linear wire antennas...outline •introduction •infinitesimal dipole •small dipole •finite...

24
Linear Wire Antennas EE-4382/5306 - Antenna Engineering

Upload: others

Post on 16-Mar-2020

29 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Linear Wire Antennas...Outline •Introduction •Infinitesimal Dipole •Small Dipole •Finite Length Dipole •Half-Wave Dipole •Ground Effect Linear Wire Antennas 2 Constantine

Linear Wire Antennas

EE-4382/5306 - Antenna Engineering

Page 2: Linear Wire Antennas...Outline •Introduction •Infinitesimal Dipole •Small Dipole •Finite Length Dipole •Half-Wave Dipole •Ground Effect Linear Wire Antennas 2 Constantine

Outline• Introduction

• Infinitesimal Dipole

• Small Dipole

• Finite Length Dipole

• Half-Wave Dipole

• Ground Effect

2Linear Wire Antennas

Constantine A. Balanis, Antenna Theory: Analysis and Design 4th Ed., Wiley, 2016.

Stutzman, Thiele, Antenna Theory and Design 3rd Ed., Wiley, 2012.

Page 3: Linear Wire Antennas...Outline •Introduction •Infinitesimal Dipole •Small Dipole •Finite Length Dipole •Half-Wave Dipole •Ground Effect Linear Wire Antennas 2 Constantine

Introduction

3

Page 4: Linear Wire Antennas...Outline •Introduction •Infinitesimal Dipole •Small Dipole •Finite Length Dipole •Half-Wave Dipole •Ground Effect Linear Wire Antennas 2 Constantine

Wire Antennas - Introduction

Slide 4

Wire antennas are the simplest, cheapest, and many times most effective antennas for many applications.The easiness of configuration and analysis is why we begin with these types of antennas.

Linear Wire Antennas

Page 5: Linear Wire Antennas...Outline •Introduction •Infinitesimal Dipole •Small Dipole •Finite Length Dipole •Half-Wave Dipole •Ground Effect Linear Wire Antennas 2 Constantine

Infinitesimal Dipole

5

Page 6: Linear Wire Antennas...Outline •Introduction •Infinitesimal Dipole •Small Dipole •Finite Length Dipole •Half-Wave Dipole •Ground Effect Linear Wire Antennas 2 Constantine

Infinitesimal Dipole

Slide 6

An infinitesimal dipole is in the order of 𝑙 ≪ λ, 𝑎 ≪ 𝜆, where 𝑙 is the length of the antenna, and 𝑎 is the thickness.

The simplest antenna, it is just an open wire fed at the center with an alternating source.

To simplify the mathematical analysis, we will assume an infinitesimal vertical dipole placed along the z-axis, and the current is constant throughout the wire.

𝐈 z′ = ෝ𝒂𝒛𝐼0

𝐿 ≪ 𝜆

z

𝐼0 𝐼

Linear Wire Antennas

Page 7: Linear Wire Antennas...Outline •Introduction •Infinitesimal Dipole •Small Dipole •Finite Length Dipole •Half-Wave Dipole •Ground Effect Linear Wire Antennas 2 Constantine

Infinitesimal Dipole

Slide 7Linear Wire Antennas

Page 8: Linear Wire Antennas...Outline •Introduction •Infinitesimal Dipole •Small Dipole •Finite Length Dipole •Half-Wave Dipole •Ground Effect Linear Wire Antennas 2 Constantine

Infinitesimal Dipole - Fields

Slide 8

For an electric current source, the magnetic field is equal to

𝐻𝜃 = 𝐻𝑟 = 0

𝐻𝜙 = 𝑗𝑘𝐼0𝑙 sin 𝜃

4𝜋𝑟1 +

1

𝑗𝑘𝑟𝑒−𝑗𝑘𝑟

The electric field is equal to

𝐸𝜙 = 0

𝐸𝑟 = 𝜂𝐼0𝑙 cos 𝜃

2𝜋𝑟21 +

1

𝑗𝑘𝑟𝑒−𝑗𝑘𝑟

𝐸𝜃 = 𝑗𝜂𝑘𝐼0𝑙 sin 𝜃

4𝜋𝑟1 +

1

𝑗𝑘𝑟−

1

𝑘𝑟 2 𝑒−𝑗𝑘𝑟

Linear Wire Antennas

Page 9: Linear Wire Antennas...Outline •Introduction •Infinitesimal Dipole •Small Dipole •Finite Length Dipole •Half-Wave Dipole •Ground Effect Linear Wire Antennas 2 Constantine

Infinitesimal Dipole - Fields

Slide 9Linear Wire Antennas

Page 10: Linear Wire Antennas...Outline •Introduction •Infinitesimal Dipole •Small Dipole •Finite Length Dipole •Half-Wave Dipole •Ground Effect Linear Wire Antennas 2 Constantine

Infinitesimal Dipole – Near-Field

Slide 10

At the near-field region 𝑘𝑟 ≪ 1, the fields with higher order terms dominate:

𝐸𝜙 = 𝐻𝜃 = 𝐻𝑟 = 0

𝐻𝜙 = 𝑗𝑘𝐼0𝑙 sin 𝜃

4𝜋𝑟1 +

1

𝑗𝑘𝑟𝑒−𝑗𝑘𝑟 =

𝐼0𝑙𝑒−𝑗𝑘𝑟

4𝜋𝑟2sin(𝜃)

𝐸𝑟 = 𝜂𝐼0𝑙 cos 𝜃

2𝜋𝑟21 +

1

𝑗𝑘𝑟𝑒−𝑗𝑘𝑟 = −𝑗𝜂

𝐼0𝑙𝑒−𝑗𝑘𝑟

2𝜋𝑘𝑟3cos(𝜃)

𝐸𝜃 = 𝑗𝜂𝑘𝐼0𝑙 sin 𝜃

4𝜋𝑟1 +

1

𝑗𝑘𝑟−

1

𝑘𝑟 2 𝑒−𝑗𝑘𝑟 = −𝑗𝜂𝐼0𝑙𝑒

−𝑗𝑘𝑟

2𝜋𝑘𝑟3sin(𝜃)

Linear Wire Antennas

Page 11: Linear Wire Antennas...Outline •Introduction •Infinitesimal Dipole •Small Dipole •Finite Length Dipole •Half-Wave Dipole •Ground Effect Linear Wire Antennas 2 Constantine

Infinitesimal Dipole - Far-field

Slide 11

At the far-field region 𝑘𝑟 ≫ 1, the fields with lower order terms dominate:

𝐸𝜙 = 𝐻𝜃 = 𝐻𝑟 = 0

𝐻𝜙 = 𝑗𝑘𝐼0𝑙 sin 𝜃

4𝜋𝑟1 +

1

𝑗𝑘𝑟𝑒−𝑗𝑘𝑟 = 𝑗

𝑘𝐼0𝑙𝑒−𝑗𝑘𝑟

4𝜋𝑟sin(𝜃)

𝐸𝑟 = 𝜂𝐼0𝑙 cos 𝜃

2𝜋𝑟21 +

1

𝑗𝑘𝑟𝑒−𝑗𝑘𝑟 ≅ 0

𝐸𝜃 = 𝑗𝜂𝑘𝐼0𝑙 sin 𝜃

4𝜋𝑟1 +

1

𝑗𝑘𝑟−

1

𝑘𝑟 2 𝑒−𝑗𝑘𝑟 = 𝑗𝜂𝑘𝐼0𝑙𝑒

−𝑗𝑘𝑟

4𝜋𝑟sin(𝜃)

Linear Wire Antennas

Page 12: Linear Wire Antennas...Outline •Introduction •Infinitesimal Dipole •Small Dipole •Finite Length Dipole •Half-Wave Dipole •Ground Effect Linear Wire Antennas 2 Constantine

Power Density:For a lossless antenna, the real part of the input resistance is designated as radiation resistance.Through the mechanism of radiation resistance, the power from guided waves transfers to free-space waves.Recall the complex Poynting Vector:

𝐖 =1

2𝐄 × 𝐇∗ =

1

2ෝ𝒂𝒓𝐸𝑟 + ෝ𝒂𝜽𝐸𝜃 × ෝ𝒂𝝓𝐻𝜙

∗ =1

2(ෝ𝒂𝒓𝐸𝜃𝐻𝜙

∗ − ෝ𝒂𝜽 𝐸𝑟𝐻𝜙∗ )

Thus we get two components for power:

𝑊𝑟 =𝜂

8

𝐼0𝑙

𝜆

2sin2(𝜃)

𝑟21 − 𝑗

1

𝑘𝑟 3

𝑊𝜃 = 𝑗𝜂𝑘 𝐼0𝑙

2 cos 𝜃 sin 𝜃

16𝜋2𝑟31 +

1

𝑘𝑟 2

Infinitesimal Dipole – Power Density

Slide 12Linear Wire Antennas

Page 13: Linear Wire Antennas...Outline •Introduction •Infinitesimal Dipole •Small Dipole •Finite Length Dipole •Half-Wave Dipole •Ground Effect Linear Wire Antennas 2 Constantine

Infinitesimal Dipole – Power Density

Slide 13

Power Density:The complex power in the radial direction is obtained by integrating the components over the closed sphere:

𝑃 =

𝑆

𝐖 ∙ 𝑑𝒔 = න

0

2𝜋

0

𝜋

ෝ𝒂𝒓𝑊𝑟 + ෝ𝒂𝜽 𝑊𝜃 ∙ ෝ𝒂𝒓𝑟2 sin 𝜃 𝑑𝜃𝑑𝜙

And we obtain

𝑃 = 𝜂𝜋

3

𝐼0𝑙

𝜆

2

1 − 𝑗1

𝑘𝑟 3

For real power in the far field, we only care about the first term. Reactive (imaginary power) is more intense in the near-field region, but does not contribute to the far-field power.

Linear Wire Antennas

Page 14: Linear Wire Antennas...Outline •Introduction •Infinitesimal Dipole •Small Dipole •Finite Length Dipole •Half-Wave Dipole •Ground Effect Linear Wire Antennas 2 Constantine

Infinitesimal Dipole – Power Density and Radiation Resistance

Slide 14

Power Density:From the power calculated we obtain

𝑃𝑟𝑎𝑑 = 𝜂𝜋

3

𝐼0𝑙

𝜆

2

=1

2𝐼0

2𝑅𝑟

Radiation Resistance:Where 𝑅𝑟 is the radiation resistance given by

𝑅𝑟 = 𝜂2𝜋

3

𝑙

𝜆

2

= 80𝜋2𝑙

𝜆

2

Assumes antenna is in free-space

Linear Wire Antennas

Page 15: Linear Wire Antennas...Outline •Introduction •Infinitesimal Dipole •Small Dipole •Finite Length Dipole •Half-Wave Dipole •Ground Effect Linear Wire Antennas 2 Constantine

Infinitesimal Dipole – Directivity

Slide 15

We can calculate the directivity from the average power.

𝑊𝑟𝑎𝑑 = 𝑊𝑎𝑣𝑒 =𝜂

8

𝐼0𝑙

𝜆

2sin2(𝜃)

𝑟2=𝜂

2

𝑘𝐼0𝑙

4𝜋

2sin2(𝜃)

𝑟2

𝑈 = 𝑟2𝑊𝑟𝑎𝑑 =𝜂

8

𝐼0𝑙

𝜆

2

sin2(𝜃)

𝐷0 =𝑈𝑚𝑎𝑥

𝑈0=4𝜋𝑈𝑚𝑎𝑥

𝑃𝑟𝑎𝑑=4𝜋

𝜂8𝑘𝐼0𝜆

2

𝜂𝜋3

𝐼0𝑙𝜆

2 =3

2

𝐷0 =3

2= 1.76 dBi

𝑈𝑛 = sin2(𝜃)

Linear Wire Antennas

Page 16: Linear Wire Antennas...Outline •Introduction •Infinitesimal Dipole •Small Dipole •Finite Length Dipole •Half-Wave Dipole •Ground Effect Linear Wire Antennas 2 Constantine

Infinitesimal Dipole – Radiation Pattern

Slide 16Linear Wire Antennas

Page 17: Linear Wire Antennas...Outline •Introduction •Infinitesimal Dipole •Small Dipole •Finite Length Dipole •Half-Wave Dipole •Ground Effect Linear Wire Antennas 2 Constantine

Infinitesimal Dipole – Radiation Resistance Example

Slide 17

Example 4.1 (page 150 Balanis)

Find the radiation resistance of an infinitesimal dipole whose length is 𝑙 =𝜆

50

𝑅𝑟 = 80𝜋2𝑙

𝜆

2

= 80𝜋21

50

2

= 0.316 Ω

Linear Wire Antennas

Page 18: Linear Wire Antennas...Outline •Introduction •Infinitesimal Dipole •Small Dipole •Finite Length Dipole •Half-Wave Dipole •Ground Effect Linear Wire Antennas 2 Constantine

Short Dipole

18

Page 19: Linear Wire Antennas...Outline •Introduction •Infinitesimal Dipole •Small Dipole •Finite Length Dipole •Half-Wave Dipole •Ground Effect Linear Wire Antennas 2 Constantine

Short (Small) Dipole

Slide 19

The short dipole is a more practical, ‘real’ antenna, usually has lengths from 𝜆

50to

𝜆

10.

A better representation of current distribution of wire antennas is the triangular distribution.

Linear Wire Antennas

Page 20: Linear Wire Antennas...Outline •Introduction •Infinitesimal Dipole •Small Dipole •Finite Length Dipole •Half-Wave Dipole •Ground Effect Linear Wire Antennas 2 Constantine

Short Dipole Current Distribution

Slide 20

𝐈e x, y, z =

ෝ𝒂𝑧𝐼0 1 −2

𝑙𝑧 , 0 ≤ 𝑧 ≤

𝑙

2

ෝ𝒂𝑧𝐼0 1 +2

𝑙𝑧 , −

𝑙

2≤ 𝑧 ≤ 0

𝑙

z

𝐼0 𝐼

Linear Wire Antennas

Page 21: Linear Wire Antennas...Outline •Introduction •Infinitesimal Dipole •Small Dipole •Finite Length Dipole •Half-Wave Dipole •Ground Effect Linear Wire Antennas 2 Constantine

Short Dipole Geometry

Slide 21Linear Wire Antennas

Page 22: Linear Wire Antennas...Outline •Introduction •Infinitesimal Dipole •Small Dipole •Finite Length Dipole •Half-Wave Dipole •Ground Effect Linear Wire Antennas 2 Constantine

Far-Field E- and H- Fields

Slide 22

For an electric current source, the magnetic field is equal to

𝐻𝑟 = 𝐻𝜃 = 0

𝐻𝜙 = 𝑗𝑘𝐼0𝑙

8𝜋𝑟𝑒−𝑗𝑘𝑟 sin 𝜃

The electric field is equal to

𝐸𝑟 = 𝐸𝜙 = 0

𝐸𝜃 = 𝑗𝜂𝑘𝐼0𝑙

8𝜋𝑟𝑒−𝑗𝑘𝑟 sin 𝜃

The fields of the short dipole are one-half of the infinitesimal dipole

Linear Wire Antennas

Page 23: Linear Wire Antennas...Outline •Introduction •Infinitesimal Dipole •Small Dipole •Finite Length Dipole •Half-Wave Dipole •Ground Effect Linear Wire Antennas 2 Constantine

Short Dipole - Directivity and Radiation Resistance

Slide 23

The power radiated by the short dipole is one-fourth 1

4of the infinitesimal

dipole.

𝑅𝑟 = 20𝜋2𝑙

𝜆

2

𝐷0 =3

2= 1.76 dBi

𝑈𝑛 = sin2(𝜃)

The radiation pattern is the same for the short and infinitesimal dipole. Since the directivity is controlled by the power pattern of the antenna, it is also the same as the infinitesimal dipole.

Linear Wire Antennas

Page 24: Linear Wire Antennas...Outline •Introduction •Infinitesimal Dipole •Small Dipole •Finite Length Dipole •Half-Wave Dipole •Ground Effect Linear Wire Antennas 2 Constantine

Short Dipole – Radiation Pattern

Slide 24Linear Wire Antennas