linear algebra. session 2roquesol/math_304_fall_2018_session… · session 2. matrices. matrix...

43
Matrices. Matrix Algebra Linear Algebra. Session 2 Dr. Marco A Roque Sol 09/04/2018 Dr. Marco A Roque Sol Linear Algebra. Session 2

Upload: others

Post on 03-Oct-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Linear Algebra. Session 2roquesol/Math_304_Fall_2018_Session… · Session 2. Matrices. Matrix Algebra Matrices, matrix algebra Thus, applying these three laws to the above circuit

Matrices. Matrix Algebra

Linear Algebra. Session 2

Dr. Marco A Roque Sol

09/04/2018

Dr. Marco A Roque Sol Linear Algebra. Session 2

Page 2: Linear Algebra. Session 2roquesol/Math_304_Fall_2018_Session… · Session 2. Matrices. Matrix Algebra Matrices, matrix algebra Thus, applying these three laws to the above circuit

Matrices. Matrix Algebra

Matrices, matrix algebra

Applications of systems of linear equationsProblem 2.1.

Find the point of intersection of the lines x − y = −2 and2x + 3y = 6 .SolutionThe intersection point is the solution of the linear system{

x − y = −22x + 3y = 6

Dr. Marco A Roque Sol Linear Algebra. Session 2

Page 3: Linear Algebra. Session 2roquesol/Math_304_Fall_2018_Session… · Session 2. Matrices. Matrix Algebra Matrices, matrix algebra Thus, applying these three laws to the above circuit

Matrices. Matrix Algebra

Matrices, matrix algebra

Problem 2.2.

Find the point of intersection of the planes x − y = −2,2x − y − z = 3, and x + y + z = 6SolutionThe intersection point is the solution of the linear system

x − y = −22x − y − z = 3x + y + z = 6

Problem 2.3.

Find a quadratic polynomial p(x) such that p(1) = 4, p(2) = 3,and p(3) = 4

Dr. Marco A Roque Sol Linear Algebra. Session 2

Page 4: Linear Algebra. Session 2roquesol/Math_304_Fall_2018_Session… · Session 2. Matrices. Matrix Algebra Matrices, matrix algebra Thus, applying these three laws to the above circuit

Matrices. Matrix Algebra

Matrices, matrix algebra

Solution

Suppose that p(x) = ax2 + bx + c , then

p(1) = a + b + c

p(2) = 4a + 2b + c

p(3) = 9a + 3b + c

The values for a, b, c are given by the solution of the linear systema + b + c = 4

4a + 2b + c = 39a + 3b + c = 4

Dr. Marco A Roque Sol Linear Algebra. Session 2

Page 5: Linear Algebra. Session 2roquesol/Math_304_Fall_2018_Session… · Session 2. Matrices. Matrix Algebra Matrices, matrix algebra Thus, applying these three laws to the above circuit

Matrices. Matrix Algebra

Matrices, matrix algebra

Problem 2.4.

Electrical network . Determine the amount of current in eachbranch of the network.

Dr. Marco A Roque Sol Linear Algebra. Session 2

Page 6: Linear Algebra. Session 2roquesol/Math_304_Fall_2018_Session… · Session 2. Matrices. Matrix Algebra Matrices, matrix algebra Thus, applying these three laws to the above circuit

Matrices. Matrix Algebra

Matrices, matrix algebra

Solution

To solve this problems, we will use three fundamental Laws comingfrom Physics, namely,

Kirchhofs law 1 ( Charge Conservation ):

At every node the sum of the incoming currents equals the sum ofthe outgoing currents.

Kirchhofs law 2 ( Energy Conservation ):

Around every loop the algebraic sum of all voltages is zero.

Ohm’s Law:

For every resistor the voltage drop E , the current i , and theresistance R satisfy E = iR

Dr. Marco A Roque Sol Linear Algebra. Session 2

Page 7: Linear Algebra. Session 2roquesol/Math_304_Fall_2018_Session… · Session 2. Matrices. Matrix Algebra Matrices, matrix algebra Thus, applying these three laws to the above circuit

Matrices. Matrix Algebra

Matrices, matrix algebra

Thus, applying these three laws to the above circuit we have

Node A: i1 + i2 = i3

Node B: i3 = i1 + i2

Left loop: 10− 10i1 − 40i3 = 0

Right loop: 20− 20i2 − 40i3 = 0

Dr. Marco A Roque Sol Linear Algebra. Session 2

Page 8: Linear Algebra. Session 2roquesol/Math_304_Fall_2018_Session… · Session 2. Matrices. Matrix Algebra Matrices, matrix algebra Thus, applying these three laws to the above circuit

Matrices. Matrix Algebra

Matrices, matrix algebra

In this way we have the system:

i3 − i1 − i2 = 0

10− 10i1 − 40i3 = 020− 20i2 − 40i3 = 0

Problem 2.5.

Trafic Flow . Determine the amount of traffic between each ofthe four intersectionsof of the following diagram

Dr. Marco A Roque Sol Linear Algebra. Session 2

Page 9: Linear Algebra. Session 2roquesol/Math_304_Fall_2018_Session… · Session 2. Matrices. Matrix Algebra Matrices, matrix algebra Thus, applying these three laws to the above circuit

Matrices. Matrix Algebra

Matrices, matrix algebra

650 400

610 −→ A x1 −→ B 640 −→

x4 x2

←− 520 D ←− x3 C ←− 600

Dr. Marco A Roque Sol Linear Algebra. Session 2

Page 10: Linear Algebra. Session 2roquesol/Math_304_Fall_2018_Session… · Session 2. Matrices. Matrix Algebra Matrices, matrix algebra Thus, applying these three laws to the above circuit

Matrices. Matrix Algebra

Matrices, matrix algebra

Solution

At each intersection, the incoming traffic has to match theoutgoing traffic.

Intersection A : x4 + 610 = x1 + 450

Intersection B : x1 + 400 = x2 + 640

Intersection C : x2 + 600 = x3

Intersection D : x3 = x4 + 520

Which is equivalent to the system:x4 − x1 + 160 = 0x1 − x2 − 240 = 0x2 − x3 + 600 = 0x3 − x4 − 520 = 0

Dr. Marco A Roque Sol Linear Algebra. Session 2

Page 11: Linear Algebra. Session 2roquesol/Math_304_Fall_2018_Session… · Session 2. Matrices. Matrix Algebra Matrices, matrix algebra Thus, applying these three laws to the above circuit

Matrices. Matrix Algebra

Matrices, matrix algebra

Matrices

Let us start by solving an m × n system of linear equations

a11x1 + a12x2 + . . .+ a1nxn = b1a21x1 + a22x2 + . . .+ a2nxn = b2

......

am1x1 + am2x2 + . . .+ amnxn = bm

where aij are given coefficients, b′ms are given right-hand side, andx ′ns are the unknowns. In this way, we can introduce new arrays ofnumbers to study the linear system

A =

a11 a12 . . . a1na21 a22 . . . a2n

...am1 am2 . . . amn

X =

x1x2...xm

B =

b1b2...bm

Dr. Marco A Roque Sol Linear Algebra. Session 2

Page 12: Linear Algebra. Session 2roquesol/Math_304_Fall_2018_Session… · Session 2. Matrices. Matrix Algebra Matrices, matrix algebra Thus, applying these three laws to the above circuit

Matrices. Matrix Algebra

Matrices, matrix algebra

In this way, we have the following

Definition

An m× n matrix A , is an array of complex numbers ( m-rows andn-columns ), denoted by

A =

a11 a12 . . . a1na21 a22 . . . a2n

...am1 am2 . . . amn

= (aij)m×n

In this context, an element in the i-row and j-column is of thematrix A denoted by aij .

Dr. Marco A Roque Sol Linear Algebra. Session 2

Page 13: Linear Algebra. Session 2roquesol/Math_304_Fall_2018_Session… · Session 2. Matrices. Matrix Algebra Matrices, matrix algebra Thus, applying these three laws to the above circuit

Matrices. Matrix Algebra

Matrices, matrix algebra

An n-dimensional vector v, can be represented as a 1× n matrix(row vector) or as an n × 1matrix (column vector):

v =(x1, x2, x3, · · · , xn

)−→

(x1 x2 x3 · · · xn

)

v =(x1, x2, x3, · · · , xn

)−→

x1x2x3...xn

Dr. Marco A Roque Sol Linear Algebra. Session 2

Page 14: Linear Algebra. Session 2roquesol/Math_304_Fall_2018_Session… · Session 2. Matrices. Matrix Algebra Matrices, matrix algebra Thus, applying these three laws to the above circuit

Matrices. Matrix Algebra

Matrices, matrix algebra

An m × n matrix A = (aij) can be regarded as a column ofn-dimensional row vectors or as a row of m-dimensional columnvectors:

A =

v1

v2

v3...

vm

, vi =(ai1 ai2 ai3 · · · ain

),

A =(

w1 w2 w3 · · · wn

), wj =

a1ja2ja3j...

amj

Dr. Marco A Roque Sol Linear Algebra. Session 2

Page 15: Linear Algebra. Session 2roquesol/Math_304_Fall_2018_Session… · Session 2. Matrices. Matrix Algebra Matrices, matrix algebra Thus, applying these three laws to the above circuit

Matrices. Matrix Algebra

Matrices, matrix algebra

Associated with any m × n matrix A, we have the following basicmatrices:

a) Transpose

Is the ( n ×m ) matrix, denoted by AT , and defined by

AT =

a11 a21 . . . am1

a12 a22 . . . am2...

a1n a2n . . . amn

=(aTij

)n×m

= (aji )m×n

b) Complex Conjugate

Is the ( m × n ) matrix, denoted by A, and defined by

Dr. Marco A Roque Sol Linear Algebra. Session 2

Page 16: Linear Algebra. Session 2roquesol/Math_304_Fall_2018_Session… · Session 2. Matrices. Matrix Algebra Matrices, matrix algebra Thus, applying these three laws to the above circuit

Matrices. Matrix Algebra

Matrices, matrix algebra

A =

a11 a12 . . . a1na21 a22 . . . a2n

...am1 am2 . . . amn

= (aij)m×n = (aij)m×n

c) Adjoint

Is the ( m × n ) matrix, denoted by A∗ = AT

, and defined by

A∗ =

a11 a21 . . . am1

a12 a22 . . . am2...

a1n a2n . . . amn

=(a∗ij)n×m = (aji )m×n

Dr. Marco A Roque Sol Linear Algebra. Session 2

Page 17: Linear Algebra. Session 2roquesol/Math_304_Fall_2018_Session… · Session 2. Matrices. Matrix Algebra Matrices, matrix algebra Thus, applying these three laws to the above circuit

Matrices. Matrix Algebra

Matrices, matrix algebra

Basic Matrix Operations

Let A = (aij)m×n and B = (bij)m×n be two matrices, then wedefine

1) A = B ⇐⇒

aij = bij ; i = 1, 2, ...,m, j = 1, 2, ..., n

2) Addition

A± B = (aij ± bij)m×n

e) Scalar Multiplication

rA = (raij)m×n

Dr. Marco A Roque Sol Linear Algebra. Session 2

Page 18: Linear Algebra. Session 2roquesol/Math_304_Fall_2018_Session… · Session 2. Matrices. Matrix Algebra Matrices, matrix algebra Thus, applying these three laws to the above circuit

Matrices. Matrix Algebra

Matrices, matrix algebra

In particular we have the case of

Vector algebraLet

a =(a1, a2, a3, · · · , an

)and

b =(b1, b2, b3, · · · , bn

)be n-dimensional vectors, and r ∈ R

Vector sum

a + b =(a1 + b1, a2 + b2, a3 + b3, · · · , an + bn

)Scalar multiple

ra =(ra1, ra2, ra3, · · · , ran

)Dr. Marco A Roque Sol Linear Algebra. Session 2

Page 19: Linear Algebra. Session 2roquesol/Math_304_Fall_2018_Session… · Session 2. Matrices. Matrix Algebra Matrices, matrix algebra Thus, applying these three laws to the above circuit

Matrices. Matrix Algebra

Matrices, matrix algebra

Zero vector

r0 =(

0, 0, 0, · · · , 0)

Negative of a vector

−a =(−a1,−a2,−a3, · · · ,−an

)Vector difference

a− b =(a1 − b1, a2 − b2, a3 − b3, · · · , an − bn

)

Dr. Marco A Roque Sol Linear Algebra. Session 2

Page 20: Linear Algebra. Session 2roquesol/Math_304_Fall_2018_Session… · Session 2. Matrices. Matrix Algebra Matrices, matrix algebra Thus, applying these three laws to the above circuit

Matrices. Matrix Algebra

Matrices, matrix algebra

Given n-dimensional vectors, {v1, v2, v3, · · · , vk} and scalars{r1, r2, r3, · · · , rk}, the expression

r1v1 + r2v2 + r3v3 + · · ·+ rkvk

is called a linear combination of vectors v1, v2, v3, · · · , vk.

Also, vector addition and scalar multiplication are called linearoperations

Definition. The dot product of n-dimensional vectors

x =(x1, x2, x3, · · · , xn

)and y =

(y1, y2, y3, · · · , yn

)is given by

x · y = x1y1 + x2y2 + · · ·+ xnyn

The dot product is also called the scalar product .

Dr. Marco A Roque Sol Linear Algebra. Session 2

Page 21: Linear Algebra. Session 2roquesol/Math_304_Fall_2018_Session… · Session 2. Matrices. Matrix Algebra Matrices, matrix algebra Thus, applying these three laws to the above circuit

Matrices. Matrix Algebra

Matrices, matrix algebra

Matrix Multiplication

Let A and B, m × p and p × n matrices respectively

AB = (cij)m×n

where

cij =

p∑k=1

aikbkj

(AB)ij = cij =

. . . . . .. . . . . .ai1 ai2 . . . aip

. . ....

. . . b1j . . .

. . . b2j . . .

. . .... . . .

. . . bpj . . .

Dr. Marco A Roque Sol Linear Algebra. Session 2

Page 22: Linear Algebra. Session 2roquesol/Math_304_Fall_2018_Session… · Session 2. Matrices. Matrix Algebra Matrices, matrix algebra Thus, applying these three laws to the above circuit

Matrices. Matrix Algebra

Matrices, matrix algebra

That is, matrices are multiplied row by column :

(∗ ∗ ∗ ∗∗ ∗ ∗ ∗

)∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗

=

(∗ ∗ ∗∗ ∗ ∗

)

2× 4 4× 3 2× 3

From another point of view, we have that the matrices A and Bcan be seen as

A =

a11 a12 · · · a1pa21 a22 · · · a2p

...

am1 am2 · · · amp

=

v1

v2...

vm

Dr. Marco A Roque Sol Linear Algebra. Session 2

Page 23: Linear Algebra. Session 2roquesol/Math_304_Fall_2018_Session… · Session 2. Matrices. Matrix Algebra Matrices, matrix algebra Thus, applying these three laws to the above circuit

Matrices. Matrix Algebra

Matrices, matrix algebra

B =

b11 b12 · · · b1nb21 b22 · · · b2n

...bp1 bp2 · · · bpn

=(

w1, w2, . . . , wp

)

AB =

v1 ·w1 v1 ·w1 · · · v1 ·wp

v2 ·w1 v2 ·w1 · · · v2 ·wp...

vm ·w1 vm ·w1 · · · vm ·wp

Dr. Marco A Roque Sol Linear Algebra. Session 2

Page 24: Linear Algebra. Session 2roquesol/Math_304_Fall_2018_Session… · Session 2. Matrices. Matrix Algebra Matrices, matrix algebra Thus, applying these three laws to the above circuit

Matrices. Matrix Algebra

Matrices, matrix algebra

OBS

In general, when AB is defined, not necessarily BA is also defined,but even in that case, we have in general

AB 6= BA

Example 2.1

Let A and B the matrices defined by

A =

1 −2 10 2 −12 1 1

B =

2 1 −11 −1 02 −1 1

Find A + B, A− B, 3A AB, BA

Dr. Marco A Roque Sol Linear Algebra. Session 2

Page 25: Linear Algebra. Session 2roquesol/Math_304_Fall_2018_Session… · Session 2. Matrices. Matrix Algebra Matrices, matrix algebra Thus, applying these three laws to the above circuit

Matrices. Matrix Algebra

Matrices, matrix algebra

Solution

A + B =

3 −1 01 1 −14 0 2

A− B =

−1 −3 2−1 3 −10 2 0

3A =

6 3 −3−3 3 06 −3 3

AB =

1 −2 10 2 −12 1 1

2 1 −11 −1 02 −1 1

=

2 2 00 −1 −17 0 −1

BA =

2 1 −11 −1 02 −1 1

1 −2 10 2 −12 1 1

=

0 −3 01 0 24 −5 4

6= AB

Dr. Marco A Roque Sol Linear Algebra. Session 2

Page 26: Linear Algebra. Session 2roquesol/Math_304_Fall_2018_Session… · Session 2. Matrices. Matrix Algebra Matrices, matrix algebra Thus, applying these three laws to the above circuit

Matrices. Matrix Algebra

Matrices, matrix algebra

Example 2.2

Let C and D the matrices defined by

C =

2 11 −12 −1

D =

(1 −2 10 2 −1

)Find CD and DC.Solution

CD =

2 11 −12 −1

(1 −2 10 2 −1

)=

2 −2 11 −4 22 −6 3

DC =

(1 −2 10 2 −1

) 2 11 −12 −1

=

(2 20 −1

)6= CD

Dr. Marco A Roque Sol Linear Algebra. Session 2

Page 27: Linear Algebra. Session 2roquesol/Math_304_Fall_2018_Session… · Session 2. Matrices. Matrix Algebra Matrices, matrix algebra Thus, applying these three laws to the above circuit

Matrices. Matrix Algebra

Matrices, matrix algebra

Example 2.3

Using matrix operations rewrite the linear system

a11x1 + a12x2 + . . .+ a1nxn = b1a21x1 + a22x2 + . . .+ a2nxn = b2

......

am1x1 + am2x2 + . . .+ amnxn = bm

in terms of matrices.

Solution

Starting with the system

Dr. Marco A Roque Sol Linear Algebra. Session 2

Page 28: Linear Algebra. Session 2roquesol/Math_304_Fall_2018_Session… · Session 2. Matrices. Matrix Algebra Matrices, matrix algebra Thus, applying these three laws to the above circuit

Matrices. Matrix Algebra

Matrices, matrix algebra

a11x1 + a12x2 + . . .+ a1nxn = b1a21x1 + a22x2 + . . .+ a2nxn = b2

......

am1x1 + am2x2 + . . .+ amnxn = bm

and choosing

A =

a11 a12 . . . a1na21 a22 . . . a2n

...am1 am2 . . . amn

X =

x1x2...xm

B =

b1b2...bm

we get

Dr. Marco A Roque Sol Linear Algebra. Session 2

Page 29: Linear Algebra. Session 2roquesol/Math_304_Fall_2018_Session… · Session 2. Matrices. Matrix Algebra Matrices, matrix algebra Thus, applying these three laws to the above circuit

Matrices. Matrix Algebra

Matrices, matrix algebra

AX =

a11x1 + a12x2 + . . .+ a1nxna21x1 + a22x2 + . . .+ a2nxn

...am1x1 + am2x2 + . . .+ amnxn

=

b1b2...bm

= B =⇒ AX = B

Example 2.4

(x1, x2, x3, · · · , xn

)

y1y2y3· · ·yn

=n∑

k=1

xkyk = x · y

Dr. Marco A Roque Sol Linear Algebra. Session 2

Page 30: Linear Algebra. Session 2roquesol/Math_304_Fall_2018_Session… · Session 2. Matrices. Matrix Algebra Matrices, matrix algebra Thus, applying these three laws to the above circuit

Matrices. Matrix Algebra

Matrices, matrix algebra

y1y2y3· · ·yn

( x1, x2, x3, · · · , xn)

=

y1x1 y1x2 · · · y1xny2x1 y2x2 · · · y2xn

...ynx1 ynx2 · · · ynxn

Example 2.5

(1 1 −10 2 1

) 0 3 1 1−2 5 6 01 7 4 1

=

(−3 1 3 0−3 17 16 1

)

2× 3 3× 4 2× 4

Dr. Marco A Roque Sol Linear Algebra. Session 2

Page 31: Linear Algebra. Session 2roquesol/Math_304_Fall_2018_Session… · Session 2. Matrices. Matrix Algebra Matrices, matrix algebra Thus, applying these three laws to the above circuit

Matrices. Matrix Algebra

Matrices, matrix algebra

0 3 1 1−2 5 6 01 7 4 1

( 1 1 −10 2 1

)=

3× 4 2× 4 undefined

Properties of matrix multiplication:

(AB)C = A(BC ) (associative law)

(A + B)C = AC + BC (distributive law 1)

C (A + B) = CA + CB (distributive law 2)

(rA)B = A(rB) = r(AB) (associative law)

Any of the above identities holds provided that matrix sums andproducts are well defined.

Dr. Marco A Roque Sol Linear Algebra. Session 2

Page 32: Linear Algebra. Session 2roquesol/Math_304_Fall_2018_Session… · Session 2. Matrices. Matrix Algebra Matrices, matrix algebra Thus, applying these three laws to the above circuit

Matrices. Matrix Algebra

Matrices, matrix algebra

Types of Matrices An m × n matrix A = (aij)m×n is a

1) Zero matrix if aij = 0; i = 1, 2, ...,m, j = 1, 2, ..., n

2) Square Matrix if m = n.

A =

2 −2 11 −4 22 −6 3

; B

(3 75 −4

)

3) Identity matrix (n× n) (In) if aij = δij where δij =

{1 i = j0 i 6= j

A = In =

1 0

1. . .

0 1

Dr. Marco A Roque Sol Linear Algebra. Session 2

Page 33: Linear Algebra. Session 2roquesol/Math_304_Fall_2018_Session… · Session 2. Matrices. Matrix Algebra Matrices, matrix algebra Thus, applying these three laws to the above circuit

Matrices. Matrix Algebra

Matrices, matrix algebra

I1 = (1)

I2 =

(1 00 1

)

I3 =

1 0 00 1 00 0 1

I4 =

1 0 0 00 1 0 00 0 1 00 0 0 1

Dr. Marco A Roque Sol Linear Algebra. Session 2

Page 34: Linear Algebra. Session 2roquesol/Math_304_Fall_2018_Session… · Session 2. Matrices. Matrix Algebra Matrices, matrix algebra Thus, applying these three laws to the above circuit

Matrices. Matrix Algebra

Matrices, matrix algebra

4) Symetric Matrix (n × n) if AT = A or aij = aji ;i = 1, 2, ...,m, j = 1, 2, ..., n

5) Triangular Matrix (n × n)

5a) Upper Triangular Matrix (U) if uij = 0, i > j

U =

a11 · · · · · · a1n

a22. . .

...

0 ann

5b) Lower Triangular Matrix (L) if lij = 0, i < j

L =

a11

a22 0. . .

... · · · · · · ann

Dr. Marco A Roque Sol Linear Algebra. Session 2

Page 35: Linear Algebra. Session 2roquesol/Math_304_Fall_2018_Session… · Session 2. Matrices. Matrix Algebra Matrices, matrix algebra Thus, applying these three laws to the above circuit

Matrices. Matrix Algebra

Matrices, matrix algebra

6) Diagonal Matrix (n × n) (D) if aij = Dij where Dij = diδij

D =

d1 · · · · · ·

...

d2 00 . . .

... · · · · · · dn

Notation

A diagonal matrix D is going to be denoted byD = diag(d1, d2, · · · , dn)

Dr. Marco A Roque Sol Linear Algebra. Session 2

Page 36: Linear Algebra. Session 2roquesol/Math_304_Fall_2018_Session… · Session 2. Matrices. Matrix Algebra Matrices, matrix algebra Thus, applying these three laws to the above circuit

Matrices. Matrix Algebra

Matrices, matrix algebra

Diagonal matrices

Theorem

Let A = diag(s1, s2, · · · , sn), B = diag(t1, t2, · · · , tn)then

A + B = diag(s1 + t1, s2 + t2, · · · , sn + tn)

rA = diag(rs1, rs2, · · · , rsn)

AB = diag(s1t1, s2t2, · · · , sntn)

(AB = BA, diagonal matrices always commute)

Dr. Marco A Roque Sol Linear Algebra. Session 2

Page 37: Linear Algebra. Session 2roquesol/Math_304_Fall_2018_Session… · Session 2. Matrices. Matrix Algebra Matrices, matrix algebra Thus, applying these three laws to the above circuit

Matrices. Matrix Algebra

Matrices, matrix algebra

Theorem

Let D = diag(d1, d2, · · · , dm) and A be an m × n matrix. Thenthe matrix DA is obtained from A by multiplying the ith row by difor i = 1, 2, ...,m

A =

v1

v2...

vm

⇒ DA =

d1v1

d2v2...

dmvm

Thus, for instance we have

7 0 00 1 00 0 2

a11 a12 a13a21 a22 a23a31 a32 a33

=

7a11 7a12 7a13a21 a22 a23

2a31 2a32 2a33

Dr. Marco A Roque Sol Linear Algebra. Session 2

Page 38: Linear Algebra. Session 2roquesol/Math_304_Fall_2018_Session… · Session 2. Matrices. Matrix Algebra Matrices, matrix algebra Thus, applying these three laws to the above circuit

Matrices. Matrix Algebra

Matrices, matrix algebra

Theorem

Let D = diag(d1, d2, · · · , dn) and A be an m × n matrix. Then thematrix AD is obtained from A by multiplying the jth column by djfor j = 1, 2, ..., n

A =(

w1,w2, · · · ,wn

)⇒ AD =

(d1w1, d2w2, · · · , dnwn

)Thus, for instance we have

a11 a12 a13a21 a22 a23a31 a32 a33

7 0 00 1 00 0 2

=

7a11 a12 2a137a21 a22 2a237a31 a32 2a33

Dr. Marco A Roque Sol Linear Algebra. Session 2

Page 39: Linear Algebra. Session 2roquesol/Math_304_Fall_2018_Session… · Session 2. Matrices. Matrix Algebra Matrices, matrix algebra Thus, applying these three laws to the above circuit

Matrices. Matrix Algebra

Matrices, matrix algebra

7) Invertible Matrix (n × n) If A is a square matrix (n × n) andthere exists an n × n matrix B such that

AB = BA = In

The matrix B is denoted by A−1 and is called the Inverse Matrixand A is called invertible or nonsingular matrix. Matrices that donot have an inverse are called singular or noninvertible.OBS

A−1 is the notation for the inverse of A, but keep in mind that

A−1 6= 1

A

A−1A = AA−1 = In

Dr. Marco A Roque Sol Linear Algebra. Session 2

Page 40: Linear Algebra. Session 2roquesol/Math_304_Fall_2018_Session… · Session 2. Matrices. Matrix Algebra Matrices, matrix algebra Thus, applying these three laws to the above circuit

Matrices. Matrix Algebra

Matrices, matrix algebra

Example 2.6

A =

(1 10 1

), B =

(1 −10 1

), C =

(−1 00 1

)

AB =

(1 10 1

) (1 −10 1

)=

(1 00 1

)

Dr. Marco A Roque Sol Linear Algebra. Session 2

Page 41: Linear Algebra. Session 2roquesol/Math_304_Fall_2018_Session… · Session 2. Matrices. Matrix Algebra Matrices, matrix algebra Thus, applying these three laws to the above circuit

Matrices. Matrix Algebra

Matrices, matrix algebra

BA =

(1 −10 1

) (1 10 1

)=

(1 00 1

)

C 2 =

(−1 00 1

) (−1 00 1

)=

(1 00 1

)

Thus A−1 = B, B−1 = A, and C−1 = C

Dr. Marco A Roque Sol Linear Algebra. Session 2

Page 42: Linear Algebra. Session 2roquesol/Math_304_Fall_2018_Session… · Session 2. Matrices. Matrix Algebra Matrices, matrix algebra Thus, applying these three laws to the above circuit

Matrices. Matrix Algebra

Matrices, matrix algebra

Inverse matrix

Let Mn(R) denote the set of all n × n matrices with real entries.We can add, subtract, and multiply elements of Mn(R).However, eventhough, we know that the division does not exist ingeneral, for a subset of Mn(R) can be defined as follow. If A andB are n × n matrices and B is an invertible matrix, then

A/B := AB−1

Basic properties of inverse matrices

1) If B = A−1, then A = B−1. In other words, if A is invertible, sois A−1, and A = (A−1)−1 .

Dr. Marco A Roque Sol Linear Algebra. Session 2

Page 43: Linear Algebra. Session 2roquesol/Math_304_Fall_2018_Session… · Session 2. Matrices. Matrix Algebra Matrices, matrix algebra Thus, applying these three laws to the above circuit

Matrices. Matrix Algebra

Matrices, matrix algebra

2) The inverse matrix (if it exists) is unique. Moreover, ifAB = CA = I for some n × n matrices B and C , thenB = C = A−1.

(B = IB = (CA)B = C (AB) = CI = C )

3) If the n × n matrices, A, B, are invertible, so is AB, and(AB)−1 = B−1A−1

4) Similarly (A1A2 · · ·Ak)−1 = A−1k Ak−1 · · ·A−12 A−11

Dr. Marco A Roque Sol Linear Algebra. Session 2