration.

15October

1965

5-3

Page 148: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

LMA790-1

5-12,

RENDEZVOUSRADARANDLANDINGRADARMICROWAVECHECKOUTADAPTER,

PART

NO.

410-310-30.

Therendezvousradarand

landingradarmicrowave

checkoutadapter(MCA),

controlled

bytheRadar

SectionCheckout

Station(RSCS),

couplesandroutesmicrowave

signalsto

theradarequipmentduring

sys’em

chec

kout

.TheMCA

isconnected

toth

eotherradarsectioncheckoutad

apte

rs.

The

solenoid-

operatedwaveguideswitchesandattenuatorsof

theMCA

are

controlled

bytheRSCS

tocouplelanding

radartransmitteroutputsfrom

thelandingradarcheckoutadapter

totheRSCS

forspecialdi

spla

yand

measurement,

tocouplerendezvousradartransmitteroutputs

toth

eRSCS

formeasurement

andprovide

receiverstimuli

tochecktherendezvousradarmodes,

and

tocouplerendezvousradartransmitter

out-

putsdi

rect

lyto

thecorrespondingtransponderandtransmit

thetransponder

outp

utto

thereceiverduring

RR/T

compatibility

tests.

5-13.

C-BANDANTENNAPROBE

ASSEMBLY,

PART

NO.

410-32020.

TheC-bandantennaprobeassembly

isapo

rtab

letest

unit

that

consists

offour

antennaprobes,

aselec-

torbox,

andr-

fcablesused

tocouple

r-fenergyfrom

theLEM

BeaconAntennas

toRadarTransponder

andRecoveryBeaconCheckout

Unitduringsystem

checkout.

Theantennaprobesaremountedon

the

LEM

exterior,

coveringthebeaconantennas,

andarehardlinedto

thebeaconcheckout

unit

duringte

st-

ingof

suchparameters

astransmitterfrequencyandpoweroutput,

replypulsewidth,

frequencyand

risetime,

andreceiveroperation.

The

selectorboxallowsswitchingfromoneantenna

tothe

otherto

faci

lita

teend-to-endtestingofthebeaconsandantennas.

5-14.

VHF

IN-FLIGHTANTENNASADAPTERASSEMBLY,

PART

NO.

410-32060.

TheVHF

in-flightantennasadapterassembly

tsaportable

testunitthatconsists

ofthreeantennacou-

plers,

theantennaselectswitchboxassembly,

andr-fcablesused

tocoupler-fenergybetween

the

LEMvhf

antennasandtheCommunicationsSubsystemMaintenanceTest

Stationduringsystem

check-

out.

The

antennacouplers,

whichareconstructedof

r-f{

lossymaterial

tosuppress

ante

nnaradiation

without

substantially

alteringtheantennavoltage-to-standing-wave-ratio,

aremountedon

theLEM

ex-

terior,

coveringthevhfantennas.

The

outputs

ofthecouplers,

selectedby

the

switchboxassembly,

areeither

hardlinedortransmittedthroughre

radi

atin

gantennas

tothemaintenancetest

stationfor

measurementanddisplayof

suchparameters

astransmitterfrequencyandpower

output,

andreceiver

operation.

5-15.

RANGINGTESTASSEMBLY,

PART

NO,

410-32120.

Theranging

test

assembly

isaportable,

manually

controlled

rack.

Theassembly

verifies

that

the

PulseRangingNetwork{PRN)

rangingchannel

oftheS-bandairbornetransponderresponds

correctly

toPRN

codesgenerated

tosimulatelunarornear-earthexcursions,

APulseNetwork

(PN)encoding

anddecodinggeneratorandarangingreceiverprovide

circuitparameters

tocheckrangingmodede-

lay,

modulationphasedetector

outp

utbandwidth,

voltage-controlled

oscillator

(VCO)

output,

phase-

modulated

signal

sensitivity,

andsignalinterference.

Theassemblyprovides

indicationoftestre-

sults,

andhasconnectors

forexternallymonitoringcodecomponents.

5-16.

SIGNAL-SWITCHINGRACK,

PART

NO.

410-32150.

The

signal-switchingrack

consists

ofsixrack-mountedpanels;

itpermits

theRadarTransponderand

RecoveryBeaconCheckout

Unit

andth

eCommunicationsSubsystemMaintenanceTest

Station

tobe

connected

toany

ofninevehiclesduringsubsystem

checkout.

Therack

containsprovisionsforam-

plifying,

attenuating,

andmonitoringr-

fsignalsbetweenthevehicles

and

thetest

stations

and

forsim-

ultaneoustestingof

twoormore

differentsupporteditems

indifferentvehicles.

5-17.PYROTECHNIC

INITIATORTEST

SET,

PART

NO.

410-62050,

The

pyrotechnicinitiator

test

set

isaself-poweredportable

meterused

toverify

theprefiringintegrity

ofsquibvalve

igniterbridgewiresprior

tovehicle

installation.

Testing

isnondestructive

but

isnormally

conductedbehindaprotective

shield

toensurethesafetyoftheoperatorandtheequipment.

Thepyro-

technic

init

iato

rtest

setmeasures

and

dire

ctly

indicates

theresistance(fromzero

to30-ohms)

ofthe

squibvalvebridgewirewhilemaintainingthe

test

current

ata

levelwell

below

the

firing

current

cfa

singlesquib.

Measurements

aredisplayedbyafour-placereadout:

shortedoropenbridgewiresare

also

indicated..

5-18.

RCSPROPELLANT

QUANTITYGAGINGSYSTEMTEST

SET,PARTNO.

410-62080.

TheRCS

propellantquantitygagingsystem

test

set

isused

toperform

anend-to-end

electricalcheck-

outand

toca

libr

atetheLEM

RCS

Propellant

(fue

landoxidizer)Quantity

GagingSystem(PQGS)

with

5-4

.,

15October

1965

Page 149: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

Oo ©} moo

LMA790-1

simulatedtanklo

ads.

Itis

apo

rtab

letest

setco

ntai

ning

twopairs

ofdummy

fuel

andoxidizertanks

that

performsthreemajor

func

tion

s:(1)verify

that

thePQGS

oftheLEM

isoperatingproperly,

(2)provide

accuratereadouts

toenable

calibrationof

thePQGS,

and

(3)isolatemalfunctions

toanyoneof

thefo

uronboardquantitysensorassemblies,

or

tothePQGS

control

unit.

ThePQGS

Test

Sethastwomajor

modesof

operationanda

self-testmode.

The

quan

tity

sensormode

ofoperation

isused

tocheckthe

_output

ofcachquantity

sensorassembly.

The

control

unit

mode

enablesmonitoringanddisplayingboth

fuel

quan

titi

esorbothoxidizer

quan

titi

es,

andobtainsthesequ

anti

ties

dire

ctly

from

thePQGS

control

unit

,asdotheastronaut

displays.

Asimplecomparisonbetween

the

test

setreadoutsandaknownquan-

tity

ofpropellantloaded

intotheLEM

tankswillindicatewhether

thePQGS

isoperatingproperly.

This

mode

canbeused

toverifyproperoperation

ofthePQGS

control

unit

alonebysimulatingthequantity

sensor

inputs

tothecontrol

unit.

Theoperatorthenchecks

that

thecontrolunitquantityoutputscor-

respond

tothesimulated

inputs.

CalibrationofthePQGS

controlunit

isaccomplished

inthismodeby

takingquantityreadingswhen

theLEM

tanksareempty.

Theempty

tankreadingsareused

todetermine

thesettings

forthePQGS

control

unit

calibrationdevices.

5-19

.FLUIDDISTRIBUTIONSYSTEMVALVEBOXCONTROLLER,

PART

NO.

410-64130.

The

fluiddistributionsystem

valveboxcontroller

isamanually

operatedportable

electrical

controland

monitoringunitusedwiththefollowingpropulsionandRCSsubsystem

fluiddistributionvalveboxes:

PropellantLoading

ControlAssembly

(Fuel),

PartNo.

430-64430;

PropellantLoadingControlAssembly

(Oxidizer),

PartNo.

430-64450;

Helium

Pressurization

Distribution

Unit,

Part

No.

430-64570,RCS

FuelTransferControlAssembly,

PartNo.

430-64230;

andRCSOxidizerTransfer

ControlAssembly,

PartNo.

430-64240.

The

valvebox

controller

controlsandmonitors

thepositionofasmany

as

30

valves;

monitors

9transduceroutputs

(6continuously,

threeonatime-shared

basis);

controls

faci

lity

powerto

thecontrolled

unit;

provides

indicationsofoperating

statusand

valveboxpurgepressure.

Manuallyoperatedswitches

controlvalvepositions,

panellamps

indicatevalvepositionsandevent

sig-

nals,

andpanelmetersprovidetemperatureandpressure

indicators.

5-20.

INITIATORSIMULATORTEST

SET,

PART

NO.

410-82970.

The

initiatorsimulator

test

setconsists

of

init

iato

rsimulators

that

areused

toreplaceeach

initiator

inthe

vehicle.

The

test

setsimulates

initiatorbridgewire

prefiring,

firi

ng,

andpost

firingcharacteristics

(simulatorsresetautomatically);

verifiessystem

outputcurrent

levelsandduration

viago-nogo

indica-

tions,

withadjustablefiring

levels;

andprovide

firingstatusandtransientindications

fortheACE-S/C

Down-Link.

Indi

vidu

alsimulatorsarepo

siti

oned

intheve

hicl

eandareconnected

toACE-S/C

by

cabling.

Simulatoroperation

isin

itia

tedbymanually

actuatingswitches

inthevehicle.

5-21.(CARBONDIOXIDEPARTIALPRESSURESENSORTEST

SET,

PART

NO.

430-51110.

The

carbondioxidepartialpressure

test

set

isused

tochecktheCO»

partialpressuresensor,which

ispart

oftheEnvironmental

ControlSubsystem.

The

test

setconsistsofaportable

control

unitanda

mobile

test

stand.

Itsupplies

electricalpowerfrom

an

integralbatterypack

tothesensor

injectsa

measuredmixture

ofcarbondioxideandoxygenandmeasuresthe

flow

rate,pressure,power

input,

and

poweroutput.

..

5-22

.MASSSPECTROMETERPORTABLELEAKTEST

STAND,

PARTNO.

430-52010.

Themassspectrometerportable

leak

test

stand

isused

inconjunctionwithamass

spectrometer

toleak-

testcomponents

oftheEnvircnmental

ControlSubsystem.

The

standhasa

bell

jar

tohouse

thecompon-

entsduringtheleak

test

andprovisions

forevacuatingthebelljarandpressurizingthecomponents

with

heliumfrom

aseparate

tank.

Itis

suitable

for

use

inastandard

cleanroom.

5-23

.GASEOUSCOMPONENTS

TEST

BENCH,

PART

NO.

430-52120.

Thegaseouscomponents

test

bench

isa

test

stand

that

consists

ofapump,

blowers,

valvingandplumb-

ing,

andcontrolsandinstrumentation.

Itis

designed

foruse

inaClass

IIcleanroom

and

isused

tote

stal

lcomponents

oftheatmosphere

revitalizationandoxygensupply

sections.

This

unit

iscapableof

measuringpressure-dropacross

components,testingflow

rate,

proof-testing

ofcomponents,

testingof

electricalcomponent

efficiency,

anddetermining

internalandexternal

leakage.

5-24.

WATERCOMPONENTS

TEST

STAND,

PART

NO.

430-52160.

Thewatercomponents

test

stand

isa

test

bench

that

containsawaterpump

andreservoir,

anitrogen

purge

section,

4vacuumpump,

asink,

ahandpump,

and

thenecessary

instrumentationandconnections.

This

test

stand

isused

inaClasscleanroom.

An

auxiliary

unit

accompaniesthis

test

standand

contains

al}theequipmentrequiringfrequentmaintenanceand

islocatedoutsidethecleanroom.

The

15October

1965

-5-5

Page 150: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

'LMA790-1

test

stand

isused

tosupplyacomponentunder

test

withop

erat

iona

linputs;

topressurizeacomponentfor

proof-test;

toperform

internal

andexternal

leakagetests;

todetermine

theamount

ofwater

inth

etanks;

toperform

func

tion

altestsof

allpressure,

differential

pressure,

flui

dlevel,

andvalvepo

siti

onin

dica

-torsensors;

and

topurgeandevacuatethewatercomponents.

5-25.

WATER-GLYCOLCOMPONENTSTESTSTAND,

PART

NO.

430-52210.

Thewater-glycolcomponents

test

stand

isatest

bench

that

cont

ains

awater-glycolpumpandreservoir;

awater

flushpumpand

reservoir;

anitrogenpurgesystem;

avacuumpump;

atemperature

control

unit;a

sink;

ahandpump;

andthenecessaryin

stru

ment

atio

n,plumbingand

conn

ecti

ons.

This

test

stand

isused

inaClass

Iicleanroom.

An

auxiliary

unit

accompanies

this

test

standandcontains

allth

eequip-

mentrequiringfr

eque

ntmaintenanceand

islocatedou

tsid

ethecleanroom.

The

test

stand

isused

tosu

p-plycomponentsunder

testwithoperational

inputsofwater-glycol;

topressurizecomponents

forproof-

pressure

tests;

toperform

internalandexternalleakage

tests;

toperform

functionaltestsof

allpres-

sure,

differentialpressure,

speed,

fluidlevelandvalvepositionsensors;

totestelectrical

efficiency

of

Pump;

and

toflush,

purge,

andevacuatethewater-glycolcomponents.

5-26.

CABINLEAKAGETEST

UNIT,

PART

NO.

430-54400.

The

cabinleakage

testunit

isaportable

unitcontainingvalves,

flowmeters,

apressure

regulator,

-plumbing,

andpressuregages.

This

unit

isused

tomeasure

leakage

oftheLEM

cabinand

topurgethe

LEM

cabinwithgaseousoxygen.

5-27.

PROPELLANTLEVELDETECTORCHECKOUT

UNIT,PART

NO.

4230-62030.

The

prop

ella

ntleveldetector

checkout

unit

isate

stunit

forcheckingthepr

opel

lant

leve

ldetectors

ofthe

AscentandDescentPropulsionSubsystems.

The

unit

hasapressurevessel

inwhichth

epropellant

level

dete

ctor

isplacedforthe

test;

itmeasures

thele

vel

atwhich

thedetectorproduces

therequiredoutput

signal.

5-28.

RCSSCAVENGINGASSEMBLY,

PARTNO,

430-62040.

TheRCS

scavengingassembly

collects

flushfl

uids

from

theenginesof

theReactionControlSubsystem

afterburn

testsandconductsthe

fluids

tothe

faci

lity

wastedisposalprovision.

The

assembly

consists

offourshort

flexiblehoseswith

fitt

ings

that

engagethroatplugsontheengines,

amanifold,

anda

fina

llength

ofhose

toconductthe

fluids

tothedi

spos

alprovision.

The

entire

assembly

isin

acarryingcase.

5-29

.ASCENT/DESCENTPROPELLANTSYSTEMCHECKOUT

UNIT,

PART

NO.

430-62170.

The

ascent/descentpr

opel

lant

system

checkout

unit

isamobilemodulator

unit

that

consists

ofacontrol

subassembly,

leakageflowmetersubassembly,

andaFreonsupplysubassembly.

Itis

used

forperform-

inginternaland

externalleak

testsand

forfunctionallycheckingpropellantsections

ofthePropulsion

Subsystem.

The

unitsuppliesgaseousnitrogenandfreon

atregulatedpressures

forevaluatingexternal

and

internal

leakage.

5-30.

SUPERCRITICALHELIUMCHECKOUTTEST

UNIT,PART

NO.

430-62190.

The

supercriticalhelium

checkout

testunit

isused

totestthesupercriticalhelium

supplysectionofthe

PropulsionHeliumPressurizationSystem.

The

unit

isportableandhasprovisions

forcheckingheat

leakage,

helium

leakage,

propellant

coldflow,

and

reliefvalveoperation.

5-31.

HALOGENLEAKDETECTOR,

PART

NO.

430-62350.

The

halogenleak

dete

ctor

isapo

rtab

leunit

that

cont

ains

asensingprobewhich

incl

udes

an

indicating

meter,

sensitivityknob,

andazero-set

control.

This

unit

isused

tocheck

outapropulsionfeed

sys-

temorcomponent

that

hasbeenpressurizedwithatracergas

(fre

on).

Bypassingthesensingprobe

over

thecompartment,

this

unit

providesboth

avisual

andaudio

Signal,

ifaleak

ispresent.

5-32.

HELIUM-HYDROGENMASSSPECTROMETERLEAKDETECTOR,

PART

NO.

430-82720.

Thehelium-hydrogenmass

spectrometer

leak

dete

ctor

isapo

rtab

leunit

that

consists

ofa

snif

fernoz-

zle,

flexiblehose,

leakindicator,

alarm,

controlpanelselector

switch,vacuumpumps,

valves,

and

-associatedmechanicaland

electricalequipment.

Probingwiththe

sniffernozzleorperformingapres-

surevacuum

testdetectshydrogenandhelium

leakage.

Leakagetriggersanaudioalarmandan

indica-

tor.

5-6

15October

1965

Page 151: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

SEeonnganaMn ooo ong Bir antie

"LMA790-1-

5-33.

ATMOSPHERE

REVITALIZATION

CALIBRATION

TEST

SET,

PART

NO.

430-91033,

The

atmosphererevitalization

calibrationtest

set

isa

unit

that

imposes

themetabolic

loadingof

0to

2men

upontheatmosphererevitalization

section

oftheEnvironmental

ControlSubsystemduringcheckout

This

unit

isanitem

ofcommonusageGSE,

5-34.

SERVICINGEQUIPMENT.

5-35.

GASEOUSOXYGENSUPPLY

UNIT,

PART

NO.

430-54200.

Thegaseousoxygen

Supply

unit

isamobile

unit

that

contains

apressureregulator,

valves,

plumbing,

aflowmeter,

pressuregages,

andavacuumpump.

Itis

used

toevacuatetheoxygensupplysection

oftheEnvironmental

ControlSubsystemand

toSupplygaseousoxygenfrom

the

facility

tocharge

the

gaseousoxygenaccumulator

oftheOxygensupply

section.

ItalsoSuppliesgaseousoxygen

totheECS

when

theElectrical

PowerSubsystem

supercriticalOxygen

tanksare

not

available,

5-36.

WATERMANAGEMENT

SECTIONSERVICINGVACUUM

PUMP,

PART

NO.

430-54320.

Thewatermanagement

sectionservicingvacuum

pumpis

afour-wheelcart

that

consists

ofavacuum

Pump,

controls,

andinstrumentationrequired

forevacuatingwatervaporfrom

theECSwatermanage-

ment

section

inconjunctionwith

theWater

Transfer

Unit

LSC-430-94119,

5-37.

FREONSUPPLY

UNIT,PART

NO.

430-54600.

The

freonsupply

unit

isaskid-mounted

unit

that

Supplies

Freon

totheFreon

boiler

intheECS

heat

transportsectionasameans

ofcoolingwhen

thetrim

control

unit

isdisconnectedduringcountdown.

The

unit

isat

thebase

oftheLaunch

UmbilicalTower.

5-38.

WATER-GLYCOL

TRIMCONTROL

UNIT,

PART

NO.

430-54700.

;Thewater-glycoltrim

control

unit

isaportable

unit

locatedon

theLaunch

UmbilicalTower

andcon-

tainsaheatexchanger,

apump,

valves,

atemperature

controller,

reliefvalves,

plumbing,

wiring,

aheater,

andareservoir.

This

unit

isused

toflush,

purge,

evacuateand

fill

theheat

transport

loopswith

awater-glycolmixture,

circulatethewater-glycolmixture,

and

either

addorremove

heatfrom

themixture.

Awater-glycolmixture

isSupplied

tothis

unit

from

thewater-glycolservice

unit

forheat

transfermedium

aswell

as

flushand

purgefluids.

5-39.

SUPERCRITICALHELIUMSUPPLYSYSTEM,

PART

NO,

430-64200.

The

supercriticalheliumsupplysystemcharges

theAscentandDescentPressurizationSystem

storage

vesselswithcryogenic

supercriticalhelium.

TheSystem

iscapable

ofremoteor

localOperation;

ithas

provisions

forprecoolingtheassociatedtransfer

linesandpressurizing

theheliumsystem,

5-40.

LIQUIDNITROGENSTORAGEANDTRANSFER

UNIT,

PART

NO.

430-64210.

Theliquidnitrogenstorageandtransfer

unitstores

liquid

nitrogen,

supplies

itto

theprecooler

ofthe

Supercriticalhelium

conditioning

unit,

andmaintains

thenitrogen

level

inthesupercooler,

The

liquidnitrogenstorageandtransfer

unit

consists

ofastorage

container,

aSubcooler,

andconnecting

lines,

,

5-41.

RCSFUELTRANSFERCONTROL

ASSEMBLY,

PART

NO,

430-64230.

The

RCSfuel

transfer

controlassembly

controls

theloading

offuel

into

thetwo

fuel

bladdertanksof

theReactionControlSubsystem.

Italsoprovides

fordrainingthetanks;

ventingorpressurizing

the

helium

sidesofthebladders;andunloading,

purging,

anddrainingthepropellanttransfer

lines.

The

assembly

consistsofavalveboxwithmanual

controls,

andan

electricalpurgeboxwith

logic

circuits,

5-42.

RCSOXIDIZERTRANSFERCONTROL

ASSEMBLY,

PART

NO,

430-64240.

The

RCSoxidizer

transfer

controlassembly

controls

theloadingof

oxidizer

into

thetwooxidizerblad-

dertanks

oftheReactionControlSubsystem.

Italsoprovides

fordraining

thetanks;

ventingor

pres-

surizingthehelium

sides

ofthebladders;

and-unloading,

purging,

anddraining

thepropellant

transfer

lines.

Theassembly

consistsofavalveboxwithmanual

controls,

andanelectricalpurgeboxwith

logic

circuits.

15October

1965.

oo

a5-7

Page 152: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

LMA790-1

5-43.

HELIUMSTORAGEANDTRANSFERDEWAR,

PART

NO.

430-64260.

The

heliumstorageandtransferdewar

storesandtransfersHquidhelium.

Itis

used

totransportthe

helium

tothevehicle

site

andtransfer

thehelium

tothesupplysystem

boiler

andthespacecraft

stor-

ageboilers.

5-44.

FUELLOADINGCONTROLASSEMBLY,

PART

NO.

430-64430.

The

FuelLoadingControlAssembly

isof

modular

construction

andconsists

ofaflow

controlsystem,

-thenecessary

controls

andinstrumentation,

andprovisions

toisolatemajorcomponents

forreplace-

mentandmaintenance.

Itis

capable

ofbeingused

inanunshelteredlocation

where

vibrations,

noise,

andexplosivegasesarepresent.

When

connected,

the

unit

provides.aremotelyoperatedmeans

of

controlled

propellant

fuel

loading,

detanking,

andpurgingof

theascentanddescent

fuel

storagetanks.

*OFs

‘The

unit

isremotely

controlled

by

thePropellantLoadingControlAssembly

Controller.

5-45.

OXIDIZERLOADINGCONTROLASSEMBLY,

PART

NO.

430-64450.

TheOxidizerLoadingControlAssembly

isof

modular

construction

andcontains

aflowcontrolsys-

tem,

thenecessary

controlsandinstrumentation,

andprovisions

toisolatemajorcomponents

forre-

placementandmaintenance.

Itis

capable

ofbeingused

inanunsheltered

location

where

vibrations,

noise,

andexplosivegasesarepresent.

When

connected,

theunit

providesaremotelyoperatedmeans

ofcontrolled

propellant

oxidizer

loading,

detanking,

andpurgingof

theascentanddescentoxidizer

steragetanks.

The

unit

isremotely

controlled

bythePropellantLoadingControlAssembly

Controller.

5-46.

PRESSUREMAINTENANCE

UNIT,

PART

NO.

430-64500.

ThePressureMaintenanceUnit

isaportable

item

that

maintainsthepropulsion

fuel

andoxidizertanks

-andfeedlines

inaclean,

dry,

pressurized

stateto

preventcontaminationandmaintains

pressuredif-

ferentialstoprevent

collapsing

oftanksduring

airandgroundtransportationand

storage.

Italsomaia-

tains

thepressure

intheLEM

cabinduringtransportation.

The

unitprovides

control

ofclean,

ary,

_Yegulatedgas

forpressurization

ofthePropulsionandRCSheliumsystems,

theRCS

propellant

sub-

system,

andtheECSwatermanagement

section,

heattransport

section,

andoxygensupply

sectionbe-

foresealingfo

rtransportationandstorage.

5-47.

PROPULSIONSYSTEMSHELIUMPRESSURE

DISTRIBUTIONASSEMBLY,.PART

NO.

430-64570.

Thepropulsionsystemsheliumpressure

distributionassembly

distributesand

controlshelium

inthe

fillingof

theheliumpressurizationtanks

fortheRCS

andPropulsionSubsystems

oftheLEM

test

vehicle,

Theassembly

consists

ofadistribution

manifold

andfive

fill

units.

5-48.

RCSNOZZLETO

FLUIDDISPOSALADAPTER

SET,PART

NO.

430-91146.

TheRCSnozzle

tofluiddisposaladapter

setincludes

sixteen4-wayadapterassembliesandacarrying

case.

Itprovidesaleak-tight

connectionbetweentheRCS

enginesand

test

orscavengingequipment.

5-49.

OXIDIZERTRANSFERAND

CONDITIONING

UNIT,PART

NO.

430-94002.

TheOxidizerTransferandConditioningUnit

isafour-wheel

cartconsistingofatemperature

control

section,

aheattransfer

section,

anoxidizer

section,

and

thenecessary

controlsandinstrumentation.

When

loadingtheascentanddescentstageoxidizertankswithoxidizer

(nitrogentetroxide

-NgOq),

this

unit

controls

thetemperatureof

theoxidizer

intherangefrom

30°

to135°F.

Itrequiresaminimum

time

of2hours

tocondition

the

1,200gallons

ofoxidizerfrom

anambienttemperature

of40°

to80°F

toeitherextremes

oftemperature.

At

the

Static

TestArea,

thisunit

isremotely

controlledby

thePro-

pellantControl

Station.

This

unit

isanitem

ofconcurrentusageGSE,

modified

forLEM

use.

5-50.

FUELTRANSFERAND

CONDITIONING

UNIT,

PART

NO.

430-94008.

The

FuelTransferandConditioning

Unit

isafour-wheel

cart

consisting

ofatemperature

control

section,

aheattransfer

section,

afuelsection,

andthenecessary

controlsand

instrumentation.

When

loadingthe

fueltankswithpropellant(unsymmetricaldimethylhydrazine—UDMH)

HoHy,

this

unit

controlsthe

temperature

ofthefuel

beingtransferred.

Atthe

Static

TestArea,

this

unit

isremotely

controlled

by

thePropellantControl

Station.

This

unit

isanitem

ofcommonusageGSE,

modified

forLEM

use.

5-51.

HELIUMTRANSFERANDCONDITIONER

UNIT,

PART

NO.

430-94009.

TheHeliumTransferandConditionerUnit

isacompletelyenclosedfour-wheel

unit

foruse

inanout-

~

door,

unsheltered

location.

Itcontains

agasflow

contro]system,

aheat

exchanger,

andan

electrical

5-8

15October1965

Page 153: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

F A F ” 7 ee F F . : a Pp 5 " P rn G

~LMA790-1

system,

The

unit

ispo

siti

oned

atthebaseof

thelaunchtowerwith

its

inletpo

rtconnected

tothe

heliumsupplyand

itsoutlet

port

connected

tothehelium

dist

ribu

tion

lines.

Inthis

configuration,

con-

ditionedgaseoushelium

istransferredfrom

thestorage

unitto

theLEM

PropulsionandReactionCon-

trol

Subsystemheliumta

nks.

This

unit

isremotely

cont

roll

edbyth

ePneumatics

Contro)

Stationwhen

used

atth

eStatic

TestArea,

and

itis

anitem

ofcommonusageCSE.

5-52.

WATER-GLYCOL

SERVICE

UNIT,PART

NO.

430-94019.

TheWater-GlycolServiceUnit

islocated

atth

ebase

oftheLaunchUmbilicalTower

and

cont

ains

pumps,

reservoirs,

anaccumulator,

heaters,

andplumbing.

This

unit

isused

tosupply

aglycolmixture,

distilledwater,

andgaseousnitrogen

totheWater-GlycolTrim

Controi

Unit.

Itis

also

used

toevacu-

atetheECS

heat

transport

sect

ion.

This

coolingrequirementmustbemet

toremove

heat

from

the

LEM

duringprelaunchcheckout.

This

unit

isanitem

ofcommonuseageGSE.

5-53.

HELIUMBOOSTER

CART,

PART

NO.

430-94022..

TheHeliumBooster

Cart

isafour-wheel

cart

that

containsaboostpump,

an

electricallydrivenpower

system,

inte

r-andaf

ter-

cool

ers,

and

elec

tric

alandpneumatic

controls.

With

the

cart

connectedbe

-tweentheHeliumStorageTrailerandthehelium

supplysource,

theboost

pumpestablishes

equilibrium

pressurebetweenthesupplysourceandstorage

trailerandbooststhepressure

oftheHeliumStorage

Trailer.

This

unit

isanitem

ofcommonusageGSE.

At

the

Static

TestArea,

theoperation

ofth

isunit

ismonitoredbythePneumatics

Control

Station,which

controls

thepower

interlockemergency

shutdowndevices

ofthis

unit.

5-54.

WATER-GLYCOLCOOLING

UNIT,PART

NO.

430-94052.

TheWater-GlycolCoolingUnit

removes

heat

loadsfrom

theECSwater-glycol

circulatingloop

by

cir-

culatingtemperature-conditionedwater-glycolthrough

the

fluiddistributionsystemnetwork

tothe

ECS

water-glycolTrim

Control

Unit

system.

The

unit

cont

ains

water-glycolstorage

faci

liti

esand

flow,

pressure,

andtemperature

cont

rolsto

fill,drain,

andpurge

the

flui

ddistributionandECS

water-glycolTrim

Control

Unitsystemswithgaseous

nitrogen.

Itis

used

attheRadioFrequency

SystemsTest

Buil

ding

.It

isanitem

ofcommonusage.

'5-5

5.RCSOXIDIZERSERVICING

UNIT,PART

NO.

430-94057.

The

RCS

OxidizerServicingUnit

isamobile

unit

that

containsaholdingtank,

oxidizerpumpingandcon-

trolsystem,

measuringsystem,

thermal

conditioningsystem,

filt

ers,

nitrogenpressurizationandan

evacuationsystem,

acontrolandinstrumentationpanel,

vehicleand

hardlineadapterhoses,

andare-

mote

control

unit.

Withtheservicing

unit

connected

totheRCS

OxidizerTransfer

Control

Unit,

this

unit

willsupply,

condition,

and

controltheoxidizer

totheRCS

tanks.

Upon

completion

ofthefill

mode,

itwill

unloadRCS

tanks,

then

drainandpurge

theRCS

OxidizerTransfer

Control

Unit

along

withtheFluidDistribution

System.

At

the

Stat

icTestArea,

this

unit

isremotely

controlled

by

the

RCS

Stan

dCentrol

Stat

ion.

This

unit

isanitem

ofcommonusageGSE

modifiedforLEM

use.

5-56.

FUELREADYSTORAGE

UNIT,PART

NO.

430-94058.

The

FuelReady

StorageUnit

isafour-wheel

cart

that

consists

ofa5300

gallonstoragetankand

atrans-

fersystemwiththenecessary

cont

rols

andin

stru

ment

atio

n.With

thetr

ansf

ersystem

inop

erat

ion,

the

propellant(UDMH)

istransferred

totheLEMpropellant

tanks.

This

unit

alsocanrecirculateand

Storeoff-load

propellant

from

theLEM

prop

ella

nttanks.

This

unit

isused

inconjunctionwith

theFuel

Transfer

Control

Unitand

isanitem

ofconcurrentusageGSE.

Atthe

StaticTestArea,

this

unit

isre-

motely

controlled

by

thePropellant

Control

Stat

ion.

5-57

.OXIDIZERREADYSTORAGE

UNIT,

PART

NO.

430-94059.

The

OxidizerReady

Storage

Unit

isafour-wheel

unit

that

consistsofa1500

gallonstoragetankanda

transfersystem

withthenecessary

controlsandinstrumentation.

Withthetransfersystem

inopera-

tion,

theoxidizer(N9O4)

istransferred

totheLEMoxidizer

tanks.

Also,

this

unit

canrecirculateand

off-loadtheoxidizerfrom

theLEM

oxidizertanks.

The

unit

isused

inconjunctionwiththeOxidizer

TransferControl

Unitand

isanitem

ofcommon

usageGSE,

modified

forLEM

use.

This

unit

isre-

motely

controlledby

thePropellantControl

Station.

5-58.

FUELVAPOR

DISPOSAL

UNIT,PART

NQ.

430-94060.

The

FuelVaporDisposal

Unit

isaskid-mountedassemblymodule

cons

isti

ngof

agasprocessingsys-

tem

withthenecessary

controls

and

instrumentation,

Itis

used

tosafelydispose

offuel

vapors

15October1965

.oe

5-9

Page 154: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

LMA790-1

generatedduringthethermal

conditioning

ofthe

fuel,duringthenitrogenpurgingof

the

fuel

system,

and

duringthe

fuel

loadingoperation.

This

unit

isanitemof

concurrentusageGSE.

5-59.

OXIDIZERVAPOR

DISPOSAL

UNIT,PARTNO.

4380-94081.

TheOxidizerVaporDisposal

Urit

isaskid-mountedassemblymodule

consisting

ofagasprocessing

systemwiththenecessary

controls

andinstrumentation.

Itis

used

tosafely

dispose

ofoxidizer

vaporsgeneratedduring

tive

thermal

conditioning

oftheoxidizer,

duringthenitrogenpurgingof

the

system,

andduringtheoxidizer

loading

operation.

This

unit

1sanitem

ofcommonusageGSE.

Atthe

Static

TestArea,

this

unit

isremotely

controlled

bythePropellant

ControlStation.

5-60.

HELIUMSTORAGE

TRAILER,

PART

NO.

430-94062.

TheHelium

StorageTrailer

isaneight-wheel,pneumatic

tire,

semitrailer,

Mountedon

thetrailer

aregas

cylinders,

which

arefilledfrom

the

facility

heliumsourceusingtheHeliumBooster

Cart.

TheLEM

heliumtanksarepressurizedand

filled

from

thesecylindersbyblowingdownthrough

the

HeliumTransferandConditioner

Unit.

Theheliumstored

inthegas

cylinders

issufficient

topro-

vide

two

fillings

ofthePropulsionandReactionControlSubsystemtanks

toproperpressure.

This

unit

isanitem

ofcommonusageGSE,

5-61.

RCSFUEL

SERVICING

UNIT,

PART

NO.

4320-94063.

TheRCS

FuelServicing

Unit

isamobileunit

containing

aholdingtank,

afuel

pumpingand

control

system,

ameasuringsystem,

athermal

conditioningsystem,

filters,

anitrogenpressurizationand

evacuationsystem,

acontrolandinstrumentationpanel,

vehicleandhardlineadapterhoses,anda

remote

control

unit.

With

thisservicing

unit

connected

totheRCS

FuelTransferControl

Unit,

this

unit

willsupply,

conditionand

controlthe

fuelto

theRCS

tanks.

Uponcompletionofthe

fill

mode,it

willunloadtheRCS

tanks,

thendrainandpurgetheRCS

FuelTransfer

Control

Unitalongwiththe

FluidDistributionSystem.

Atthe

Static

TestArea,

this

unit

isremotely

controlledbytheRCS

Stand

Control

Stat

ion.

Thisservicing

unit

isanitem

ofcommon

usageGSE

modifiedforLEM

use.

_5-62,WATERSUPPLY

UNIT,FART

NO.

430-94119.

TheWaterSupply

Unit

isamobile

unit

that

contains

apump,

areservoir,

starters,

tubing,

valvingand

controls,remoteandmanual

controls,

explosion-proofingandinstrumentation.

Itis

used

intheLEM

EnvironmentalControlSubsystem

tofill

thewatermanagement

sectionwith

triple-distilledwater.

This

unit

isanitem

ofcommon

usageGSE

modified

forLEM

use.

5-63.

HANDLINGEQUIPMENTAND

FIXTURES,

©

5-64,

DOLLIESAND

STANDS.

The

followingspecialdolliesandstands

facilitate

handlingtheLEM

test

rigs

andsupportequipment:

AscentStageHandling

Dolly,

PartNo.

420-13300

DescentStageHandlingDolly,

PartNo.

420-13550

CabinEquipment

Installation

Dolly,

PartNo.

420-53100

AscentEngine

Dolly,

PartNo.

420-63200

DescentStageEngine

Installation

Dolly,

PartNo.

420-63400

AscentStagePropellantTankDolly,

PartNo.

420-63920

DescentStagePropellantTank

Dolly,

PartNo.

420-63980

Ascent

Stage

Workstand,

Part

No.

420-13400

DescentStageWorkstand,

PartNo.

420-13650

DescentStageSupport

Stand,

Part

No.

420-13700

‘ACE-S/C

SupportPlatform,

PartNo.

420-73100

5-10

_,

.15

October1965

Page 155: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

oonoog oOo oO Aman onMmnm

LMA790-1

DescentStage

Battery

Installation

Fixture,

Part

No.

420-83220.

AscentStageBattery

Installation

Fixture,

Part

No.

420-83270.

5-65.

SLINGS.

The

followingslings

facilitate

handling

theLEM

test

rigs

andsupportequipment:

AscentStageHoisting

Sling,

PartNo.

420-13100

.

DescentStage

Hoisting

Sling,

Part

No.

420-13600

AscentStagePropellantTank

Sling,

PartNo.

420-63231

Ascent

Engine

Sling,

Part

No.

420-63300

DescentEngine

Installation

Sling,

PartNo.

420-63500.

DescentEngineTurnover

Sling,

PartNo.

420-63511

AscentStagePropellantTank

Sling,

PartNo.

420-63940.

5-66.

FIXTURES

AND

INSTALLATIONKITS.

.The

followingfixtures

aninstallationkits

areused

fortheLEM

test

rigs

andsupportequipment:

AscentStage

FittingSet,

PartNo.

420-13036

DockingTest

Fixture,

PartNo.

420-132i0

.LandingRadarAntennaHandlingand

Installation

Kit,

PartNo.

420-33003

CabinEquipment

Installation

Fixture,

PartNo.

420-53200

RCS

ClusterAssembly

Mounting

Fixture,

PartNo.

420-63114

DescentStagePropellantTank

Installation

Fixture,

PartNo.

420-63150

HeliumTankHandling

Fixture,

PartNo.

420-63380

VHF

In-FlightAntennaCouplerSupport,

PartNo.

420-33001

Battery

Hoist,

PartNo.

420-83260

BatteryHandlingRail

Assembly,

PartNo.

420-83250.

5-67.

TRACTORTRUCK,

PART

NO.

420-63230.

The

tractortruck

is2-1/2-ton

vehiclefortowingsemitrailersandothertransportation

vehicles.

Itis

used

tomove

equipmentfrom

aircraft

offloadingareas

tothepreparationand

testareas.

The

tractor

truckhas

sixwheelsandpneudraulicbrakes,

5-68.

WHEELEDWAREHOUSETRACTOR,

PART

NO.

420-13330.

Thewheeledwarehousetractor

isaheavy-dutygasoline-powered,

industrial-typetowingvehiclewitha

ratedtravelspeed

of14milesper

hour.

The

tractor

isused

totowLEM

test

rigs,

tanks,

andother

heavyequipmentoverpavedandunpavedsurfaces.

5-69.

LEVEL

LOADINGCARGO

LIFTTRAILER,

PART

NO.

420-63250.

The

levelloadingcargo

lift

trailer(CLT)

consists

ofasteelframechassismountedona

foreand

aft

suspensionsystem,

whichusesanexternallyactuatedpower

levelingsystem.

Apower

steeringsys-

tem

ateachend

effectsindividual

wheelcontrol.

Thetrailer

ispowered

byagasoline

drivenengine

and

contains

lighting

andbrakesystems.

Atowbarmounted

attheforwardendprovides

coupling

for

.@primemover.

The

loadingplatform

israisedandloweredwithahydraulic-mechanical

lift

system.

TheCLT

cantransportaloaded

pallet

from

afacilities

loadingarea

toanaircraft

parkingramp,

15October1965

.‘

5-11

Page 156: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

LMAT790-1

.

accuratelypositioned

inline

withtheaircraft

cargodeck.

To

load

thegeneralcargo

pallet

into

the

B-377PG

aircraft,

thehydraulicsystem

isactuated

andtheCLTdeck

israised

totheaircraft

deck

level.

The

pallet

isthenskiddedaboardtheaircraft

andsecured.

5-70.

DESCENTSTAGETRANSPORTER,

PART

NO.

420-13500.

Thedescent

stagetransporter

supports,

secures,

andprotectstheLEM

descentstagetestrigduringtransportation.

Thetrans-

porterconsists

ofawheeledplatformandchassisframe,

asuspensionsystem,

andaprotective

cover,

5-71.

MANUALLYOPERATED

HOIST,

PART

NO.

420-63220,

Themanuallyoperatedhoist

isportable,

andoperatedwithahandcrank.

Itis

used

ininstallation

and

removal

ofthedescent

stagepropulsiontanksandengine.

The

ratioof

crankrevolutions

tocable

travel

ishigh,

providing

fine

controlof

load

position.

5-72,

ASCENTSTAGE

ENGINEPLUGANDSUPPORT

KIT,PARTNO.

420-63120.

The

ascentstageengineplugand

supportkit

consists

ofanexpandablerubber

cylinder

(calledathroat

Plug)attached

toahollowtelescopingtube

withabaseplate

attheotherend.

The

plug

can

seal

the

ascentengine

fora

static

pressure

testof120psiusinggaseousnitrogen.

The

supportframe

isabox-

typeweldment,

contoured

toclearvehicleprotrusionsandtruss-framedwithfourcasters

tosupport

theengine.

5-73.

TEMPERATURE-CONTROLLEDBATTERYSTORAGE

RACK,

PART

NO.

420-83280.

Thetemperature-controlledbatterystoragerackprovides

therequiredstorage

conditions

forascent

anddescentstageprimary

batteries

afterthey

are

activated.

Therackhas

12individual

compart-

ments

forbatteriesandincludes

equipment

that

maintains

thetemperaturebetween45°and.50°Fand

therelative

humiditybetween45%

and

50%.

Some

associatedequipmentcanbestored

intherack.

5-74.

POLARITY

CHECKER,

PART

NO.’420-93089.

The

polarity

checkersupportsandpositionstheLEM

fortestsof

theend-to-endphasingof

thepro-

pulsionanddisplaysubsystems.

The

polaritycheckermoves

theLEM

aboutits

roll,

pitch,

andyaw

axes.

Power-drivenhydrauliccylindersandanelectricmotorproduce

therequiredmotions.

5-75,

CABINCLEANLINESSENCLOSURE,

PARTNO.

420-11010.

The

cabincleanlinessenclosure

isachamberthat

isassembled

totheentrance

tothevehiclecrew

compartment

duringtestandmaintenanceoperations.

Itmaintainsthecabin

attheprescribed

cleanliness

level.

Provision

1smade

forpersonnel

toputon

cleanroomgarmentsand

preparefor

cleanroom

practicesbeforeenteringthecrewcompartment.

5-76.

DESCENT

ENGINEPLUG

ASSEMBLY,

PART

NO,

420-63420,

Thedescentengineplug

assembly

1sused

tostopperthethroat

ofthedescentengineduringleakage

tests.

Itis

aself-supportingand

self-lockingdevice

thatlocks

inplacebymeans

of

lockingarms

that

operate

inumbrella

fashion.

Theassembly

includes

an

integral

pressure-reliefvalve,

5-77.

DESCENTSTAGE

FITTINGASSEMBLY,

PART

NO.420-13031,

The

descentstage

fittingassemblyprovidesastructuralinterfaceconnectionbetween

thedescentstage

outriggersupportcorner

postfittingsandasupportingstructure,

transporter,

handling

dolly,

orsup-

port

stand.

The

fitting

assembly

alsocompensates

forangularmisalignmentbetween

thedescent

Stageand

itssupportingstructure.

Afittingconsistsbasicallyofamachinedhousingand

ayoke

pin.

The

housingcontainsa

spherical]

bearingandretainer

assembly,

athrust

bushing,

andspacers.

The

yoke

pinandattachinghardware

isused

tosecure

thecornerpost

fittings

tothehandlingequipment.

5-78.

AUXILIARYCRANE

CONTROL,

PART

NO.

420-13060.

The

auxiliarycrane

control

isaself-contained,

hydraulicallyoperated

unitthat

interconnectsbetween

theappropriate

hoisting

slingand

the

liftingdevicethroughtheupperandlower

eyebolt

fittings.

The

unit

consists

ofanupperandlower

eyebolt;

areturn

lift

dial;ascale

dial;upanddown

valve

levers;

aplunger

rod;

andtwo

controlreels,

eachwith40

feet

ofnylon-covered

steelcable.

This

coritrol

operatesindependentlyofthe

liftingdeviceand

hoisting

Sling;

ifcanraiseandlower

loadsup

to5

tonsadistanceof12incheswithanaccuracy

towithin0.001

inchor

less.

The

cablesareattached

tothelevercontrolsand

affordoperationoftheunit

from

adistance.

5-12

15October1965

Page 157: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

0 Oooo fo Oooo

LMA790-1

5-79.

PORTABLECLEANENVIRONMENTAL

KIT,PART

NO.

420-13130,

The

port

able

clea

nenvironmental

kitmaintainsacleanroomatmosphereandremoves

contaminants

from

theairwithin

anenclosedareaaroundth

eLEM

during

installation

orremoval

ofcomponentsand

matingof

interfaces,

The

kitfi

lter

sambient(contaminated)

airanddischarges

theclean

air

inside

the

kit

inalaminarflow

patternstrongenough

toovercomeinterior

turbulence{handmotionsorbody

movements}.

The

kitco

nsis

tsof

ahousing

that

contains

theblower,

afilteringsystem

withreplace-

able

element,

anatmospheric

intake

andexhaustconnection,

flexible

tubing,

clear

plasticMexible

tent

with

ties

andzippers,

andabag

tostore

thefl

exib

letubing

and

tent

when

notin

use.

5-80.

SLAINTERNALWORKPLATFORM,

PART

NO.

420-93176.

TheSLA

internal

workplatform

isatwo-levelplatform

inst

alle

dinside

theCommand

andService

module-LEM

adapter.

Theplatformsupportspersonnelworking

intheadapterwhen

theApollo

vehicle

isstacked..

5-81.

NAVIGATIONBASEALIGNMENT

GAGE,

PART

NO.

420-13361.

The

navigational

basealignmentgageco

ntai

nsamirrorreferencegage

foralignmentof

theGrumman

navigationbaseand

foralignmentchecksontheradarantennasandtheascentanddescent

engines,

The

gage.consists

ofaU-shaped

basic,

amirror

cube

,andthree

ball

inserts

that

matewiththe

navigation

base

.Themirrorcube

{isused

inconjunctionwith

anopticalalignmentfixture.

5-82..

DESCENTSTAGEPROTECTIVE

COVER,

PART

NO.

420-13480.

Thedescent

stageprotective

cover

isfabricated

from

vinyl-coated,

whitenylonfabric

and

isform

fitted

tothedescent

stagecontour.

The

covercompletelyencloses

thedescent

stageandhascutoutsforac-

cess

toallhoistingandsupport

points.

Thecoverkeeps

thedescent

stagecleanandprotects

itagainst

adverseenvironmental

conditions.

5-83.

ASCENTSTAGEPROTECTIVE

COVER,

PART

NO.

420-13520.

‘Theascentstageprotectivecover

isfabricatedfrom

vinyl-coated,

whitenylon

fabricand

isform

fitted

totheascentstage

contour.

The

covercompletelyenclosestheascent

stageandhas

cutouts

for

accessto

allhoistingandSupport

points.

The

coverkeeps

theascentstagecleanandprotects

itagainstenvironmentalhazards.

5-84.

BENCHMAINTENANCE

EQUIPMENT,

BenchMaintenanceEquipment

(BME)

ispresented

inTables

5-1through5-6according

tothesub-

system

orsectiontowhich

theequipment

applies.

..

Table

5-1.

GuidanceandNavigationSectionBME

Nomenclature

Used

tocheckandtroubleshoot:

Radar

maintenancetest

Landingradarandrendezvousradar‘transponder

Station,

Part

No,

410-32520

toreplaceablecomponent

level;

simulatesanalog

and

digitalinputsand

specialsyncpulses;

checks

rangeand

altitudemeasuring

capabilities;meas-

uresrange

signal

stabilityandlong-timefrequency

stabilityofoscillator

sections;

recordsoutputs;

anddisplaysspectralwaveforms

forperiodic

maintenance,

overhaul,

and

calibration.

15October1965

a5-13

Page 158: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

LMA790-1

Table

5-2,

StabilizationandControlSe

ctio

nBME

Nomenclature

Used

tocheck

andtroubleshoot:

Abortguidancesection

maintenancetest

stat

ion,

PartNo.

410-22020.

Controlelectronicssection

maintenance

test

sect

ion,

PartNo.

410-22040

Command

contro!sectionteststation,

PartNo.

410-22950

Thecompleteabortguidancesectionor

itassemblies,

whichareth

esensorassembly,

elec

tron

icsassem-

bly,

andabortprogrammerassembly

toth

ere-

placeablecomponentlevel.

Thecomplete

stabilizationand

contro]subsystem

ofthecontrolel

ectr

onic

sse

ctio

n(CES)

or

itsassem-

blie

s,which

are:

thera

tegyroassembly,

descent

engine

cont

rolassembly,

atti

tude

controller,

trans-

lati

oncontroller,

andgimbaldriveac

tuat

orassem-

bly;

andthecomplete

in-flightmonitorassembly

tothereplaceablecomponentlevel.

,

Theprogramreaderassemblyandtheprogram

couplerassemblywhichcomprise

thecommand

controlsection.

The

test

stationprovides

the

fol-

lowing:

power,

stim

uli,

andthe

capa

bili

tyto

isolate

amalfunctionto

thelowestreplaceableassembly

ofthecommand

cont

rol

sect

ion.

Inaddition,

the

test

Stat

ioncanbeused

inanin

tegr

ated

subsystem

test.

Table

5-3.

Elec

tric

alPowerSubsystemBME

Nomenclature

Used

tocheckandtroubleshoot:

Power

distributionmaintenancetest

station,

PartNo.

410-82200

Generalpurposeinverter

test

stat

ion,

PartNo.

410-82300

Batterymaintenancetest

stat

ion,

PartNo.

410-82400

Power

distributionsection

toreplaceableassemb-

lylevel;measures

inputandoutputvoltageandcur-

rent(steady

state),

cont

inul

tyand

logic,

response

times,

andtr

ansi

ents

.

Inverterassembly

toreplaceablesubassembly

level

byappylingva

riab

lepower

factor

a-cloadsand

variabled-cvoltage

inputs,

whilemonitoringfr

e-quency

regu

lati

on,

volt

agere

gula

tion

,transientre-

sponse,

harmonic

distortion,

and

critical

waveforms,

Batteryassemblies

tothereplaceablecomponent

level,

whileprovidingtheproperlo

adin

gmanually

or

automatically;

measuresampere-hour

rating,

regulation

(sta

ticandtransient),

transducer

cali

bra-

tion

,andcharge-discharge

capabilities.

§-14

15Oc

tobe

r1965

Page 159: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

C30 & [9 © rar

LMA7

90-1

Table5-4.

CommunicationsSubsystemBME

©

Nomenclature

Used

tocheckandtroubleshoot:

S-Bandandcommunication

cons

ole,

PartNo.

410-32280

Antennasmaintenancetest

stat

ion,

PartNo.

410-32440

RadarTransponderandrecovery

beaconcheckout

unit,

PartNo.

410-92112

TheLEM

S-BandequipmentandCommunicationSub-

system.

The

followinggeneralS-Band

tests,

as

wellasothermore

specific,

test

sareperformed:

voltagestandingwave

ratioandimpedances,

center

frequencies.andbandwidth,

modulationcharacteris-

tics,

stability,

acanddccharacteristicsandpower

levels.

Thecommunicationconsole

supplies

stimuli

tothecommunicationsubsystem,

receivesandpro-

cessessubsystem

data,

andprovidesdisplays

indica-

tingsubsystem

hardlineandopen

loopperformance,

CommunicationssubsystemUHF,

VHF,

S-bandand

C-band

antennas;

andelectronicsandgimbalsystem

ofsteerablean

tenn

a;checksVSWR,

operatingfre-

quencies,

impedances,

and

insertionlo

sses

.

TheAN/DPN-66Transponderoperationalcharacter-

istics.

Theoperatingparametersof

thetransmitter,

receiver,

andpower

supplyareexercisedandchecked.

Table

5-5.

ControlsandDisplaysBME

Nomenclature

Used

tocheckandtroubleshoot:

Displaysandcontrolsmaintenancetest

station,

PartNo.

410-42100

The

followingun

its

toareplaceablecomponent

level:

ballattitude

indicator;

flight

control,

reactioncon-

trol,

andenvironmental

controlpanels;

radar,

power

generation,

andpowerdistribution

panels;

stabiliza-

tionand

control,

andmainpropulsion(ascent/descent)

panels;

communicationsandaudio

controlpanels,

Table

5-6.

InstrumentationSubsystemBME

Nomenclature

Used

tocheckandtroubleshoot:

SpacecraftInstrumentationTestEquipment

(SITE)*,

PartNo.

410-92405

Digital

test

command

system

test

set,

Part

No.

410-92470

InstrumentationSubsystem

andACE-S/CDown-Link.

SITE

enablescheckout

ofanentire

Instrumentation

Subsystemor

ACE-S/CDown-Link;

asection

(groupingof

interrelatedassemblies)

ofeither

of

theseequipments,

or

individual

assemblies

ofeitheroftheseequipments.

TheACE

digitaltest

commandsystem

on

thesystem

andsubsystem

levels.

The

test

setsuppliesand

monitors

serialinputsand

serialand

parallelout-

puts.

Thecommands

areprogrammedmanuallyor

fromapunchedtape

inputand

theoutputs

ofthe

equipmentunder

test

aredisplayedonpanel

instru-

ments.

*UsedonbothLEM

and

Command/ServiceModules(commonusage)

-15October1965

5-15/5-16

Page 160: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

OOO

LMA790-1

APPENDIXA

LEMSUPPORTMANUALS

A-1.

GENERAL.

LEM

supportmanuals

arecategorizedby

function,

andareprovidedasgroundsupportequipment(GSE)

manuals,

specialtest

equipment

(STE)

manuals,

andgeneral-purposehandbooksandmanuals,

A-2.

GROUNDSUPPORTEQUIPMENT

MANU

ALS.

Asupportmanual

foreachitem

ofGSE

provides

pertinentoperationandmaintenance

data.

Theman-

ualscontainphysicalandfu

ncti

onal

desc

ript

ionof

theequipmentcovered,

and

datare

lati

veto

itsin-

stallation,

operation,

andmaintenanceat

test

site

s.Supportmanualsprepared

forGSE

arelisted

intabieA-1.

TableA-1.

Ground

SupportEquipmentManuals

MasiualNumber

Issue/RevDate

Title LM

A790

-8-6

2220

13Ja

n1965

Engine

Firing

Control

Station

LMA790-8-64420

20July

1965

Prop

ella

ntLoadingControlAs

semb

ly

LMA790-8-62850

20May

1965

Prop

ulsi

onSubsystem

Chec

kout

Stat

ion

LMA790-8-64020

15April1965

PropellantLoadingControlAssembly

Controller

LMA790-8-64018

15Se

pt19

65Helium

Dist

ribu

tion

Unit

Cont

roll

er

LMA1

790-

8-64

220

15Se

pt1965

Helium

Dist

ribu

tion

Uait

LMA790-8-62110

15Mar

1965

HeliumComponentsTe

stStand

LMA790-8-62170

25Mar

1965

A/D

Prop

ella

ntSe

ctio

nCh

ecko

utAssembly

-LMA790-8-62180

_25

Mar

1965

Propulsion

SystemsCh

ecko

utCart

LMA790-8-62160

31Ma

y1965

A/D

Ullage

Simulation

Cart

LMA7

90-8

-646

605June

1965

~Fa

cili

tyPr

opel

lant

Control

Station

LMA7

90-8

-645

8031

May

1965

Heli

umPressurization

Control

Stat

ion

LMA7

90-8

-610

025

June

1965

WeighTank

CalibrationUnit

LMA790-8-62900

30June

1965

Test

ConductorCo

nsol

e

A-3.

SPECIALTESTEQUIPMENT

MANUALS.

Each

special

testequipment

(STE)

has

itsownmanualwhichprovidesdescription,

operation

instructions,

maintenance,

and

calibrationprocedures,

as

applicable.

Supportmanualsprepared

forSTE

are

list

edin

tabl

eA-2.

15October

1965

.A-

1

Page 161: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

LMA790-1

Table

A-2.

Spec

ialTest

Equi

pmen

tManuals

ManualNumber

Issue/RevDate

Titl

e

LED790-M-3

LED790-HD-2

LED790-HA-2

LED790-HD-3

LED790-HA-3

LED790-6710

LED790-6090

LED790-6670

LED790-12040

LED790-6949

LED790-HD-4

LED790-6150

LED790-1150

LED790-PD-1

LED790-6930

LED790-HA-~4

LED790-12010

10Jui1964

5June1964

15June

1964

30Ju

ne1964

10June1965

20Apr

1965

6Nov

1964

15Feb

1965

15Mar

1965

25June

1965

25Mar

1965

15Apr

1965

20May

1965

20May

1965

25Ju

ne1965

25May

1965

26Aug

1965

M-3

Inte

rfac

eCa

pabi

lity

Mockup

HD-2

Propulsion

Test

Rig

HA-2

Propulsion

Test

Rig

HD-3

Propulsion

Test

Rig

HA-3

Propulsion

Test

Rig

Fluid

Dist

ribu

tion

System

Ascent

Engine

Simulator

Nitrogen/Helium

Pressurization

Unit

Data

AcquisitionSystem

MonitoringPanel

Nitrogen/Helium

Pressurization

Unit

Controller

HD-4

Propulsion

Test

Rig

Descent

Engine

Stim

ulat

or

RCSVacuum

Test

Cart

Assemblies

-PD-1

Propulsion

Test

Rig.

FluidDi

stri

buti

onSystemMSC/WSOTest

StandNo.

1

HA-4

Propulsion

Test

Rig

Data

AcquisitionSystem

A-4.

GENERAL-PURPOSEHANDBOOKSAND

MANUALS.

Thereareseveraltypes

ofhandbooksandmanuals

included

inthis

category.

Afamiliarization

Manualpresentsageneral,

overalldescriptionoftheLEM.

Coverage

includestheLEM

mission,

theLEM

structure,

operationalsubsystems,

prelaunchoperations,

andabriefdescriptionof

GSE.

ADescription

Manual,

andaTransportationand

HandlingManual

forLEM

test

articles

(LTA's)

areprovided

forLTA-2

and

LTA-10.

ThePreliminary

Apollo

Operations

Handbook

(AOH)

-LEM

provides

detailedLEM

operating

instructionsandprocedures

foruse

by

theastronauts

duringamanned

lunarmission.

Thehandbookin

clud

esnormal,

backup,

andcontingencyprocedures,

aswellasconditionsrequiringan

abort,

andabortprocedures.

Allsubsystems

andtheir

interface

relationshipsarecovered

indetail.

Controlsanddisplays,

subsystem,

schematics,

crewpersonal

equipment,

in-flightpreventivemaintenance,

andmissiontasksarecovered

inthispreliminary

AOH,

General-purposehandbooksandmanualsare

listed

intableA-3.

15October

1965

Page 162: LMA7SO-! MODULE MANUAL OCTOBER …...n-ANT DEC oy woo LMA7SO-! LUNAR EXCURSION MODULE | FARILIARIZATION MANUAL / NAS 9-1100 EXHIBIT E, PARAGRAPH 10.2. PRIMARY NO. 830 LINE ITEM 021

POoomro om ogog oOo oom

LMA790-1

Table

A-3.

General-Purpose

HandbooksandManuals

ManualNumber

Issue/RevDate

Title

LMA‘90-1

LMA90-2-LTA-2

LMA790-5-LTA-2

_LMA790-2-LTA-10

LMA790-5-LTA-10

LMA790-3

15Oct1965

10Feb

1965

10Feb

1965

20Apr

1965

20Apr

1965

15Aug

1965

Familiarization

Manual

LTA-2

DescriptionManual

LTA-2

Transportationand

Handling

Manual

LTA-10

Description

Manual

LTA-10

TransportationandHandlingManual

|

Preliminary

Apollo

Operations

Handbook

-LEM

15

October1965

-A-3/A-4