line search ex

16
CENTER FOR GEOTECHNICAL MODELING REPORT NO. UCD/CGM-01/04 LINE SEARCH TECHNIQUES FOR ELASTO-PLASTIC FINITE ELEMENT COMPUTATIONS IN GEOMECHANICS BY B. JEREMIC DEPARTMENT OF CIVIL & ENVIRONMENTAL ENGINEERING COLLEGE OF ENGINEERING UNIVERSITY OF CALIFORNIA AT DAVIS SEPTEMBER 2001

Upload: christopher-white

Post on 18-Jul-2016

9 views

Category:

Documents


0 download

DESCRIPTION

example

TRANSCRIPT

Page 1: Line Search ex

CREPORT NO. UCD/CGM-01/04

LEC

B B

DCU S

ENTER FOR GEOTECHNICAL MODELING

INE SEARCH TECHNIQUES FOR LASTO-PLASTIC FINITE ELEMENT OMPUTATIONS IN GEOMECHANICS

Y

. JEREMIC

EPARTMENT OF CIVIL & ENVIRONMENTAL ENGINEERING OLLEGE OF ENGINEERING NIVERSITY OF CALIFORNIA AT DAVIS

EPTEMBER 2001

Page 2: Line Search ex

UCD-CGM report

University

ofCalifo

rinaatDavis,

Center

forGeotech

nica

lModelin

gReport

UCD-CGM-00

Publish

edin

theCommunica

tionsin

Numerica

lMeth

odsin

Engineerin

g,Vol.

17,issu

e2,

pages

115-125,2001.

LineSearchTechniques

forElasto

{Plastic

Finite

ElementComputatio

ns

inGeomechanics

BorisJeremi�c

Departm

entof

CivilandEnviron

mental

Engin

eering,

University

ofCaliforn

ia,Davis,

CA95616,

phone530.754.9248,

fax530.752.7872,

Email:

[email protected].

Abstract

Inthispaper

wepresen

taglobally

converg

entmodi�catio

nofNew

ton'smeth

od

forinteg

ratin

gconstitu

tiveequatio

nsin

elasto

{plasticity

ofgeomateria

ls.New

ton's

meth

odis

knownto

beq-quadratica

llyconverg

entwhen

thecurren

tsolutio

nap-

proxim

atio

nis

adequate.

Unfortu

nately,

itis

notunusualto

expendsig

ni�cant

computatio

naltim

ein

order

toachiev

esatisfa

ctory

results.

Wewill

presen

ta

techniquewhich

canbeused

when

theNew

tonstep

isunsatisfa

ctory.

Thissch

eme

canbeconsid

eredasamodi�ed

versio

nofthetra

ditio

nalconcep

tofbacktra

cking

alongtheNew

tondirectio

nifafullNew

tonstep

provides

unsatisfa

ctory

results.

Themeth

odisalso

knownaslin

esea

rchtech

nique.

Thetech

niqueis

applied

tothefully

implicit

New

tonalgorith

mforaharden-

ingorsoften

inggenera

liso

tropic

geomateria

lsattheconstitu

tivelev

el.Vario

us

solutio

ndeta

ilsandvisu

aliza

tionsare

presen

ted,which

emerg

efro

mtherea

lis-

ticmodelin

gofhighly

nonlin

earconstitu

tivebehaviorobserv

edin

theanalysis

of

cohesio

nless

granularmateria

ls.

KeyWords:

Elasto

{plastic

ity,Geomechanics,Constitu

tiveintegratio

ns,

Newtoniterativ

emethod,Linesearchtechnique

1

Page 3: Line Search ex

UCD-CGM report

1Introductio

n

Prob

lemof

accurately

followingtheequilib

rium

path

innumerical

modelin

gof

geoma-

terialselasto{p

lasticityhas

been

researched

forsom

etim

enow

.It

has

been

show

n

(Runesson

andSam

uelson

[12],Sim

oandTaylor

[14])that

consisten

tuse

ofNew

toniter-

ativealgorith

mon

theglob

al,�nite

elementandlocal

constitu

tivelevels

prov

ides

forfast

convergen

ce.How

ever,com

plex

itiesof

elasto{plastic

constitu

tivemodels

forgeom

ateri-

alsputhigh

dem

andon

thecon

stitutive

driver.

Inparticu

lar,low

con�nem

entregion

,

usually

foundnear

thesoil

surface

ordurin

gliquefaction

behavior

ofsan

ds,with

high

ly

nonlin

earhard

eningandsoften

ingbehavior,

high

dilatan

cyangles

(non{asso

ciativebe-

havior)

andhigh

lycurved

yield

surface,

canlead

tothenumerical

failure

(divergen

ce)

ofthecon

stitutive

driver.

Thislead

sto

theinterru

ption

of�nite

elementcom

putation

s

andcon

sequently

requires

rerunof

theprob

lemwith

smaller

loadingstep

s.

While

theuse

offullNew

tonsch

emeim

proves

rateof

convergen

ce,in

somecases

theiterative

algorithm

does

not

converge

atall.

Thenecessary

condition

forgoodcon

-

vergence

behavior

ofNew

tonmeth

odsisthat

curren

tsolu

tionapprox

imation

isgood

enough,i.e.

itiswith

inthecon

vergence

regionof

New

tonmeth

od.Ifthecurren

tso-

lution

approx

imation

isnot

goodenough,New

tonmeth

odwill

not

converge

butrath

er

bounce

throu

ghsolu

tionspace

until

erroneou

siteration

sare

interru

pted

.Oneof

the

strategiesused

topreven

tfailu

reof

New

tonmeth

odsis

thelin

esearch

technique.

It

should

benoted

that

linesearch

will

not

cure

allof

theprob

lemsasso

ciatedwith

lo-

cal,con

stitutive

levelNew

toniteration

s.How

ever,as

longas

thefunction

(andtheir

derivatives)

used

initeration

s(yield

function

,poten

tialfunction

,hard

ening/soften

ing

function

s)are

analy

tic,lin

esearch

will

prov

idefor

global

convergen

cein

thesen

sede-

�ned

byDennisandSchnabel[3].

Equilib

rium

iterationsfor

material

nonlin

ear�nite

elementcom

putation

scan

bein

general

separated

intwolevels.

First

iterationlevel

istied

tothecon

stitutive,

elasto{

plastic

computation

s.Onthislevel,

constitu

tivedriver,

foragiven

strainincrem

ent1

iteratesin

stressandintern

alvariab

lespace

until

convergen

cecriteria

ismet.

Onthe

secondlevel,

nonlin

ear�nite

elementsystem

ofequation

ssolver

isiteratin

guntil

balan

ce

ofintern

alandextern

alforces

isach

ieved.Glob

allevel

iterationto

achieve

balan

ceof

intern

alandextern

alforces

have

seenuse

oflin

esearch

techniques

(eg.Cris�

eld[2],

Larsson

etal.

[10],Sim

oandMesch

ke[13]).

Intheir

recentpaper,

Dutko

etal.

[4],

1Assu

mingdisp

lacem

entbased

implem

entatio

nofFEM.

2

Page 4: Line Search ex

UCD-CGM report

used

avarian

tof

linesearch

algorithm

forcon

stitutive

leveliteration

s.They

applied

thistech

niqueto

thebiax

ialanisotrop

icyield

criterion(Barlat

etal.

[1])andpresen

ted

interestin

gandusefu

lresu

lts.Ofparticu

larinterest

arestatistics

onnumber

oflin

e

searchiteration

sfor

asharp

lycurved

regionof

theyield

line.

Unfortu

nately,

theactu

al

linesearch

techniqueused

was

just

brie

ydescrib

ed.

Thepaper

isorgan

izedas

follows.

Section

2brie

ydescrib

eselastic{p

lasticalgo-

rithmicform

ulation

based

onthefully

implicit,

New

tonproced

ure

andtheBMaterial

Model

used

incom

putation

s.Section

3describ

estheory

behindthelin

esearch

tech-

niqueandsection

4describ

esapplication

ofthelin

esearch

techniques

tothecon

stitutive

integration

prob

lems.

Section

5presen

tsnumerical

exam

ples

that

illustrate

describ

ed

develop

ments.

Itisworth

while

notin

gthat

while

thepresen

tedtech

niques

isapplied

tosm

alldefor-

mation

elasto{plastic

prob

lemsithas

been

used

inthelarge

deform

ationelasto{p

lastic

algorithmsas

well.

How

ever,inheren

tcom

plex

itiesof

LDEPalgorith

msdevelop

ments

migh

thidethebasic

ideas

ofusin

glin

esearch

techniques

sowerestrict

ourpresen

ta-

tionto

small

deform

ationelasto{p

lasticity.Alth

ough

develop

ments

presen

tedhere

are

simpli�

edto

small

deform

ationform

at,thegen

eralityof

theapproach

isnot

lost.

2Elastic

{Plastic

Geomechanics

Inthissection

webrie

ypresen

tBack

ward

Euler

algorithmsfor

thesolu

tionsof

elastic{

plastic

prob

lemsin

geomech

anics.

Tothisend,weuse

theadditive

decom

position

of

thestrain

increm

entinto

elasticandplastic

parts

together

with

ow

theory

ofplasticity

andKaru

sh{K

uhn{T

ucker

condition

sto

formulate

theelastic{p

lasticprob

lem.Detailed

descrip

tionof

theform

ulation

scan

befou

ndelsew

here

(eg.Jerem

i�candSture

[8]).The

fully

implicit

Back

ward

Euler

algorithm

isdevelop

edin

general

stressten

sor{intern

al

variableten

sorsettin

gandisbased

onthefollow

ingequation

s

n+1�

ij=E

ijkl �

n+1�kl �

n+1�pkl �

;n+1�pij=

n�pij+�n+1m

ij

n+1q�=

nq�+�n+1h�

;Fn+1=0

(1)

where,

�ij ;

�eijand�pijare

thetotal,

elasticandplastic

strainten

sorsresp

ectively,�ij

istheCauchystress

tensor,

q�rep

resents

suitab

leset

ofintern

alvariab

les,h�is

the

plastic

moduliandFn+1istheyield

surface

function

atthe�nal

position

.Theasterisk

3

Page 5: Line Search ex

UCD-CGM report

intheplace

ofindices

inq�rep

lacesnindices,

sothat

forexam

plein

thecase

ofisotrop

ic

hard

eningq�isascalar

while

forkinem

atichard

eningq�issecon

dord

erten

sor.Equation

s

(1),are

thenonlin

earalgeb

raicequation

sto

besolved

fortheunknow

ns

n+1�

ij ,n+1�pij ,

n+1q�and�.New

toniterative

schem

eisused

tosolve

forthesin

glevector

return

instress

tensor

{intern

alvariab

lespace.

Wecan

circumven

ttheprob

lemof

�ndingthesolu

tion

inthesoften

ingregion

,which

,in

general

stressten

sor{intern

alvariab

lespace

belon

gs

tonon{con

vexspace,

byde�ningtheten

sorof

stressresid

uals.

Then,bywork

ingon

theprob

lemof

minim

izingthestress

residualwecon

vertthenon{con

vexprob

lemto

the

convex

one.

Ofcou

rse,as

usual,

byusin

gNew

toniterative

meth

od,wehave

toprov

ide

forcon

tinuation

ofiterative

proced

ure

eveniftheNew

tonstep

isnot

satisfactory.That

isprecisely

thepoin

twhere

thelin

esearch

techniqueshow

situsefu

lness.

TheBack

ward

Euler

algorithm

isbased

ontheelastic

pred

ictor{plastic

corrector

strategy:

n+1�

ij=

pred�

ij��E

ijkln+1m

kl

(2)

where

pred�

ij=E

ijkl�klistheelastic

trialstress

stateand

n+1m

kl=

(@Q=@�kl )jn

+1isthe

gradien

tto

theplastic

poten

tialfunction

instress

space

atthe�nal

position

.Wede�ne

aten

sorof

residuals

rij=�ij� �

pred�

ij��E

ijkln+1m

kl �

(3)

that

represen

tsthedi�eren

cebetw

eenthecurren

tstress

state�ijandtheBack

ward

Euler

stressstate

pred�

ij��E

ijkln+1m

kl .Byusin

g�rst

order

Taylor

seriesexpansion

of

theten

sorof

residuals

rijandthe�rst

order

Taylor

expansion

oftheyield

function

F,

andafter

somealgeb

raicmanipulation

sweobtain

thechange

incon

sistency

param

eter

d�=

n+1F

old�

n+1n

mn

oldr

ijn+1T�1

ijmn

n+1n

mnE

ijkln+1H

kl n+1T�1

ijmn�

n+1��h�

(4)

Wehave

alsointro

duced

thefou

rthord

erten

sorsTijmnandH

ijmn :

n+1T

ijmn=ÆimÆnj+�E

ijkl

@m

kl

@�mn �����n

+1

;n+1H

kl=

n+1m

kl +

�@m

kl

@q� �����n

+1 h�

(5)

where

nmn=

@F=@�mn ,

��=

@F=@q�anddq�=

d�h� (�

ij ;q� ).

With

thesolu

tionsfor

d�wecan

write

theiterative

solution

ford�mnanddq� ,in

theexten

ded

stress{intern

al

variablespace

as:

d�mn=�

oldr

ij+

n+1F

old�

n+1n

mn

oldr

ijn+1T�1

ijmn

n+1n

mnE

ijkln+1H

kl n+1T�1

ijmn�

n+1��h�

Eijkln+1H

kl !

n+1T�1

ijmn

(6)

4

Page 6: Line Search ex

UCD-CGM report

dq�=

n+1F

old�

n+1n

mn

oldr

ijn+1T�1

ijmn

n+1n

mnE

ijkln+1H

kl n+1T�1

ijmn�

n+1��h� !

h�

(7)

Iterativeproced

ure

iscon

tinued

until

theob

jectivefunction

krij k

=0issatis�

edgiven

acertain

tolerance.

Inord

erto

starttheNew

toniterative

proced

ure,

weuse

forward

Euler

solution

asa

startingpoin

t

start�mn=E

mnpqd�pq�E

mnpq

crossn

rsE

rstud�tu

crossn

abE

abcdcrossm

cd��� h�

crossm

pq

(8)

startq�=

previousq�+

crossn

mnE

mnpqd�pq

crosn

mnE

mnpqcrosm

pq��� h� !

h�

(9)

where

cross()

denotes

thepoin

twhere

trialstate

crossesyield

surface.

Consisten

t,New

toniteration

son

thecon

stitutive

levelare

re ected

ontheglob

al,

�nite

elementlevel

throu

ghuse

ofalgorith

mictan

gentsti�

ness

(ATS)ten

sorATSE

ep

pqmn

de�ned

as

d�pq=

ATSE

ep

pqmnd�mn

with

ATSE

ep

pqmn=R

pqmn�

Rpqkl n+1H

kl n+1n

ij Rijmn

n+1n

ot R

otpqn+1H

pq+

n+1��h�

(10)

where

wehave

used

reduced

sti�ness

tensor

Rmnkl=(n+1T

ijmn )�1E

ijkl .Itisim

portan

t

tonote

that

thelin

esearch

techniquedescrib

edlater

doesnotalter

theATSten

sor

ATSE

ep

pqmn .

Adetailed

derivation

isgiven

inJerem

i�candSture

[6].

Weuse

small

deform

ationversion

oftheB

material

model

(Jeremi�c

etal.

[5])for

ourcom

putation

s.Themodelrelies

onthedevelop

mentbehindtheso

calledMRS{L

ade

model(Sture

etal.

[16]).TheB{M

odelisasin

glesurface

model,

with

uncou

pled

cone

portion

andcap

portion

hard

ening.

Very

lowcon

�nem

entregion

was

carefully

modeled

andtheyield

surface

was

shaped

insuch

away

tomim

icrecen

t�ndings

obtain

eddurin

g

Micro

Grav

ityMech

anics

testsaboard

Space

Shuttle

(Sture

etal.

[15]).Figu

re(1)

depicts

merid

iananddeviatoric

tracesandafullyield

surface.

Italso

depicts

coneand

caphard

ening/soften

ingfunction

s.Detailed

descrip

tionofthemodelisgiven

byJerem

i�c

etal.

[5].

3LineSearchTechnique

Inthissection

wedevelop

theory

behindthelin

esearch

techniques.

Webase

ourde-

velopments

oncon

ceptof

minim

izationtheory

forascalar

function

f(x� ).

Weshow

5

Page 7: Line Search ex

UC

D-C

GM

rep

ort

a)

pcp

0.71(pc- pt)ηinit

pt

b1

b)

σ3σ2

σ1

low confinment trace

high confinment trace c)

-0.5

0

0.5

0 0.25 0.5 0.75 1

-0.5

0

0.5-0.5

0

0.5

d)1 2 3 4

0.5

1

1.5

2

2.5

3

cone

peak

start

residual

cone

peak

η

η

ηη

κ

κ

e)

1040

1020

1060

0.2 0.4 0.6 0.8 1.0

k

pc

cap

Figure 1: (a) Meridian trace of yield, ultimate or potential surface. (b) Change of the

deviatoric trace of yield surface changes along the mean stress axes. (c) Yield and/or po-

tential surface in principal stress space. (d) Cone hardening function. (e) Cap hardening

function.

later that in our case, function to be minimized will be the energy norm of the vector of

residuals rij (Eq. 3).

The minimization problem is de�ned as (eg. Dennis and Schnabel [3].):

minx�2Rn

f(x�) : Rn �! R (11)

The basic idea of a global method for minimization is to take the step that lead downhill

for the function f(x�). One chooses a direction p� from the current point xc� in which

f(x�) decreases initially and a new point x+� in this direction from xc� is such that f(x+

� ) <

f(xc�). Such a direction p� is called a descent direction. From the mathematical point of

view, p� is a descent direction from xc� if the directional derivative of f(x�) at xc� in the

direction p� is negative:@f (xc�)

@x�p� < 0 (12)

6

Page 8: Line Search ex

UC

D-C

GM

rep

ort

If (12) holds, then it is guaranteed that for a small positive �, f(xc� + �p�) < f(xc�). The

idea of line search algorithm can be described as follows:

� At iteration k do:

{ calculate a descent direction pk�,

{ set xk+1� � (xk� + �kpk�) for some �k that makes xk+1� an acceptable next

iterate.

Figure (2) shows the basic concept: select xk+1� by considering the half of a one{

dimensional cross section of f(x�) in which f(x�) decreases initially from xk� .

Quadraticapproximation

slope

=0

p* < 0

xf(*k )

x*dd

xf(*k+ p

*k )ζ

ζζ

Figure 2: A cross section of f(x�) from xk� in the direction pk�.

The term \line search" refers to the procedure of choosing the acceptable �k. The so

called \exact line search" accounts for �nding the exact solution of the one{dimensional

minimization problem, i.e. �nding the exact �k so that f(xk� + �kpk�) attains minimum.

This was the preferred approach to the problem until mid 1960s. More careful compu-

tational testing has led to the use of \slack line search" which has a weak acceptance

criteria for �k as a more computationally eÆcient procedure. The common procedure

now is to try the full Newton step �rst (with �k = 1) and then, if �k = 1 fails to satisfy

criterion, to reduce �k in a systematic way, along the direction de�ned by that step.

Systematic reduction of �k along the descent direction can be achieved by applying

the line search techniques through backtracking algorithm:

Given � 2 (0; 12):

�k = 1;

7

Page 9: Line Search ex

UCD-CGM report

while

f(x

k�+�kp

k� )>f(x

k� )+��k@f(

xk� )

@x�

pk�do:

�k ���kwhere,

usually

�=

12 ;

xk+1

� �xk�+�kp

k� ;

Dennis

andSchnabel

[3]prov

iderath

erpow

erfulcon

vergence

results

forprop

erly

chosen

steps.

4Applicatio

nto

Elasto

{Plastic

Computatio

nsinGe-

omechanics

Inthissection

wedescrib

etheapplication

oflin

esearch

techniqueto

theelasto{p

lastic

constitu

tivelevel

equilib

rium

iterations.

Theob

jectivefunction

that

isfollow

edisthe

Euclid

eannorm

often

sorof

residuals

rij .

Tothisendwerew

ritetheelastic

pred

ictor

plastic

correctorEq.(2)

as:n+1�

ij=

pred�

ij���E

ijkln+1m

kl

(13)

Itisim

portan

tto

note

that

theaddition

ofscalar

linesearch

param

eter�does

not

change

theinitial

equation

s.Moreover,

as�is

only

used

inlin

esearch

improvem

ent

andisnot

afunction

ofanystate

variable(stress,

intern

alvariab

lesor

disp

lacements)

�rst

order

Taylor

expansion

sused

tocom

eupwith

theiterative

steps(Eq.(4)

{(7)

arenot

changed

.Theonly

di�eren

ceisthat

now

solution

forthechange

incon

sistency

param

eterd�read

s:�d�=

n+1F

old�

n+1n

mn

oldr

ijn+1T�1

ijmn

n+1n

mnE

ijkln+1H

kl n+1T�1

ijmn�

n+1��h�

(14)

with

changed

tensors

TijmnandH

kl

n+1T

ijmn=ÆimÆnj+��E

ijkl

@m

kl

@�mn �����n

+1

;n+1H

kl=

n+1m

kl +

��@m

kl

@q� �����n

+1 h�

(15)

With

thischanges

thelin

esearch

algorithm

cannow

bespecialized

toelasto{p

lastic

implicit

computation

s.In

eachiterative

stepkwedo:

�Given

�2(0;12 ):

��k=1;

(FullNew

tonstep

)

8

Page 10: Line Search ex

UCD-CGM report

�while

krij (

k�ij+�kd

k�ij ;

kq�+�kd

kq� )k

>krij (

k�ij ;

kq� )k

+��k

@krij k

@�mn

k�mn+@krij k

@q�

kq� !

do:{

�k ���kwhere,

usually

�=

12 ;

{k+1�

ij �

k�ij+�kd

k�ij

and

k+1q� �

kq�+�kd

kq�

Wealw

aysstart

with

�k=

1(th

atis,

afullNew

tonstep

)andonly

ifthat

iteration

fail,weapply

theback

trackalgorith

m.Asweare

followingvalu

eof

theEuclid

eannorm

often

sorof

residuals

rij ,

failure

ofNew

tonstep

isde�ned

asdivergen

ceof

that

scalar

variable.

Inoth

erword

s,increase

thevalu

eof

Euclid

eannorm

often

sorof

residuals

rij

mean

sthat

ourNew

tonstep

intheexten

ded

stress{intern

alvariab

lespace

isnot

valid.

Italso

mean

sthat

convergen

ceof

theNew

toniterative

proced

ure

isquestion

able

and

that

itwill

most

prob

ably

failin

thisiterative

step.

5NumericalExample

Prev

ioustheoretical

develop

ments

has

been

implem

ented

inFEI

(Finite

Elem

entInter-

preter)

�nite

elementprogram

.FEI

isourexperim

ental

software

platform

,written

in

C++

with

someFortran

modules.

Itisbuild

ontop

ofnDarrayandFEMtools

class

libraries

(Jeremi�c

andSture

[9]).Thelin

esearch

algorithm

isim

plem

ented

onboth

global,

�nite

elementlevel

aswell

ason

thelocal,

constitu

tivelevel,

describ

edin

this

paper.

Wefollow

nonlin

ear�nite

elementiteration

sin

analy

zingdirection

alshear

cell

(DSC)experim

entsdoneat

theUniversity

ofColorad

oat

Boulder.

For

exam

pleMcFad-

den

([11])used

DSCapparatu

sin

order

toinvestigate

shear

behavior

ofvariou

ssan

ds.

Here

wepresen

tmodelin

gof

particu

larplan

estrain

experim

entK

0 14:5�30

in�gure

(3).Load

ingisdivided

intwostages.

The�rst

stagecom

prises

isotropiccom

pression

to

targetcon

�nem

entstate

(inthiscase

p=180

:0kPa).

Thesecon

dstage

isashear

loading

until

instab

ilityoccu

rs(in

stability

intheexperim

ental

test,numerically

wecan

follow

thespecim

enbeyon

dlim

itpoin

t).Itisnot

cleariftheinstab

ilitiesin

DSCexperim

ents

(lossof

control

overload

ingprocess)

were

dueto

thebifu

rcationphenom

enainsid

ethe

specim

enor

totheglob

alrotationofthespecim

en.Since

DSCisaload

controlled

device,

only

shear

deform

ationof

xy'3:5

%was

reached

inthelab

oratoryexperim

ent.

9

Page 11: Line Search ex

UCD-CGM report

a)S

hear deformation

γ [%]

Shear stress τ [kN/m^2]

0.01.0

2.03.0

4.05.0

0.0

50.0

100.0

150.0

200.0

b)

Shear deform

ation γ [%]

0.01.0

2.03.0

4.05.0

-2.0

-1.5

-1.0

-0.5 0.0

0.5

1.0

volumetric strain [%]

Figu

re3:

Numerical

modelin

gof

ashear

testK

0 14:5�30

a)Shear

stress{axial

strain

curves.

b)Volu

metric

strain{axial

straincurves.

Asthenumerical

experim

entisproceed

ing,

thelen

gthof

theload

ingstep

siscon

-

trolledbyusin

gthevariab

lehypersp

herical

arc{length

constrain

t([7]).

Inthisparticu

lar

case,theNew

toniterative

algorithmfailed

atcon

stitutive

levelafterstress

stateadvan

ced

into

elastic{plastic

regime.

Thispart

oftheelastic{p

lasticcom

putation

sissom

etimes

prob

lematic,

since

there

isasudden

activationof

thehard

eningmech

anism

.In

this

particu

larcase,

wehave

stopped

thecom

putation

sat

thebegin

ningof

theprob

lematic

increm

ental

step.Then,weresu

med

iterationsbymanually

decreasin

gthestep

sizefrom

0.5%to

0.1%.Figu

re4(a)

show

svalu

esof

thenorm

oftheten

sorof

residualkrij k

in

such

asuccessfu

literation

.Itcan

beseen

fromFig.

4(a)that

convergen

ceisquite

fast,

leadingto

thecon

clusion

that

theinitialestim

ateofthestress

andintern

alvariab

lestate

was

with

intheNew

toncon

vergence

region.

Sim

ilarto

theprev

iousnumerical

experim

ent,weresu

med

computation

sat

thebe-

ginningof

theprob

lematic

step,butthistim

ewith

largerincrem

ental

deform

ationof

0.5%andwith

thelin

esearch

algorithm

turned

o�.Figu

re4(b

)show

svalu

esofthenorm

oftheten

sorof

residualkrij k

forthe�rst

increm

ental

step.Wecan

observe

that

the

initial,

uncorrected

iterationproduces

non{con

vergingset

ofvalu

esfor

thenorm

ofthe

tensor

ofresid

ualkrij k.

Itisinterestin

gto

note

that

thevery

�rst

iterativestep

takesthe

valueofkrij k

tohigh

erthan

initial

values.

Moreover,

Figu

re5(a)

show

sthat

although

valueof

evaluated

yield

surface

Finitially

poin

tdow

nward

fromtheinitial

pred

ictor,it

iseven

tually

divergin

gtoo.

Finally,

once

againweresu

mecom

putation

sat

thebegin

ningof

theprob

lematic

increm

ental

step,now

with

thelin

esearch

algorithm

turned

on.It

canbeseen

from

10

Page 12: Line Search ex

UCD-CGM report

a)1

23

45

1e-06

1e-05

1e-04

1e-03

norm of residual r

nu

mb

er o

f itera

tion

sb)

05

1015

201e-06

1e-05

1e-04

1e-03

1e-02

1e-01

norm of residual r

nu

mb

er o

f itera

tion

s

erra

tic itera

tion

s(lin

e se

arch

off)

(line

sea

rch o

n)

corre

cted

itera

tion

s

first itera

tive ste

p

Figu

re4:

(a)Resid

ualnormkrij k

values

forasuccessfu

literation

with

small

increm

ental

steps(on

estep

of0.1%

shear

deform

ation).

(b)Resid

ual

norm

valueskrij k

values

for

erraticandcorrected

iterations(on

estep

of0.5%

shear

deform

ation).

Fig.

4(b)that

not

only

thealgorith

mhelp

sadvan

cetheiteration

swith

outanysign

sof

divergen

ce,italso

produces

avery

goodcon

vergence

rate.This,

ofcou

rse,istheresu

lt

ofouralgorith

malw

ays�rst

tryingthefullNew

tonstep

(forwhich

weset

�k=1).

Figu

re5(b

)depicts

theprob

lematic,

�rst

iterativestep

fromFigu

re4(b

)in

some

more

details.

Wefollow

thevalu

eof

theob

jectivefunction

krij k

throu

gh10

subincre-

ments

with

intheprob

lematic

iterativestep

.Atthispoin

titisim

portan

tto

remem

ber

that

New

toniterative

algorithm

makes

aquadratic

approx

imation

(inmultid

imension

al

space)

oftheob

jectivefunction

,here

theEuclid

eannorm

krij k.

Inthisparticu

larstep

,

theapprox

imation

forkrij k

does

apoor

job,andalth

ough

theob

jectivefunction

ini-

tiallydecreases,

eventually

its�nal

valueishigh

erthan

that

ithad

attheinitial

state.

Itisinterestin

gto

note

that

at5th

subincrem

ent,ob

jectivefunction

krij k

actually

does

attainaminimum

value,butfullNew

tonstep

(at10th

subincrem

ent)

leadsto

ahigh

er

than

initial

values

forkrij k.

Figu

re(6)

depicts

failedandcorrected

iterationsin

thespace

ofstress

invarian

tsp,

qand�

p=�13�kk

q= s

312sij s

ijcos

3�=

3 p3

2

13 sij s

jk s

ki

q(12 s

ij sij )

3

sij=�ij�

13�kk Æ

ij(16)

Inthisparticu

larview

,weare

lookingat

theBmodelyield

surface

fromtheten

sile

region(negative

p).Divergen

titeration

isoscillatin

gthrou

ghthestress

space

andthere

isnosign

ofrecovery.

Ontheoth

erhand,corrected

oscillation,after

modify

ingone

11

Page 13: Line Search ex

UC

D-C

GM

rep

ort

a)0 5 10 15 20

1e-06

1e-04

1e-02

1e+00

1e+02

1e+04

yiel

d fu

nctio

nF

number of iterations

erratic iterations

correct iterations

b)0.00 0.25 0.50 0.75 1.00

1e-04

1e-03

1e-02

1e-01

approximationquadratic

subincremented iterative step

norm

of r

esid

ual r

function

Figure 5: (a) Yield surface values F for erratic and corrected iterations (one step of 0.5%

shear deformation). (b) Dissection of failed iteration.

iterative step by the line search algorithm, converges successfully.

6 Summary

In this paper we have presented a globally convergent modi�cation of Newton's method

for integrating constitutive equations in elasto{plasticity of geomaterials. The method

has been developed in rigorous mathematical framework and implemented in experi-

mental �nite element program FEI. The practical use of method was illustrated in details.

The application of line search techniques in numerical modeling of elasto{plasticity of

geomaterials should provide for robust following of equilibrium path on both, global,

�nite element and local, constitutive levels.

Acknowledgment

The author gratefully acknowledge partial support by National Science Foundation's

Paci�c Earthquake Engineering Research Center Grant NSF-PEER 2132000.3.

12

Page 14: Line Search ex

UC

D-C

GM

rep

ort

q

p

φ

erratic iterations

yield surface

correct iterations

predictor point

Figure 6: Illustration of erratic and correct iterations in stress space.

13

Page 15: Line Search ex

UCD-CGM report

References

[1]Barlat,F.,Lege,D.J.,andBrem,J.C.Asix

componentyield

function

for

anisotrop

icmaterials.

Internatio

nalJournalforPlastic

ity7(1991),

693{712.

[2]Crisfield,M.A.Non-LinearFinite

ElementAnalysis

ofSolid

sandStru

ctures

Volume1:Esse

ntia

ls.Joh

nWiley

andSons,Inc.New

York

,1991.

[3]Dennis,Jr.,J.E.,andSchnabel,R.B.Numerica

lMethodsforUnconstra

ined

Optim

izatio

nandNonlin

earEquatio

ns.Pren

ticeHall,

Engelw

oodCli�

s,New

Jersey

07632.,1983.

[4]Dutko,M.,Peri �c,D.,andOwen,D.R.J.Universalan

isotropicyield

criterion

based

onsuperq

uadratic

function

alrep

resentation

:Part1.

algorithmic

issues

and

accuray

analy

sis.Computermethodsin

applied

mechanicsandengineerin

g109

(1993),73{93.

[5]Jeremi �c,B.,Runesson,K.,andSture,S.Amodelfor

elastic{plastic

pressu

re

sensitive

materials

subjected

tolarge

deform

ations.

Internatio

nalJournalofSolid

s

andStru

ctures36,

31/32(1999),

4901{4918.

[6]Jeremi �c,B.,andSture,S.

Implicit

integration

rules

inplasticity

:Theory

andim

plem

entation

.Report

toNASA

Marsh

allSpace

Fligh

tCenter,

Contract:

NAS8-38779,

University

ofColorad

oat

Boulder,

June1994.

[7]Jeremi �c,B.,andSture,S.Re�ned

�nite

elementanaly

sisof

geomaterials.

In

Proceed

ingsof11th

Engineerin

gMechanicsConference

(Fort

Lauderd

ale,Florid

a,

May

1996),Y.K.Lin

andT.C.Su,Eds.,

Engin

eeringMech

anics

Division

ofthe

American

Society

ofCivilEngin

eers,pp.555{558.

[8]Jeremi �c,B.,andSture,S.Im

plicit

integration

sin

elasto{plastic

geotechnics.

Internatio

nalJournalofMechanicsofCohesiv

e{Fric

tionalMateria

ls2(1997),

165{

183.

[9]Jeremi �c,B.,andSture,S.Tensor

data

objects

in�nite

elementprogram

ming.

Internatio

nalJournalforNumerica

lMethodsin

Engineerin

g41(1998),

113{126.

[10]Larsson,R.,Runesson,K.,andSture,S.Embedded

localization

bandin

undrain

edsoil

based

onregu

larizedstron

gdiscon

tinuity

{theory

andFE{an

alysis.

Internatio

nalJournalofSolid

sandStru

ctures33,

20-22(1996),

3081{3101.

[11]McFadden,J.J.Experim

ental

response

ofsan

ddurin

gpricip

alstress

rotations.

Master

ofScien

cethesis,

University

odColorad

oat

Boulder,

Decem

ber

61988.

14

Page 16: Line Search ex

UCD-CGM report

[12]Runesson,K.,andSamuelsson,A.Aspects

onnumerical

techniques

insm

all

deform

ationplasticity.

InNUMETA

85Numerica

lMethodsin

Engineerin

g,Theory

andApplica

tions(1985),

G.N.P.J.

Middleton

,Ed.,AA.Balkem

a.,pp.337{347.

[13]Simo,J.C.,andMeschke,G.Anew

classof

algorithmsfor

classicalplasticity

exten

ded

to�nite

strain.application

togeom

aterials.Computatio

nalMechanics11

(1993),253{278.

[14]Simo,J.C.,

andTaylor,R.L.

Consisten

ttan

gentoperators

forrate-

independentelastop

lasticity.ComputerMethodsin

Applied

MechanicsandEngi-

neerin

g48(1985),

101{118.

[15]Sture,S.,Costes,N.,Batiste,S.,Lankton,M.,AL-Shibli,K.,Jeremi �c,

B.,Swanson,R.,andFrank,M.Mech

anics

ofgran

ular

materials

atlow

e�ec-

tivestresses.

ASCEJournalofAerospace

Engineerin

g11,

3(Ju

ly1998),

67{72.

[16]Sture,S.,Runesson,K.,andMacari-P

asqualino,E.J.

Analy

sisand

calibration

ofathree

invarian

tplasticity

model

forgran

ular

materials.

Ingenieur

Archiv

59(1989),

253{266.

15