liquid-air transpired solar collector (latsc): model development, validation and optimization-thesis...

Upload: aqpoona

Post on 02-Jun-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/11/2019 Liquid-Air Transpired Solar Collector (LATSC): Model Development, Validation and Optimization-Thesis defense

    1/61

    Liquid-Air Transpired Solar Collector(LATSC): Model Development,Validation and Optimization

    By: Abdul Qadir

    Advisor: Dr Peter ArmstrongRSC members: Dr Tariq Shamim, Dr Afshin Afshari

    1

  • 8/11/2019 Liquid-Air Transpired Solar Collector (LATSC): Model Development, Validation and Optimization-Thesis defense

    2/61

    OutlineMotivation

    ResearchObjectives

    LATSC

    Experimental Numerical

    Sensitivity Analysis

    LDR

    Numerical

    CombinedLATSC-LDR

    Model

    Sensitivity Analysis Optimization

    LATSC -Liquid Air TranspiredSolar Collector

    LDR - LiquidDesiccantRegenerator

    2

  • 8/11/2019 Liquid-Air Transpired Solar Collector (LATSC): Model Development, Validation and Optimization-Thesis defense

    3/61

    MotivationIncreased use of solar thermal collectors forcooling and desalinationConventional flat plate collectors have a high

    capital costUnglazed collectors have high convection lossesUse of polymer materials in glazed collectors

    causes degradation of material at stagnation A supply temperature between 50-70 oC required

    3

  • 8/11/2019 Liquid-Air Transpired Solar Collector (LATSC): Model Development, Validation and Optimization-Thesis defense

    4/61

    Liquid Desiccant Cooling

    4

  • 8/11/2019 Liquid-Air Transpired Solar Collector (LATSC): Model Development, Validation and Optimization-Thesis defense

    5/61

    Humidification-Dehumidification(HDH) Desalination

    5

  • 8/11/2019 Liquid-Air Transpired Solar Collector (LATSC): Model Development, Validation and Optimization-Thesis defense

    6/61

    Motivation

    ResearchObjectives

    LATSC

    Experimental Numerical

    Sensitivity Analysis

    LDR

    Numerical

    CombinedLATSC-LDR

    Model

    Sensitivity Analysis Optimization

    6

  • 8/11/2019 Liquid-Air Transpired Solar Collector (LATSC): Model Development, Validation and Optimization-Thesis defense

    7/61

    Research objectivesDevelop through first principles, amathematical/numerical model of the LATSCExperimentally validate the LATSC model

    Build a numerical model of a liquid desiccantregenerator(LDR) and couple the model with theLATSC

    Optimize the combined system for typical AbuDhabi conditions.

    7

  • 8/11/2019 Liquid-Air Transpired Solar Collector (LATSC): Model Development, Validation and Optimization-Thesis defense

    8/61

    Motivation

    ResearchObjectives

    LATSC

    Experimental Numerical

    Sensitivity Analysis

    LDR

    Numerical

    CombinedLATSC-LDR

    Model

    Sensitivity Analysis Optimization

    8

  • 8/11/2019 Liquid-Air Transpired Solar Collector (LATSC): Model Development, Validation and Optimization-Thesis defense

    9/61

    Concept

    Flat platecollector

    TranspiredCollector

    LATSC

    Water heating

    Efficient atdesired heating

    temperature

    Air heating Convectionsuppression

    Low cost9

  • 8/11/2019 Liquid-Air Transpired Solar Collector (LATSC): Model Development, Validation and Optimization-Thesis defense

    10/61

    The DifferenceFlat Plate w/o suction Flat Plate with suction

    10

  • 8/11/2019 Liquid-Air Transpired Solar Collector (LATSC): Model Development, Validation and Optimization-Thesis defense

    11/61

    Motivation

    ResearchObjectives

    LATSC

    Experimental Numerical

    Sensitivity Analysis

    LDR

    Numerical

    CombinedLATSC-LDR

    Model

    Sensitivity Analysis Optimization

    11

  • 8/11/2019 Liquid-Air Transpired Solar Collector (LATSC): Model Development, Validation and Optimization-Thesis defense

    12/61

    AssumptionsUniform flow of water in the tubesUniform flow of air through perforationsUniform distribution of perforationsNegligible starting length of boundary layerFlat plateNo leakage

    12

  • 8/11/2019 Liquid-Air Transpired Solar Collector (LATSC): Model Development, Validation and Optimization-Thesis defense

    13/61

    Heat flows from absorber plate

    13

  • 8/11/2019 Liquid-Air Transpired Solar Collector (LATSC): Model Development, Validation and Optimization-Thesis defense

    14/61

    Energy balance on differentialelement

    14

  • 8/11/2019 Liquid-Air Transpired Solar Collector (LATSC): Model Development, Validation and Optimization-Thesis defense

    15/61

  • 8/11/2019 Liquid-Air Transpired Solar Collector (LATSC): Model Development, Validation and Optimization-Thesis defense

    16/61

    Coupling of heat transfer at the back of the plate

    Air is also heated inthe back channel

    Results in coupledheating throughholes and at theback of upper plateand lower plate.

    16

  • 8/11/2019 Liquid-Air Transpired Solar Collector (LATSC): Model Development, Validation and Optimization-Thesis defense

    17/61

    Change in ODE for air heating

    Efficiency:

    17

  • 8/11/2019 Liquid-Air Transpired Solar Collector (LATSC): Model Development, Validation and Optimization-Thesis defense

    18/61

    Motivation

    ResearchObjectives

    LATSC

    Experimental Numerical

    Sensitivity Analysis

    LDR

    Numerical

    CombinedLATSC-LDR

    Model

    Sensitivity Analysis Optimization

    18

  • 8/11/2019 Liquid-Air Transpired Solar Collector (LATSC): Model Development, Validation and Optimization-Thesis defense

    19/61

    Constant Parameters for First andSecond Analysis

    Property Value Solar radiation (S) 800W/m 2

    Wind speed(V w) 3 m/s

    Air temperature(T amb ) 25 oC

    Air density( a) 1.184kg/m 3

    Air Viscosity ( a) 1.849*10 -5 Ns/m 2

    Air C p (c pa ) 1.007kJ/kgK

    Water C p 4.183kJ/kgK

    Water Density 997 kg/m 3

    Length of collector (L) 2m

    Width of collector (W) 1m

    Plenum depth (D) 0.1m Perimeter of plenum cross

    section 2.2m

    Plate absorptivity 0.9

    Hole pitch (triangular pattern) 0.025m

    Plate emissivity 0.9

    Hole diameter 0.00159m

    Property Value

    19

    Total thermal capacitance rate:

    Air capacitance rate fraction:

  • 8/11/2019 Liquid-Air Transpired Solar Collector (LATSC): Model Development, Validation and Optimization-Thesis defense

    20/61

    Effect of varying ( c p)total and R c p

    Uncoupled Model Coupled Model

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0 0.2 0.4 0.6 0.8 1

    E f f i c i e n c y ,

    (

    - )

    Air capacitance rate fraction ,Rmcp (-)

    mdotcptot=25W/m2K mdotcptot=20W/m2K mdotcptot=15W/m2K

    mdotcptot=10W/m2K mdotcptot=5W/m2K

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0 0.2 0.4 0.6 0.8 1

    E f f i c

    i e n c y ,

    ( - )

    Air capacitance rate fraction ,Rmcp (-)

    mdotcptot=25W/m2K mdotcptot=20W/m2K mdotcptot=15W/m2K

    mdotcptot=10W/m2K mdotcptot=5W/m2K

    20

  • 8/11/2019 Liquid-Air Transpired Solar Collector (LATSC): Model Development, Validation and Optimization-Thesis defense

    21/61

    Effect of varying ( c p)total and R c p

    Uncoupled Model Coupled Model

    0

    10

    20

    30

    40

    50

    60

    70

    0 0.2 0.4 0.6 0.8 1

    T w o u

    t ( o C )

    Air capacitance rate fraction ,Rmcp (-)

    mdotcptot=25W/m2K mdotcptot=20W/m2K mdotcptot=15W/m2K

    mdotcptot=10W/m2K mdotcptot=5W/m2K

    0

    10

    20

    30

    40

    50

    60

    70

    0 0.2 0.4 0.6 0.8 1

    T w o u

    t ( o C )

    Air capacitance rate fraction ,Rmcp (-)

    mdotcptot=25W/m2K mdotcptot=20W/m2K mdotcptot=15W/m2K

    mdotcptot=10W/m2K mdotcptot=5W/m2K

    21

  • 8/11/2019 Liquid-Air Transpired Solar Collector (LATSC): Model Development, Validation and Optimization-Thesis defense

    22/61

    Effect of varying T in at Rc p =0.1,mCp(tot)=15W/m 2K

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0 0.02 0.04 0.06 0.08 0.1 0.12 E

    f f i c i e

    n c y

    ,

    ( -

    )

    Collector Loss Potential, (Tin-Tamb)/G, (K-m 2/W)

    e=0.1(C) e=0.5(C) e=0.9(C) e=0.1(UC) e=0.5(UC) e=0.9(UC)

    22

  • 8/11/2019 Liquid-Air Transpired Solar Collector (LATSC): Model Development, Validation and Optimization-Thesis defense

    23/61

    Effect of varying T in at Rc p =0.5

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0 0.02 0.04 0.06 0.08 0.1 0.12

    E f f

    i c i e n c y

    , (

    - )

    Collector Loss Potential, (Tin-Tamb)/G, (K-m 2/W)

    e=0.1(C) e=0.5(C) e=0.9(C) e=0.1(UC) e=0.5(UC) e=0.9(UC)

    23

  • 8/11/2019 Liquid-Air Transpired Solar Collector (LATSC): Model Development, Validation and Optimization-Thesis defense

    24/61

    Effect of varying T in at Rc p =0.9

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0 0.02 0.04 0.06 0.08 0.1 0.12

    E f f

    i c i e n c y

    ,

    ( - )

    Collector Loss Potential, (Tin-Tamb)/G, (K-m 2/W)

    e=0.1(C) e=0.5(C) e=0.9(C) e=0.1(UC) e=0.5(UC) e=0.9(UC)

    24

  • 8/11/2019 Liquid-Air Transpired Solar Collector (LATSC): Model Development, Validation and Optimization-Thesis defense

    25/61

    Parameters Varied for Third AnalysisParameter Values

    Air temperature(T amb ) 25,35,45(oC)

    Water inlet temperature(T wi) 25-115 (

    oC) with 10

    oC

    intervals Air to total thermal capacitance

    fraction( Rc p) 0.1, 0.5

    Solar radiation (G) 300, 500, 800 (W/m2)

    Wind speed(V w) 0, 3, 5 (m/s)

    Plate emissivity ( ) 0.9

    25

  • 8/11/2019 Liquid-Air Transpired Solar Collector (LATSC): Model Development, Validation and Optimization-Thesis defense

    26/61

    Rc p =0.1, (c p)total =15W/m 2K

    26

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

    E f f

    i c i e n c y

    ,

    ( -

    )

    Collector Loss Potential, (Tin-Tamb)/G, (K-m 2/W)

    Vw=5m/s Vw=3m/s Vw=0m/s

  • 8/11/2019 Liquid-Air Transpired Solar Collector (LATSC): Model Development, Validation and Optimization-Thesis defense

    27/61

  • 8/11/2019 Liquid-Air Transpired Solar Collector (LATSC): Model Development, Validation and Optimization-Thesis defense

    28/61

    At ASHRAE 93 standard test flow rate

    Wind Speed (m/s) Optimum air thermalcapacitance rate (W/m 2K) Rmcp

    1 2.5 0.029

    3 5 0.0565 6.5 0.072

    Parameter Value

    Water flow rate 0.02kg/s-m 2= 83.66W/m 2K

    28

  • 8/11/2019 Liquid-Air Transpired Solar Collector (LATSC): Model Development, Validation and Optimization-Thesis defense

    29/61

    Wind Speed=3m/s

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    0 0.02 0.04 0.06 0.08 0.1 0.12 E f f i c i e n c y

    ,

    ( -

    )

    Collector Loss Potential, (Tin-Tamb)/G, (K-m 2/W)

    e=0.1(C) e=0.5(C) e=0.9(C)

    29

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    0 0.02 0.04 0.06 0.08 0.1 0.12 E f f i c i e n c y

    ,

    ( -

    )

    Collector Loss Potential, (Tin-Tamb)/G, (K-m 2/W)

    e=0.1(C) e=0.5(C) e=0.9(C) Flat Plate Collector

  • 8/11/2019 Liquid-Air Transpired Solar Collector (LATSC): Model Development, Validation and Optimization-Thesis defense

    30/61

    Motivation

    ResearchObjectives

    LATSC

    Experimental Numerical

    Sensitivity Analysis

    LDR

    Numerical

    CombinedLATSC-LDR

    Model

    Sensitivity Analysis Optimization

    30

  • 8/11/2019 Liquid-Air Transpired Solar Collector (LATSC): Model Development, Validation and Optimization-Thesis defense

    31/61

    Experimental Setup

    Flowmeter

    Pumpvalve

    Wateroutlet

    collector

    Outletwatertank

    Inlet watertank

    Waterinlet 31

  • 8/11/2019 Liquid-Air Transpired Solar Collector (LATSC): Model Development, Validation and Optimization-Thesis defense

    32/61

    y = -7.126x + 0.6491

    -0.1

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    -0.01 0.01 0.03 0.05 0.07 0.09

    E f f i c i e n c y

    (Ti-Ta)/G

    Flat Plate Collector Testing

    32

  • 8/11/2019 Liquid-Air Transpired Solar Collector (LATSC): Model Development, Validation and Optimization-Thesis defense

    33/61

  • 8/11/2019 Liquid-Air Transpired Solar Collector (LATSC): Model Development, Validation and Optimization-Thesis defense

    34/61

    Calibration of flow meter

    Flowmeter

    Inletwatersupply

    Outlet pipewithinserted TC

    WatercollectingBucket

    Precisionweighingscale

    34

  • 8/11/2019 Liquid-Air Transpired Solar Collector (LATSC): Model Development, Validation and Optimization-Thesis defense

    35/61

    Side View

    35

  • 8/11/2019 Liquid-Air Transpired Solar Collector (LATSC): Model Development, Validation and Optimization-Thesis defense

    36/61

    Front View

    36

  • 8/11/2019 Liquid-Air Transpired Solar Collector (LATSC): Model Development, Validation and Optimization-Thesis defense

    37/61

    Flowmeter Pump

    Collectoroutlet

    Collector

    Water tank

    Collectorinlet

    LoggerBox

    Flange Assembly

    Air outlet

    Pyranometer

    37

  • 8/11/2019 Liquid-Air Transpired Solar Collector (LATSC): Model Development, Validation and Optimization-Thesis defense

    38/61

    Same Wind Speed (3-4m/s)

    y = xR = 1

    y = 1.039x - 0.191R = 0.972

    0.2

    0.25

    0.3

    0.35

    0.4

    0.45

    0.5

    0.55

    0.6

    0.65

    0.2 0.3 0.4 0.5 0.6 0.7 0.8

    E x p e r i m e n t a

    l E f f i c i e n c y

    Predicted Efficiency

    Predicted vs. Experimental Results

    Model

    Experiment

    38

  • 8/11/2019 Liquid-Air Transpired Solar Collector (LATSC): Model Development, Validation and Optimization-Thesis defense

    39/61

    Same Air Flow Rate

    y = xR = 1 y = 1.1295x - 0.2298

    R = 0.9792

    0.2

    0.25

    0.3

    0.35

    0.4

    0.45

    0.5

    0.55

    0.6

    0.65

    0.2 0.3 0.4 0.5 0.6 0.7 0.8

    E x p e r i m e n t a

    l E f f i c i e n c y

    Predicted Efficiency

    Predicted vs. Experimental Results

    Model

    Experiment

    Lower windspeed

    39

  • 8/11/2019 Liquid-Air Transpired Solar Collector (LATSC): Model Development, Validation and Optimization-Thesis defense

    40/61

    Model Actual Steady State Transience mainly due to erratic wind speed

    Uniform distribution of holes Slightly non-uniform hole distribution with largegaps in between patches near tubes

    Flat plate Plate has waviness near top due to soldering

    faults

    Negligible starting length forboundary layer

    Large starting length depending on the windspeed and air suction velocity. For some casesup to full collector length in starting region.

    Uniform parallel flow of air

    behind absorber plate

    Non uniform flow with streamlines crossing due

    to pressure drop in across plenum

    No leakage in collector shell Finite leakage in setup

    Uniform absorptivity of collectorplate surface across the solarspectrum.

    Non uniform deposition of paint on the absorberplate and specular reflectance of absorber plate.

    40

  • 8/11/2019 Liquid-Air Transpired Solar Collector (LATSC): Model Development, Validation and Optimization-Thesis defense

    41/61

    Motivation

    ResearchObjectives

    LATSC

    Experimental Numerical

    Sensitivity Analysis

    LDR

    Numerical

    CombinedLATSC-LDR

    Model

    Sensitivity Analysis Optimization

    41

  • 8/11/2019 Liquid-Air Transpired Solar Collector (LATSC): Model Development, Validation and Optimization-Thesis defense

    42/61

    Liquid Desiccant Regenerator (LDR)Falling film typeCounter flow configurationMany parallel plates

    42

  • 8/11/2019 Liquid-Air Transpired Solar Collector (LATSC): Model Development, Validation and Optimization-Thesis defense

    43/61

    Mass and Energy Balance

    43

  • 8/11/2019 Liquid-Air Transpired Solar Collector (LATSC): Model Development, Validation and Optimization-Thesis defense

    44/61

    Solving Method

    44

  • 8/11/2019 Liquid-Air Transpired Solar Collector (LATSC): Model Development, Validation and Optimization-Thesis defense

    45/61

    Motivation

    ResearchObjectives

    LATSC

    Experimental Numerical

    Sensitivity Analysis

    LDR

    Numerical

    CombinedLATSC-LDR

    Model

    Sensitivity Analysis Optimization

    45

  • 8/11/2019 Liquid-Air Transpired Solar Collector (LATSC): Model Development, Validation and Optimization-Thesis defense

    46/61

    Combined Model

    46

  • 8/11/2019 Liquid-Air Transpired Solar Collector (LATSC): Model Development, Validation and Optimization-Thesis defense

    47/61

    Solution Procedure

    47

  • 8/11/2019 Liquid-Air Transpired Solar Collector (LATSC): Model Development, Validation and Optimization-Thesis defense

    48/61

    Motivation

    ResearchObjectives

    LATSC

    Experimental Numerical

    Sensitivity Analysis

    LDR

    Numerical

    CombinedLATSC-LDR

    Model

    Sensitivity Analysis Optimization

    48

  • 8/11/2019 Liquid-Air Transpired Solar Collector (LATSC): Model Development, Validation and Optimization-Thesis defense

    49/61

  • 8/11/2019 Liquid-Air Transpired Solar Collector (LATSC): Model Development, Validation and Optimization-Thesis defense

    50/61

    Regenerator Efficiency =

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    R e g e n e r a t i o n E f

    f i c i e n c y

    R cp

    Regeneration Efficiency vs. Rmcp

    ( cp)total=5 W/m2K

    ( cp)total=10 W/m2K

    ( cp)total=15 W/m2K

    ( cp)total=20 W/m2K

    ( cp)total=25 W/m2K

    50

  • 8/11/2019 Liquid-Air Transpired Solar Collector (LATSC): Model Development, Validation and Optimization-Thesis defense

    51/61

    Overall Efficiency=

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    O v e r a

    l l E f

    f i c i e n c y

    R cp

    Overall Efficiency vs. Rmcp

    ( cp)total=5 W/m2K

    ( cp)total=10 W/m2K

    ( cp)total=15 W/m2K

    ( cp)total=20 W/m2K

    ( cp)total=25 W/m2K

    51

  • 8/11/2019 Liquid-Air Transpired Solar Collector (LATSC): Model Development, Validation and Optimization-Thesis defense

    52/61

    Motivation

    ResearchObjectives

    LATSC

    Experimental Numerical

    Sensitivity Analysis

    LDR

    Numerical

    CombinedLATSC-LDR

    Model

    Sensitivity Analysis Optimization

    52

  • 8/11/2019 Liquid-Air Transpired Solar Collector (LATSC): Model Development, Validation and Optimization-Thesis defense

    53/61

    Optimization Air flow rate, water flow rate and desiccant flowrate required for optimum performance ofcombined LATSC-LDR system

    Typical Abu Dhabi conditions to be modeled.

    Parameter Value

    Solar Radiation 850 W/m 2

    Wind Speed 4 m/sHumidity 0.02 kg w/kg daTemperature 27.5 oC

    53

  • 8/11/2019 Liquid-Air Transpired Solar Collector (LATSC): Model Development, Validation and Optimization-Thesis defense

    54/61

    Objective FunctionMaximize desiccant flow rateDesiccant outlet concentration =0.4 kg d/kg w

    Genetic Algorithm used to minimize function

    54

  • 8/11/2019 Liquid-Air Transpired Solar Collector (LATSC): Model Development, Validation and Optimization-Thesis defense

    55/61

    Results

    Parameter Value

    Water thermal capacitance rate 176.0257 W/m 2K

    Air thermal capacitance rate 22.7955 W/m 2K

    Desiccant flow rate 0.0001172 kg/s

    55

    Parameter Value

    Water thermal capacitance rate 123.0850 W/m 2K

    Air thermal capacitance rate 51.7855 W/m 2K

    Desiccant flow rate 0.00013771 kg/s

    Plate Width =0.5m

    Plate Width =1m

    Increase in Efficiency= 17.5%

  • 8/11/2019 Liquid-Air Transpired Solar Collector (LATSC): Model Development, Validation and Optimization-Thesis defense

    56/61

    Conclusion

    LATSC Numerical model Sensitivity Analysis shows that optimum R mcp

    decreases with increasing mc p(tot) Decreasing emissivity and wind speed increasesefficiency Increasing temperature and solar radiation increases

    efficiency

    LATSC model partly verified Large discrepancies between model and experiment Experimental conditions deviate from assumptions

    56

  • 8/11/2019 Liquid-Air Transpired Solar Collector (LATSC): Model Development, Validation and Optimization-Thesis defense

    57/61

    Conclusion

    Combined LATSC-LDR model Optimum Rmcp decreases with increased

    mc p(tot) Regenerator prefers hot water over hot air Role of air to suppress convection

    Combined system optimization System optimized for typical Abu Dhabi

    conditions57

  • 8/11/2019 Liquid-Air Transpired Solar Collector (LATSC): Model Development, Validation and Optimization-Thesis defense

    58/61

    Further Work

    Retesting of collector with area at least 5m 2

    Wind tunnel testing for heat exchange effectiveness of plate in starting region AND/OR CFD Analysis

    Changes in numerical model to account for starting region

    Optimize the height, width and number of plates in the regenerator

    Experimental validation of LATSC-LDR combined system

    Numerical model and experimental validation of LATSC-HDH Desalinationsystem

    58

  • 8/11/2019 Liquid-Air Transpired Solar Collector (LATSC): Model Development, Validation and Optimization-Thesis defense

    59/61

    AchievementsInvention DisclosureJournal Publication:

    Qadir, A. and P. Armstrong. Liquid-Air Transpired Solar Collector: ModelDevelopment and Sensitivity Analysis . ASME Journal of Solar Energy

    Engineering. Under second review

    Conference Paper:Qadir, A. and P. Armstrong. Hybrid Liquid-Air Transpired Solar Collector: ModelDevelopment and Sensitivity Analysis in ASME 2010 International MechanicalEngineering Congress & Exposition . 2010. Vancouver, Canada: ASME.

    Potential/Upcoming Publications:Experimental validation of LATSCLATSC-LDR modeling and optimization for hot humid climatesLATSC-HDH Desalination modeling and optimization

    59

  • 8/11/2019 Liquid-Air Transpired Solar Collector (LATSC): Model Development, Validation and Optimization-Thesis defense

    60/61

    AcknowledgementsDr Peter ArmstrongRSC membersDr Matteo ChiesaLENS group:

    Steven MeyersMarwan MokhtarMuhammad Tauha Ali

    Irene RubalcabaDr Pawan Singh

    All my kith and kin for providing moral and physicalsupport

    60

  • 8/11/2019 Liquid-Air Transpired Solar Collector (LATSC): Model Development, Validation and Optimization-Thesis defense

    61/61

    THANK YOU!