lipid bilayers and membrane dynamics: insight into thickness … · 2012-06-26 · lipid bilayers...

25
Lipid Bilayers and Membrane Dynamics: Insight into Thickness Fluctuation Andrea C. Woodka, 1 Paul D. Butler, 1 Lionel Porcar, 2 Bela Farago, 2 and Michihiro Nagao, 1,2,3 1 NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102, USA, 2 Institut Laue Langevin, 6 rue Jules Horowitz, BP 156-38042, Grenoble Cedex 9, France, 3 Center for Exploration of Energy and Matter, Indiana University, Bloomington, IN 47408, USA

Upload: others

Post on 04-Jul-2020

20 views

Category:

Documents


0 download

TRANSCRIPT

  • Lipid Bilayers and Membrane Dynamics:

    Insight into Thickness Fluctuation

    Andrea C. Woodka,1 Paul D. Butler,1 Lionel Porcar,2 Bela Farago,2 and

    Michihiro Nagao,1,2,3

    1 NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102, USA, 2 Institut Laue Langevin, 6 rue Jules Horowitz, BP 156-38042, Grenoble Cedex 9, France,

    3 Center for Exploration of Energy and Matter, Indiana University, Bloomington, IN 47408, USA

  • Motivation

    Lipid membranes are self-assembled highly flexible structures that have the ability to undergo an array of conformational and dynamic transitions which are essential for many biological functions.

    Spectroscopic length scale:

    Intermediate length scale : Membrane thickness fluctuations have been proposed as a mechanism for pore formation.(3)

    Microscopic length scale:

    Membrane stiffness and fluidity have been shown to have a large impact on cellular uptake and release.(2)

    Cell signal transduction is affected by molecular lateral diffusion within the lipid membrane.(1)

    (1) D Marguet, et al. EMBO J, 25, 3446 (2006)

    (2) P. Weber, et. al. Adv Med Eng, 114, 377(2006)

    (3) L. Movilenu, et al. Bull Math Biol, 58, 1231 (2006)

  • Membrane Dynamics

    observation length scale

    molecular motion collective motion

    incoherent-quasi-elastic scattering

    nuclear magnetic resonance etc.

    coherent-quasi-elastic scattering

    photon correlation spectroscopy

  • Molecular movements (incoherent movements of molecules)

    Lateral diffusion Vertical vibration

    Coherent movements of molecular assemblies

    Rotation

    Stretching Compression

    Bending Stretching

    Compression

    Protrusion Thickness fluctuations

    The Dynamics in Lipid Bilayers

  • Techniques to Measure Dynamics

  • Neutron Spin Echo

    Elastic Scattering

    http://www.ill.eu/instruments-support/instruments-groups/groups/tof/home/spin-echo-video/

  • Farago et al, Physica B 213&214, 712 (1995).; Farago, Physica B 226, 51 (1996).

    • NSE measured Q

    dependence of Deff • showing an increase at

    the membrane thickness

    length scale

    Nagao, Phys. Rev. E 80, 031606 (2009).; Nagao et al., Soft Matter 7, 6598 (2011).; Nagao, J. Chem. Phys. 135, 074704 (2011).

    bending

    thickness

    Surfactant Membranes

  • Breathing model of a lipid bilayer by Miller Miller, Top. Bioelectrochem. Bioenerg. 4, 161 (1981).; Bach and Miller, Biophys. J. 29, 183 (1980).; Miller, Biophys. J. 45, 643 (1984).

    Amplitude of the fluctuations reaches ≈ 15 Å or more from

    the geometrical constraints (volume conservation)

    Thickness fluctuations by Hladky and Gruen

    Thickness fluctuations occur, but the amplitude is small.

    Long wavelength fluctuation amplitude is negligible

    Short wavelength fluctuations (< 30 Å) are severely limited

    Intermediate wavelength fluctuation amplitude < 10 Å

    Hladky and Gruen, Biophys. J. 38, 251 (1982).

    Deformation free energy of bilayer membranes by Huang Huang, Biophys. J. 50, 1061 (1986).

    Theoretically, thickness fluctuations exist, their amplitude is very small

    Thickness fluctuations in lipid

    bilayers (theoretical studies)

  • Bilayer Preparation

    (D54)DMPC = C14

    (D62)DPPC = C16

    (D70)DSPC = C18

  • Phospholipid Melting Temperature

    1.112

    1.110

    1.108

    1.106

    1.104S

    pecific

    Gra

    vity

    70605040302010

    Temperature (ºC)

    DMPC DPPC DSPC

    20.5ºC

    37.5ºC

    50.5ºC

    Gel phase, below Tm

    Above Tm lipid tails highly fluid, disordered and in constant motion

    Fluid phase above Tm

    Below Tm transition to a gel state, tails are fully extended with highly ordered packing

  • 0.1

    1

    10

    100

    I(q)

    0.012 3 4 5 6

    0.12 3 4 5

    q (A-1

    )

    DMPC_35C_ABS_i DPPC_50C_ABS_i DSPC_65C_ABS_i

    Small Angle Neutron Scattering

    Peak shifts to higher Q with decreasing tail

    length

    q ~ 2π / length scale

    *Scattering intensity is offset to highlight peak shift

    SANS and NSE are complimentary techniques

    q

    SANS static “snapshot” elastic scattering

    NSE dynamic “snapshot”

    quasielastic scattering

    dqSqI ),()(

    dtqStqI )cos(),(),(

  • 1.0

    0.8

    0.6

    0.4

    I(q

    ,t)

    / I(

    q,0

    )

    14121086420t (ns)

    q (Å-1

    )

    0.056

    0.070

    0.075

    0.113

    0.132

    0.164

    0.183

    0.201

    fits

    NSE : I(q,t)

    ])(exp[)0,(

    ),( 32 /tqI

    tqI

    1.0

    0.8

    0.6

    0.4

    0.2

    14121086420

    IQT_0p0456 IQT_0p0556 IQT_0p0651 IQT_0p0697 IQT_0p0750 IQT_0p0792 IQT_0p0845 IQT_0p0889 IQT_0p0935 IQT_0p0988 IQT_0p1031 IQT_0p1083 IQT_0p1126 IQT_0p1221 IQT_0p1228 IQT_0p1312 IQT_0p1323 IQT_0p1418 IQT_0p1514 IQT_0p1606 IQT_0p1635 IQT_0p1730

    IQT_0p1826 IQT_0p1921 IQT_0p2013

    1.0

    0.9

    0.8

    0.7

    0.6

    0.5

    14121086420

    IQT_0p0615 IQT_0p0714 IQT_0p0815 IQT_0p0898 IQT_0p0909 IQT_0p0994 IQT_0p1004 IQT_0p1089 IQT_0p1184 IQT_0p1240 IQT_0p1275 IQT_0p1336 IQT_0p1431 IQT_0p1527 IQT_0p1618

    DPPC 50ºC

    DMPC 25ºC

    DSPC 55ºC

  • Helfrich bending energy

    Assuming the membrane is thin enough sheet, which is undulating

    Zilman-Granek theory

    Dynamics of a planar non-interacting Helfrich sheet

    h(r)

    k: bending modulus

    h: solvent viscosity

    I(q,t)

    I(q,0)= exp - Gt( )

    2 / 3[ ]

    G = 0.025gkBT

    k

    æ

    è ç

    ö

    ø ÷

    1/ 2kBT

    hq3

    Watson-Brown theory

    Extension of ZG theory including slipping of each monolayer

    Inter-monolayer friction plays a role, where lateral

    compressibility km of membrane

    appears in dynamical equation

    Zilman and Granek, Phys. Rev. Lett. 77, 4788 (1996).

    Zilman and Granek, Chem. Phys. 284, 195 (2002).

    Helfrich, Z. Natureforsch. 28, 693 (1973).

    Watson and Brown, Biophys, J. 98, L09 (2010).

    Evans and Yeung, Chem. Phys. Lipids. 73, 39 (1994).; Seifert and Langer, Europhys. Lett. 23, 71 (1993).

    Surfactant Membrane Dynamic (bending)

  • Considering slipping friction

    : decay rate, b=2/3

    Zilman and Granek, Phys. Rev. Lett. 77, 4788 (1996).; Zilman and Granke,

    Chem. Phys. 184, 195 (2002).

    k: effective bending modulus,

    h: solvent viscosity, a ≈ 1

    ~

    Watson and Brown, Biophys. J. 98, L9 (2010).

    Rawicz et al., Biophys. J. 79, 328 (2000).

    Lee et al., Phys. Rev. Lett. 105, 038101 (2010).

    Bending motion is explained as a single membrane dynamics model

    Fitting I(q,t)

  • NSE : Γ vs. q DPPC @ 50ºC

    32/1

    23

    025.0 qTkTk

    OD

    BBBEND

    hk

    4

    6

    0.001

    2

    4

    6

    0.01

    2

    4

    6

    0.1

    (n

    s-1)

    3 4 5 6 7 8 9

    0.12 3

    q (A-1

    )

    6

    80.1

    2

    4

    6

    81

    2

    4

    6

    810

    I(q) (cm

    -1)

    q3

    I(q)Γ deviates from the

    pure q3 dependence expected from bending motions

    This peak occurs at the same q as the SANS dip position

    Bending

    Thickness

    22

    0

    333 )(1

    1

    qqqqqTFBEND

    M. Nagao Zilman-Granek

  • NSE : Bending Modulus

    Z. Yi, et. al, J. Phys. : Cond. Mater, 21, 155104 (2009).

    Literature

    Experiment

    10

    2

    4

    6

    8100

    2

    4

    6

    81000

    2

    k (

    kBT

    )

    100-10

    T-Tm (ºC)

    DMPC

    DPPC

    DSPC

    ● ■ ▲

  • q dependence of the decay rate:

    Below vs. Above Tm

    Below Tm DMPC

    T = 16 ˚C

    Bending

    no enhancement =

    suppressed thickness fluctuations

    Bending

    Enhancement =

    thickness fluctuations Above Tm

    DMPC

    T = 35 ˚C

  • q dependence of the decay rate:

    Lipid Tail Length

  • 22

    0

    333 )(1

    1

    qqqqqTFBEND

    NSE : Thickness fluctuations (Γ / q3)

    accounts for bending motions damping frequency of thickness fluctuations

    Proportional to the amplitude of thickness fluctuations

    SANS dip position (Lorentzian peak position)

    ΓBEND / q3 :

    ΓTF :

    ξ-1 :

    q0 :

    M. Nagao

    40

    30

    20

    10

    0

    /q

    3 (

    Å3/n

    s)

    0.200.150.100.05

    q (Å-1

    )

    40

    30

    20

    10

    0

    /q

    3 (

    Å3/n

    s)

    40

    30

    20

    10

    0

    /q

    3 (

    Å3/n

    s)

    DMPC T=15ºC (NG5) T=16ºC (IN15) T=25ºC (NG5) T=35ºC (NG5) T=35ºC (IN15)

    DPPC T=30ºC T=40ºC T=50ºC

    DSPC T=45ºC T=55ºC T=65ºC

    (b)

    (c)

    (d)

    0.1

    1

    10

    100

    1000

    I(q)

    2 4

    0.012 4

    0.12 4

    q (A-1

    )

    DPPC 30ºC 40ºC 50ºC

    6

    80.1

    2

    4I(

    q)

    0.250.200.150.100.05q (A

    -1)

    0.01 0.1

    40

    30

    20

    10

    0

    /q

    3 (

    Å3/n

    s)

    0.200.150.100.05

    q (Å-1

    )

    40

    30

    20

    10

    0

    /q

    3 (

    Å3/n

    s)

    40

    30

    20

    10

    0

    /q

    3 (

    Å3/n

    s)

    DMPC T=15ºC (NG5) T=16ºC (IN15) T=25ºC (NG5) T=35ºC (NG5) T=35ºC (IN15)

    DPPC T=30ºC T=40ºC T=50ºC

    DSPC T=45ºC T=55ºC T=65ºC

    (b)

    (c)

    (d)

    0.1 0.15 0.2

    40

    30

    20

    10

    0

    /q

    3 (

    Å3/n

    s)

    0.200.150.100.05

    q (Å-1

    )

    40

    30

    20

    10

    0

    /q

    3 (

    Å3/n

    s)

    40

    30

    20

    10

    0

    /q

    3 (

    Å3/n

    s)

    DMPC T=15ºC (NG5) T=16ºC (IN15) T=25ºC (NG5) T=35ºC (NG5) T=35ºC (IN15)

    DPPC T=30ºC T=40ºC T=50ºC

    DSPC T=45ºC T=55ºC T=65ºC

    (b)

    (c)

    (d)

    30

    20

    10

    0

    1000

    100

    10

    1

    0.1 0.1

    1

    10

    100

    I(q

    )

    0.012 3 4 5 6

    0.12 3 4 5

    q (A-1

    )

    DMPC_35C_ABS_i DPPC_50C_ABS_i DSPC_65C_ABS_i

  • Above Tm: independent of either

    temperature or tail length

    Membrane Thickness Fluctuations

    Time scale

    22

    0

    333 )(1

    1

    qqqqqTFBEND

    An order of magnitude

    slower (than surfactant

    membranes)

    ≈ 100 ns

  • Width of Lorentzian peak relates to the fluctuation amplitude(1)

    (1) Nagao et al., Soft Matter 7, 6598 (2011). (2) Huang, Biophys. J. 50, 1061 (1986). (3) Lindahl and Edholm, Biophys. J. 79, 426 (2000).

    Mean amplitude = 3.7 Å ± 0.7 Å

    Huang’s mean amplitude ≈ 4.5 Å(2)

    Lindahl & Edholm’s amplitude ≈ 5 Å(3)

    Experiment:

    Theory:

    Simulation:

    ≈ 8 % of the membrane thickness;

    close to the value seen in surfactant

    membranes (≈ 12 %)

    Suggests amplitude is defined by physical constraints, like volume conservation

    Membrane Thickness Fluctuations

    Amplitude

  • Thickness Fluctuation Theory

    21

    121

    2

    0

    1

    21

    2 tan2

    tan2

    CCCCCaK

    TkD B

    11

    2aKC

    2/1

    1

    22

    Ka

    BC

    mdK

    k1

    adm 2

    + from NSE measurements ٭from SANS measurements # from literature

    a0

    Although membrane thickness fluctuations have not been previously measured Huang(7) has proposed a theory for thickness fluctuations in a lipid bilayer under the consideration of deformation free energy:

    D ≈ 4.5Å

    D B#

    dm* k #

    = thickness fluctuation amplitude = membrane compressibility = wavelength cut off = membrane thickness = bending modulus = surface tension

  • Conclusions

    NSE was used to successfully measure lipid membrane thickness fluctuations

    From SANS it is clear that these fluctuations appear at the length scale of the membrane thickness.

    The relaxation time ≈100 ns and is independent of temperature and tail length. An order slower than that observed in surfactant membranes

    Amplitude is ≈ 8 % of the thickness, consistent with surfactant membranes (12 %). Volume conservation may define the fluctuation amplitude.

    Below Tm, thickness fluctuations are not observed, suggesting total suppression of the mode or much slower relaxation times which are not accessible by the current setup.

    The experimental amplitude agrees well with both theory and simulation

    FUTURE DIRECTION: What kind of effects do membrane associated molecules have on membrane dynamics such as thickness fluctuations?

  • Preliminary Data w/ Protein

    Gramicidin

    Alamethicin

    http://rsif.royalsocietypublishing.org/content/early/2009/12/09/rsif.2009.0443/F4.large.jpghttp://rsif.royalsocietypublishing.org/content/early/2009/12/09/rsif.2009.0443/F4.large.jpg

  • Preliminary Data w/ Protein

    45

    40

    35

    30

    25

    20

    15

    k (

    kBT

    )

    2.52.01.51.00.50.0

    [Protein] mol%

    DMPC(ILL)Ala/DMPCGram/DPPCGram/DMPC

    12

    10

    8

    6

    4

    2

    0

    T

    F(x

    10

    -3n

    s-1

    )

    2.01.00.0

    [Protein] mol%

    DMPC(ILL) Ala/DMPC Gram/DPPC Gram/DMPC

    20

    15

    10

    5

    0

    -1

    (x10

    -3Å

    -1)

    2.01.00.0

    [Protein] mol%

    DMPC(ILL) Ala/DMPC Gram/DPPC Gram/DMPC