light absorption (and optical losses) - mit … (mit) 2011 light absorption (and optical losses)...

41
Buonassisi (MIT) 2011 Light Absorption (and Optical Losses) Lecture 3 9/15/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 Prof. Tonio Buonassisi 1

Upload: dangnguyet

Post on 15-Mar-2018

217 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: Light Absorption (and Optical Losses) - MIT … (MIT) 2011 Light Absorption (and Optical Losses) Lecture3 – 9/15/2011 MITFundamentalsof Photovoltaics 2.626/2.627 –Fall2011 Prof

Buonassisi (MIT) 2011

       

          

      

Light Absorption (and Optical Losses)

Lecture 3 – 9/15/2011 MIT Fundamentals of Photovoltaics

2.626/2.627 – Fall 2011 Prof. Tonio Buonassisi

1

Page 2: Light Absorption (and Optical Losses) - MIT … (MIT) 2011 Light Absorption (and Optical Losses) Lecture3 – 9/15/2011 MITFundamentalsof Photovoltaics 2.626/2.627 –Fall2011 Prof

   

 

   

2.626/2.627 Roadmap

You Are Here

Buonassisi (MIT) 2011 2

Page 3: Light Absorption (and Optical Losses) - MIT … (MIT) 2011 Light Absorption (and Optical Losses) Lecture3 – 9/15/2011 MITFundamentalsof Photovoltaics 2.626/2.627 –Fall2011 Prof

Absorption

   

 

        

     

             

2.626/2.627: Fundamentals Every photovoltaic device must obey:

Output EnergyConversion Efficiency

Input Energy

For most solar cells, this breaks down into: Inputs Outputs

Charge Excitation

Charge Drift/Diff usion

Charge Separation

Light Absorption

Charge CollectionSolar Spectrum

total absorption excitation drift/diffusion separation collection

Buonassisi (MIT) 2011 3

Page 4: Light Absorption (and Optical Losses) - MIT … (MIT) 2011 Light Absorption (and Optical Losses) Lecture3 – 9/15/2011 MITFundamentalsof Photovoltaics 2.626/2.627 –Fall2011 Prof

   

       

          

Liebig’s Law of the Minimum

S. Glunz, Advances in Optoelectronics 97370 (2007)

total absorption excitation drift/diffusion separation collection

Buonassisi (MIT) 2011

Image by S. W. Glunz. License: CC-BY. Source: "High-Efficiency Crystalline Silicon Solar Cells." Advances in OptoElectronics (2007).

4

Page 5: Light Absorption (and Optical Losses) - MIT … (MIT) 2011 Light Absorption (and Optical Losses) Lecture3 – 9/15/2011 MITFundamentalsof Photovoltaics 2.626/2.627 –Fall2011 Prof

   

                  

                

                        

 

       Learning Objectives: Light Absorption (Optical Losses)

• Calculate reflectance and non‐absorption optical losses of a solar cell

• Calculate reflection of an interface (semi‐infinite) • Calculate the absorption/transmittance through layer

• Describe the physical underpinnings and implementation of four advanced methods of reducing optical losses

• ARC/interference • Texturization • Reflective interfaces • Thickness • Plasmonics/photonics

Buonassisi (MIT) 2011 5

Page 6: Light Absorption (and Optical Losses) - MIT … (MIT) 2011 Light Absorption (and Optical Losses) Lecture3 – 9/15/2011 MITFundamentalsof Photovoltaics 2.626/2.627 –Fall2011 Prof

   

                        

                  

                        

Light Management in Solar Cells: The Big Picture • Photons that aren’t absorbed can’t be used to create useful energy. (not absorbed means transmitted or reflected.)

• Only absorbed energy can make useful energy, thus we want to maximize this fraction!

Buonassisi (MIT) 2011 6

Page 7: Light Absorption (and Optical Losses) - MIT … (MIT) 2011 Light Absorption (and Optical Losses) Lecture3 – 9/15/2011 MITFundamentalsof Photovoltaics 2.626/2.627 –Fall2011 Prof

   

     

             

                   

 

               

Photons – Quanta of Light

•Quantum theory describes the frequency dependence of photon energy.

Particle‐wave duality: Photons have discrete quanta of energy. Photons have momentum. Light can be polarized. Light can be diffracted. Light waves can destructively and

constructively interfere.

Relevant Equations:

Eph h hc

pph k h

Buonassisi (MIT) 2011 7

Page 8: Light Absorption (and Optical Losses) - MIT … (MIT) 2011 Light Absorption (and Optical Losses) Lecture3 – 9/15/2011 MITFundamentalsof Photovoltaics 2.626/2.627 –Fall2011 Prof

   

     

               

                           

                             

Photons – Quanta of Light

•Quantum theory describes the frequency dependence of photon energy.

•Visible photon wavelengths are in the hundreds of nanometers (nm) (solar spectrum peak ~ 550 nm).

•Visible photon energies are in the range of 0.6‐6 electron volts (eV) (solar spectrum peak ~2.3 eV)

Relevant Equations:

Eph h hc

pph k h

Buonassisi (MIT) 2011 8

Page 9: Light Absorption (and Optical Losses) - MIT … (MIT) 2011 Light Absorption (and Optical Losses) Lecture3 – 9/15/2011 MITFundamentalsof Photovoltaics 2.626/2.627 –Fall2011 Prof

   

                  

     

Low‐Energy Photon‐Matter Interactions • At low energies (single eVs) typical for visible light, photons

interact primarily with valence electrons.

Courtesy of Humboldt Campus Center forAppropriate Technology. Used with permission.

Buonassisi (MIT) 2011

http://friends.ccathsu.com/bart/solarcooking/parabolic/parabolic_solar_cooker_pg_3_html.htm

9

Page 10: Light Absorption (and Optical Losses) - MIT … (MIT) 2011 Light Absorption (and Optical Losses) Lecture3 – 9/15/2011 MITFundamentalsof Photovoltaics 2.626/2.627 –Fall2011 Prof

   

         

                                  

Interactions of Visible Light with Matter

Interactions of visible light with matter can be described by the index of refraction, which is a complex number:

n̂ c n̂ ik̂

Buonassisi (MIT) 2011 10

Page 11: Light Absorption (and Optical Losses) - MIT … (MIT) 2011 Light Absorption (and Optical Losses) Lecture3 – 9/15/2011 MITFundamentalsof Photovoltaics 2.626/2.627 –Fall2011 Prof

   

         

  

   

    

                                  

Interactions of Visible Light with Matter

Interactions of visible light with matter can be described by the index of refraction, which is a complex number:

ˆ n̂ ik̂ nc

Real Component

(indicates phase velocity)

Imaginary component, Extinction

coefficient(indicates attenuation)

Buonassisi (MIT) 2011 11

Page 12: Light Absorption (and Optical Losses) - MIT … (MIT) 2011 Light Absorption (and Optical Losses) Lecture3 – 9/15/2011 MITFundamentalsof Photovoltaics 2.626/2.627 –Fall2011 Prof

   

         

                                  

                                 

     

Interactions of Visible Light with Matter

Interactions of visible light with matter can be described by the index of refraction, which is a complex number:

n̂ c n̂ ik̂

Real and Imaginary components of the index of refraction are wavelength‐dependent, and are typically measured using a measurement technique called spectroscopic ellipsometry.

Courtesy of HOLMARC. Used with permission.Buonassisi (MIT) 2011 12

Page 13: Light Absorption (and Optical Losses) - MIT … (MIT) 2011 Light Absorption (and Optical Losses) Lecture3 – 9/15/2011 MITFundamentalsof Photovoltaics 2.626/2.627 –Fall2011 Prof

   

       

                       

           

        

Photons – Reflections off a Surface

At visible wavelengths, the fraction of reflected light depends most strongly on the real component of the index of refraction:

Air Semiconductor

I

T

R

Reflectance from air to a

solid.

Buonassisi (MIT) 2011 13

Page 14: Light Absorption (and Optical Losses) - MIT … (MIT) 2011 Light Absorption (and Optical Losses) Lecture3 – 9/15/2011 MITFundamentalsof Photovoltaics 2.626/2.627 –Fall2011 Prof

   

   

             

            

      

1 2

Mechanical Engineering Analogy

μ1 < μ2

μ1 > μ2

n1 n2Rlight Change in index of refraction (ignoring absorption) is

n1 1 n 2

2

z1 1 z2Rsimilar to reflection string z1 1 of string wave at interface! Replace n with z = μ*c.

z2 c

z

c T

T tension linear _ density

Buonassisi (MIT) 2011 14

Page 15: Light Absorption (and Optical Losses) - MIT … (MIT) 2011 Light Absorption (and Optical Losses) Lecture3 – 9/15/2011 MITFundamentalsof Photovoltaics 2.626/2.627 –Fall2011 Prof

   

 

          

                

Concept Question

Tinted window questions: •Why can’t you see inside? • If the glass pane was flipped, would this change anything?

Buonassisi (MIT) 2011 15

Page 16: Light Absorption (and Optical Losses) - MIT … (MIT) 2011 Light Absorption (and Optical Losses) Lecture3 – 9/15/2011 MITFundamentalsof Photovoltaics 2.626/2.627 –Fall2011 Prof

   

 

   

Bulk Absorption

Beer‐Lambert’s Law Demo

Buonassisi (MIT) 2011 16

Page 17: Light Absorption (and Optical Losses) - MIT … (MIT) 2011 Light Absorption (and Optical Losses) Lecture3 – 9/15/2011 MITFundamentalsof Photovoltaics 2.626/2.627 –Fall2011 Prof

   

       

 

       

Photons – Transmission Through a Medium

Io

ILight Inten

sity

Medium

I Io e l

Position

Simple Derivation of Beer‐Lambert’s Law:

dIz N dz Iz

ln Iz C N z

ln I0 N 0 C N l ln Il C N l l N I l I Io e o e Buonassisi (MIT) 2011

17

Page 18: Light Absorption (and Optical Losses) - MIT … (MIT) 2011 Light Absorption (and Optical Losses) Lecture3 – 9/15/2011 MITFundamentalsof Photovoltaics 2.626/2.627 –Fall2011 Prof

   

       

 

                       

Photons – Transmission Through a Medium

Light Inten

sity

Medium Io

I

Position

I Io e l

is a function of the wavelength of light, and property of the medium.

Buonassisi (MIT) 2011 18

Page 19: Light Absorption (and Optical Losses) - MIT … (MIT) 2011 Light Absorption (and Optical Losses) Lecture3 – 9/15/2011 MITFundamentalsof Photovoltaics 2.626/2.627 –Fall2011 Prof

         

  

Absorption Coefficient ( ) for different materials I Io e

l

Buonassisi (MIT) 2011

(0.62 eV) (6.2 eV)

Courtesy of PVCDROM. Used with permission.19

Page 20: Light Absorption (and Optical Losses) - MIT … (MIT) 2011 Light Absorption (and Optical Losses) Lecture3 – 9/15/2011 MITFundamentalsof Photovoltaics 2.626/2.627 –Fall2011 Prof

   

          

    

         

 

Methods to Improve Optical Absorption (Light Management Methods)

• Antireflection coatings (ARCs) • Snell’s Law • Texturization • Back surface reflection, total internal reflection • Plasmonics • Phase shifting

Buonassisi (MIT) 2011 20

Page 21: Light Absorption (and Optical Losses) - MIT … (MIT) 2011 Light Absorption (and Optical Losses) Lecture3 – 9/15/2011 MITFundamentalsof Photovoltaics 2.626/2.627 –Fall2011 Prof

   

 

 

     

        

          

1. Texturization

Multiple reflections on surface:

• Increase probability that light enters device.

• Increase effective path length of incoming light.

PV CDROM

Buonassisi (MIT) 2011

Courtesy of PVCDROM. Used with permission.

21

Page 22: Light Absorption (and Optical Losses) - MIT … (MIT) 2011 Light Absorption (and Optical Losses) Lecture3 – 9/15/2011 MITFundamentalsof Photovoltaics 2.626/2.627 –Fall2011 Prof

   

                    

           

 

   

                  

Snell’s Law A change in refractive indices results in a “bending” of light.

A. Textured Front Surface B. Textured Back Surface 1

2 n̂1

n̂2

Snell’s Law:

n̂1 sin1 n̂2 sin2

Total internal reflection

To engineer front & back surface reflectance, carefully select refractive indices!

Buonassisi (MIT) 2011 22

Page 23: Light Absorption (and Optical Losses) - MIT … (MIT) 2011 Light Absorption (and Optical Losses) Lecture3 – 9/15/2011 MITFundamentalsof Photovoltaics 2.626/2.627 –Fall2011 Prof

   

         

          

                    

       

Snell’s Law & Reflectance: Pool Example

© source unknown. All rights reserved. This content is excluded from our CreativeCommons license. For more information, see http://ocw.mit.edu/fairuse.

Pool filled with water n = 1.3 Pool filled with substance Pool filled with negative having n = 0.9 index material n = ‐1.3

Dominant Effect: Reflection Dominant Effect: Refraction

http://spie.org/x34206.xml?ArticleID=x34206 Buonassisi (MIT) 2011 23

Page 24: Light Absorption (and Optical Losses) - MIT … (MIT) 2011 Light Absorption (and Optical Losses) Lecture3 – 9/15/2011 MITFundamentalsof Photovoltaics 2.626/2.627 –Fall2011 Prof

   

Lambertian Reflector

http://www.ecse.rpi.edu/~schubert/LightEmitting‐Diodes‐dot‐org/chap10/chap10.htm

Buonassisi (MIT) 2011

Specular reflector

θ θi r

Diffuse (lambertian) reflector

θ

Incident ray

Reflected ray

Image by MIT OpenCourseWare.

24

Page 25: Light Absorption (and Optical Losses) - MIT … (MIT) 2011 Light Absorption (and Optical Losses) Lecture3 – 9/15/2011 MITFundamentalsof Photovoltaics 2.626/2.627 –Fall2011 Prof

   

Lambertian Reflector

http://www.pveducation.org/pvcdrom/design/lambertian‐rear‐reclectors

Buonassisi (MIT) 2011 25

Courtesy of PVCDROM. Used with permission.

Page 26: Light Absorption (and Optical Losses) - MIT … (MIT) 2011 Light Absorption (and Optical Losses) Lecture3 – 9/15/2011 MITFundamentalsof Photovoltaics 2.626/2.627 –Fall2011 Prof

   

   

     

   

                      

   

                              

Total Internal Reflection

A. Textured Busbar B. Textured Back Surface

Total internal reflection

Courtesy of 1366 Technologies. Used with permission.

White backskin, textured busbar on modules helps with light capture (via total internal reflection)!

Yablonovitch Limit: 4n2 = maximum increase in optical path length E. Yablonovitch & G.D. Cody, IEEE Trans. Electron Dev. 29, 300 (1982)

Buonassisi (MIT) 2011 26

Page 27: Light Absorption (and Optical Losses) - MIT … (MIT) 2011 Light Absorption (and Optical Losses) Lecture3 – 9/15/2011 MITFundamentalsof Photovoltaics 2.626/2.627 –Fall2011 Prof

   

   

         

Antireflection Coatings (ARCs)

For source and animation, see: http://pveducation.org/pvcdrom/design/anti‐reflection‐coatings Buonassisi (MIT) 2011

Courtesy of PVCDROM. Used with permission.

27

Page 28: Light Absorption (and Optical Losses) - MIT … (MIT) 2011 Light Absorption (and Optical Losses) Lecture3 – 9/15/2011 MITFundamentalsof Photovoltaics 2.626/2.627 –Fall2011 Prof

   

   

Antireflection Coatings (ARCs)

Image by DrBob on Wikipedia. License: CC-BY-SA. This content is excluded from ourCreative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Buonassisi (MIT) 2011 28

Page 29: Light Absorption (and Optical Losses) - MIT … (MIT) 2011 Light Absorption (and Optical Losses) Lecture3 – 9/15/2011 MITFundamentalsof Photovoltaics 2.626/2.627 –Fall2011 Prof

   

   

     

                  

                    

                     

                                    

Antireflection Coatings (ARCs)

ARC

Absorber

Optimal ARC film thickness: ot 4n̂

where o is photon wavelength at the peak of the solar spectrum

Qualities of an optimized ARC: • Index of refraction between absorber and superstrate (air, glass) • Thickness on the order of a quarter wavelength (normalized for refractive index).

• Stable • Enhances electrical performance by passivating dangling bonds at the surface and repelling charges from the surface (e.g., through fixed charges).

Buonassisi (MIT) 2011 29

Page 30: Light Absorption (and Optical Losses) - MIT … (MIT) 2011 Light Absorption (and Optical Losses) Lecture3 – 9/15/2011 MITFundamentalsof Photovoltaics 2.626/2.627 –Fall2011 Prof

   

       Photons – Reflections off a Surface

Buonassisi (MIT) 2011

1

2

3

4

5

6

00 200 400 600 800 1000 1200

7

Wavelength (nm)

Ref

ract

ive

inde

x an

d ex

tinct

ion

coef

ficie

nt

kSi3N4

kSi

nSi3N4

nSi

(n-1)2+k2

(n+1)2+k2R=

Image by MIT OpenCourseWare.

30

Page 31: Light Absorption (and Optical Losses) - MIT … (MIT) 2011 Light Absorption (and Optical Losses) Lecture3 – 9/15/2011 MITFundamentalsof Photovoltaics 2.626/2.627 –Fall2011 Prof

   

            

                          

                        

                    

 

Thin films require accounting of Phase information

• When EM waves (light) are interacting with matter that has interfaces that are spaced very close together, we need to account phase information when understanding how light moves through a medium.

• We do this to account for destructive and constructive interference.

Buonassisi (MIT) 2011 31

Page 32: Light Absorption (and Optical Losses) - MIT … (MIT) 2011 Light Absorption (and Optical Losses) Lecture3 – 9/15/2011 MITFundamentalsof Photovoltaics 2.626/2.627 –Fall2011 Prof

   

   

         

Importance of SiNx thickness

Note that minima appear at λ/(2n) intervals! Buonassisi (MIT) 2011

32

Page 33: Light Absorption (and Optical Losses) - MIT … (MIT) 2011 Light Absorption (and Optical Losses) Lecture3 – 9/15/2011 MITFundamentalsof Photovoltaics 2.626/2.627 –Fall2011 Prof

   

          

                   

Spectral Reflectivity for Optimized SiNx optimized at 550nm

When SiNx thickness is optimized for a specific wavelength, other wavelengths suffer! Buonassisi (MIT) 2011

33

Page 34: Light Absorption (and Optical Losses) - MIT … (MIT) 2011 Light Absorption (and Optical Losses) Lecture3 – 9/15/2011 MITFundamentalsof Photovoltaics 2.626/2.627 –Fall2011 Prof

   

       Equations Governing Thin Film R Reflectance

r012 r12

2 2r01r12 cos21R 2 21 2r01r12 cos21 r01r12

ni n jrij ni n j

2nidi

Buonassisi (MIT) 2011

Courtesy of PVCDROM. Used with permission.34

Page 35: Light Absorption (and Optical Losses) - MIT … (MIT) 2011 Light Absorption (and Optical Losses) Lecture3 – 9/15/2011 MITFundamentalsof Photovoltaics 2.626/2.627 –Fall2011 Prof

   

     ARC: Impact on Reflectance

Buonassisi (MIT) 2011

Courtesy of PVCDROM. Used with permission.

35

Page 36: Light Absorption (and Optical Losses) - MIT … (MIT) 2011 Light Absorption (and Optical Losses) Lecture3 – 9/15/2011 MITFundamentalsof Photovoltaics 2.626/2.627 –Fall2011 Prof

   

   

                             

Ray Tracing Software

RaySim (free!): http://www2.pv.unsw.edu.au/Links/RaySim6/Home OfRaySim6.htm

More sophisticated analysis (incl. non‐linear effects): Finite difference time domain (FDTD) method (good for large frequency ranges)

Buonassisi (MIT) 2011 36

Page 37: Light Absorption (and Optical Losses) - MIT … (MIT) 2011 Light Absorption (and Optical Losses) Lecture3 – 9/15/2011 MITFundamentalsof Photovoltaics 2.626/2.627 –Fall2011 Prof

   

          

                                                   

                

Light Management • “Light Management” Ensures Absorptance is High. • Ensuring that light enters the absorber (minimize reflection). • Ensure good light trapping inside the absorber.

• Light trapping methods described on previous slide. • Change wavelength of incoming light to enhance optical absorption coefficient.

• Change optical absorption coefficient of material by manipulating band structure.

Buonassisi (MIT) 2011

Courtesy of PVCDROM. Usedwith permission.

37

Page 38: Light Absorption (and Optical Losses) - MIT … (MIT) 2011 Light Absorption (and Optical Losses) Lecture3 – 9/15/2011 MITFundamentalsof Photovoltaics 2.626/2.627 –Fall2011 Prof

   

     Light Management is Necessary

http://www.pveducation.org/pvcdrom/design/lambertian‐rear‐reclectorsBuonassisi (MIT) 2011

Courtesy of PVCDROM. Used with permission.

38

Page 39: Light Absorption (and Optical Losses) - MIT … (MIT) 2011 Light Absorption (and Optical Losses) Lecture3 – 9/15/2011 MITFundamentalsof Photovoltaics 2.626/2.627 –Fall2011 Prof

   

     Light Management is Necessary

http://solarcellcentral.com/companies_page.htmlBuonassisi (MIT) 2011

© SolarCellCentral. All rights reserved. This content is excluded from our CreativeCommons license. For more information, see http://ocw.mit.edu/fairuse.

39

Page 40: Light Absorption (and Optical Losses) - MIT … (MIT) 2011 Light Absorption (and Optical Losses) Lecture3 – 9/15/2011 MITFundamentalsof Photovoltaics 2.626/2.627 –Fall2011 Prof

   

                       

                        

                      

       

                            

“Bending Light” via Anomalous Refraction Yu, N., P. Genevet et al. “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction.” Science 334, no. 6054 (2011): 333‐337.

Photon Up/Down Conversion Jennifer Dionne (“Solar Cells That See More Light”), one of Technology Review’s Innovators Under 35.

Alombert‐Goget, G., D. Ristic et al. "Rare‐Earth Doped Materials Enhance Silicon Solar Cell Efficiency." SPIE Newsroom, 2011.

Buonassisi (MIT) 2011 © SPIE. All rights reserved. This content is excluded from our Creative Commons license. For more information, seehttp://ocw.mit.edu/fairuse. Source: Alombert-Goget, G., D. Ristic et al. "Rare-Earth Doped Materials Enhance SiliconSolar Cell Efficiency." SPIE Newsroom, 2011. DOI: 10.1117/2.1201105.003701.

40

Page 41: Light Absorption (and Optical Losses) - MIT … (MIT) 2011 Light Absorption (and Optical Losses) Lecture3 – 9/15/2011 MITFundamentalsof Photovoltaics 2.626/2.627 –Fall2011 Prof

MIT OpenCourseWarehttp://ocw.mit.edu

2.627 / 2.626 Fundamentals of PhotovoltaicsFall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

41