lifepo4 formula hybrid charger - the university of … 4 formula hybrid charger final design report...

58
LiFePO 4 Formula Hybrid Charger Final Design Report Design Team #09 Kevin Friedman Michael Shepard Jiaming Zhou Faculty Advisors Dr. Elbuluk Dr. Madanayake Date Submitted 11/29/2011 The University of Akron Electrical and Computer Engineering Department

Upload: duongnhi

Post on 09-Jul-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: LiFePO4 Formula Hybrid Charger - The University of … 4 Formula Hybrid Charger Final Design Report Design Team #09 Kevin Friedman Michael Shepard Jiaming Zhou Faculty Advisors Dr

LiFePO4 Formula Hybrid Charger

Final Design Report

Design Team #09

Kevin Friedman

Michael Shepard

Jiaming Zhou

Faculty Advisors

Dr. Elbuluk

Dr. Madanayake

Date Submitted

11/29/2011

The University of Akron Electrical and Computer Engineering Department

Page 2: LiFePO4 Formula Hybrid Charger - The University of … 4 Formula Hybrid Charger Final Design Report Design Team #09 Kevin Friedman Michael Shepard Jiaming Zhou Faculty Advisors Dr

i

TABLE OF CONTENTS

LIST OF FIGURES ..................................................................................................... ii

ABSTRACT (MS) ........................................................................................................ 1

1. PROBLEM STATEMENT ............................................................................... 2

1.1 NEED (JZ) .......................................................................................................... 2

1.2 OBJECTIVE (KV) ........................................................................................... 2

1.3 BACKGROUND (ALL) ................................................................................... 2

1.4 MARKETING REQUIREMENTS (ALL) ...................................................... 5

1.5 OBJECTIVE TREE (JZ) .................................................................................. 6

2 DESIGN REQUIREMENT SPECIFICATIONS (ALL) ............................... 6

3 ACCEPTED TECHNICAL DESIGN ............................................................. 8

3.1 HARDWARE ..................................................................................................... 8

3.1.1 HARDWARE LV 0 (JZ) ................................................................................... 8

3.1.2 HARDWARE LEVEL 1 (JZ) ........................................................................... 9

3.1.3 HARDWARE LEVEL 2/SCHEMATICS (MS) ............................................ 11

3.2 SOFTWARE (KF) ........................................................................................... 39

3.2.1 CONTROLLER AREA NETWORK ............................................................ 39

3.2.2 SOFTWARE LEVEL 0 (KF) ......................................................................... 41

3.2.3 SOFTWARE LEVEL 1 (KF) ......................................................................... 42

3.2.4 SOFTWARE FLOWCHART (KF) ............................................................... 46

3.2.5 SOFTWARE PWM GENERATOR PSEUDO CODE (MS) ....................... 46

3.2.5 MECHANICAL DRAWINGS (KF) .............................................................. 48

4. PARTS LIST .................................................................................................... 49

5. PROJECT SCHEDULES ............................................................................... 50

5.1 FINAL GANTT CHART (JZ,MS) ................................................................. 50

5.2 IMPLEMENTATION GANTT CHART (KV,JZ) ....................................... 52

6. DESIGN TEAM INFORMATION (JZ) ........................................................ 53

7. CONCLUSION (ALL) .................................................................................... 53

8. REFERENCES ................................................................................................ 53

Page 3: LiFePO4 Formula Hybrid Charger - The University of … 4 Formula Hybrid Charger Final Design Report Design Team #09 Kevin Friedman Michael Shepard Jiaming Zhou Faculty Advisors Dr

ii

LIST OF FIGURES Figure 1: Internal Structure of a LiFePO4 Battery (Internal). ........................................................... 3 Figure 2: Objective Tree of the LiFePO4 Charging System. ............................................................. 6 Figure 3: Level 0 Hardware Block Diagram. .................................................................................... 8 Figure 4: Level 1 Hardware Block Diagram. .................................................................................... 9 Figure 5: Level 2 Hardware (AC/DC Converter) Block Diagram. ................................................. 11 Figure 6: Schematic of the GFI circuit. ........................................................................................... 12 Figure 7: Simulation output of The GFI circuit at a leakage current of 15mA. .............................. 14 Figure 8: Voltage waveform of power input. .................................................................................. 14 Figure 9: Rectifier and Filter Schematic. ........................................................................................ 15 Figure 10: Rectifier and Filter Simulation. ..................................................................................... 16 Figure 11: Schematic of Relay/Fuse Circuit. .................................................................................. 16 Figure 12: Level 2 Hardware (Charger) Block Diagram. ............................................................... 18 Figure 13: Equivalent circuit of a LiFePO4 battery cell. ................................................................. 19 Figure 14: Current, voltage, and state of charge during charging process ...................................... 20 Figure 15: Topology of the buck converter. .................................................................................... 22 Figure 16: Schematic of the buck converter. ................................................................................... 24 Figure 17: Simulation Output of the Buck Converter. .................................................................... 24 Figure 18: PWM Generator Circuit ................................................................................................. 25 Figure 19: Current Sensing Circuit. ................................................................................................ 25 Figure 20:Hall Effect Sensor Output Voltage versus Sensed Current(at 77°F). ............................. 26 Figure 21: Level 2 Hardware (Controller) Block Diagram. ............................................................ 27 Figure 22: Controller Hardware. ..................................................................................................... 29 Figure 23: Voltage and current waveform of the buck converter inductor. .................................... 30 Figure 24: Block diagram of the buck converter model. ................................................................. 31 Figure 25: Root locus plot of the plant transfer function. ............................................................... 32 Figure 26: Frequency response of the closed-loop system. ............................................................. 33 Figure 27: Step response of the closed-loop system. ...................................................................... 33 Figure 28: Implementation of the control system. .......................................................................... 34 Figure 29: LabVIEW block diagram of closed loop controller. ...................................................... 35 Figure 30: Complete Battery Charger Schematic. ........................................................................... 37 Figure 31: Level 0 Software Block Diagram .................................................................................. 41 Figure 32: Level 1 Software Block Diagram .................................................................................. 42 Figure 33: National Instruments Devices ........................................................................................ 44 Figure 34: Software Flowchart ........................................................................................................ 46 Figure 35: Mechanical Drawing (Enclosed) ................................................................................... 48 Figure 36: Mechanical Drawing (Exploded) ................................................................................... 48

Page 4: LiFePO4 Formula Hybrid Charger - The University of … 4 Formula Hybrid Charger Final Design Report Design Team #09 Kevin Friedman Michael Shepard Jiaming Zhou Faculty Advisors Dr

iii

LIST OF TABLES

Table 1: Technical Specification of a typical LiFePO4 Battery. ....................................................... 3 Table 2: Cell Count Table. ................................................................................................................ 4 Table 3: Battery Cell Charging Properties. ....................................................................................... 4 Table 4: Level 0 Hardware Modules. ................................................................................................ 8 Table 5: Level 1 Hardware Modules. ................................................................................................ 9 Table 6: Level 2 Hardware (AC/DC Converter) Modules. ............................................................. 11 Table 7: Cell Count Table. .............................................................................................................. 17 Table 8: Level 2 Hardware (Charger) Modules. ............................................................................. 18 Table 9: Measurement of internal resistance of the battery cell. ..................................................... 20 Table 10: Theoretical output voltage and duty ratio at different battery voltages. ......................... 25 Table 11: Level 2 Hardware (Controller) Modules. ........................................................................ 27 Table 12: Parts list for the proposed battery charger ....................................................................... 38 Table 13: Level 0 Software Modules .............................................................................................. 41 Table 14: Level 1 Software Modules .............................................................................................. 42 Table 15: Budget for the proposed battery charger. ........................................................................ 49 Table 16: Midterm Gantt Chart ....................................................................................................... 50 Table 17: Implementation Gantt chart. ............................................................................................ 52

Page 5: LiFePO4 Formula Hybrid Charger - The University of … 4 Formula Hybrid Charger Final Design Report Design Team #09 Kevin Friedman Michael Shepard Jiaming Zhou Faculty Advisors Dr

1

ABSTRACT (MS)

A design is presented for a lithium iron phosphate (LiFePO4) battery charger for a hybrid

vehicle to be entered into the SAE Formula Hybrid International Competition at

Dartmouth. The charger is designed to protect the user from potential hazards such as

electric shock in addition to protecting the LiFePO4 battery cells themselves from damage

due to overheating or over charging. The goal is to provide an easier and safer charge for

the hybrid battery cells than a typical, “off the shelf” battery charger which simply charges

without regard to individual cell status.

Key Features:

• Connects to the Controller Area Network on the vehicle

• Automatically shuts off during charger or battery faults

• Displays battery status via user interface

• Uses standard 120V input

• Portable

• Simple to use with intuitive interface

Page 6: LiFePO4 Formula Hybrid Charger - The University of … 4 Formula Hybrid Charger Final Design Report Design Team #09 Kevin Friedman Michael Shepard Jiaming Zhou Faculty Advisors Dr

2

1. PROBLEM STATEMENT

1.1 NEED (JZ)

The University of Akron will be competing in the 2012 SAE Formula Hybrid

competition. The chassis will be constructed by a team of mechanical engineers. The

electrical and electronics system was designed by a team of 2011 Akron graduates. The

battery pack is the only power supply of the vehicle, and so a specially designed charging

system which monitors the individual cells in the battery pack is needed to ensure safety

and reliability in the charging process.

1.2 OBJECTIVE (KV)

The objective of this project is to implement a system which will charge a multi-

cell battery pack while monitoring each individual cell’s voltage and temperature. Each

cell must have protection to prevent overcharging and overheating with the capability of

disconnecting from the circuit in the case of a critical fault. This will maximize the cycle

life of batteries, which is essentially the number of times they can be recharged before

needing replaced. The system must display information on temperature, current, and

voltage to the user. Controller Area Network (CAN) is the standard communication

network used for the devices of the hybrid electric vehicle. The charging system must

convert this data into a form easily viewable by any casual user able to read a simple

display.

1.3 BACKGROUND (ALL)

The SAE Formula Hybrid Competition is an engineering and design challenge for

undergraduate and graduate level students. Over the last few years several teams at Akron

have worked on a formula hybrid car. The car designed for the 2012 competition uses

LiFePO4 rechargeable batteries. The 2012 formula hybrid team is planning to race an

electric-only vehicle and therefore needs a charger that is able to charge these batteries

(Formula).

According to the 2012 formula hybrid rules the charger must derive its power from a

120V outlet and deliver power to a high voltage battery bank through a connector meeting

the SAE J1772 standard. For safety reasons the rules also state that high voltage

Page 7: LiFePO4 Formula Hybrid Charger - The University of … 4 Formula Hybrid Charger Final Design Report Design Team #09 Kevin Friedman Michael Shepard Jiaming Zhou Faculty Advisors Dr

3

conductors (Voltage exceeding 30V) must be covered to prevent an electrical hazard. In

addition to the formula hybrid requirements, this charger also needs to have a system that

prevents the overcharging of batteries based on the data collected from the CAN bus.

Figure 1: Internal Structure of a LiFePO4 Battery (Internal).

Table 1: Technical Specification of a typical LiFePO4 Battery.

Nominal Voltage 3.2V Energy Density 130mAh/g Charge Rating 0.2-1.5C Discharge Rating 0.5-10C Charging Voltage 3.6V Discharge Cut-Off Voltage 2.0V Cycle Life >95% 500 Times Memory Effect No

Page 8: LiFePO4 Formula Hybrid Charger - The University of … 4 Formula Hybrid Charger Final Design Report Design Team #09 Kevin Friedman Michael Shepard Jiaming Zhou Faculty Advisors Dr

4

The time it takes to charge is an important issue for the formula hybrid since it may have

to be charged during competition. The amount of time it takes for the batteries to charge is

found by

! = !!,

where C is the current rating of the battery cells and I is the current supplied to the

battery pack in Amperes. The total time required to charge the bank of batteries depends

on the power supply and battery ratings. The total power delivered by the bank of batteries

is listed in Error! Not a valid bookmark self-reference.. The time required to charge for

various charge currents is listed in

Table 3. Table 2: Cell Count Table.

Table 3: Battery Cell Charging Properties.

Input Current [A]

Time to reach 100% charge [Hours]

Time to reach 75% charge [Hours]

Time to reach 50% charge [Hours]

10 6.00 4.50 3.00 11 5.45 4.09 2.73 12 5.00 3.75 2.50 13 4.62 3.46 2.31 14 4.29 3.21 2.14 15 4.00 3.00 2.00 16 3.75 2.81 1.88 17 3.53 2.65 1.76 18 3.33 2.50 1.67 19 3.16 2.37 1.58 20 3.00 2.25 1.50

The LiFePO4 battery has advantages as well as disadvantages. Typical parameters are

1C Rating

C/20 Rating

Nominal Voltage (per cell)

# of cells Total Nominal Voltage

Total W-H

Total W-H for charge (10% loss)

60A 20A 3.3V 24 79.2V 5227.2 5749.92

Page 9: LiFePO4 Formula Hybrid Charger - The University of … 4 Formula Hybrid Charger Final Design Report Design Team #09 Kevin Friedman Michael Shepard Jiaming Zhou Faculty Advisors Dr

5

included in Table 1. This battery chemistry has advantages over a typical lithium-ion

battery, which is why it was chosen for this application. The LiFePO4 battery is thermally

and chemically more stable and has a longer cycle life than typical lithium-ion batteries.

These cells are low in cost and contain no toxic elements. The discharge current is high

enough to motivate the induction motor of the hybrid car. The disadvantage is that the

parameters of each cell vary from one to the next due to the manufacturing process. This

means that the cells will all charge at different rates in a bank, so a unique charger is

required for this application (Building Safer).

The battery’s total cycle life can be affected by two major factors: the battery cell

voltage and the battery cell temperature during charging. While charging, it is critical that

the battery voltage not exceed 4.0V and the cell temperature not exceed its maximum

rating. These two parameters can be lowered by decreasing the charging current going to

the battery cells. A “smart” battery charger that prevents these adverse operating

conditions will allow the batteries to be used much longer in the vehicle, thus saving costs.

1.4 MARKETING REQUIREMENTS (ALL)

The charging system should:

Charge the battery-pack in a reasonably short time.

Be able to monitor each single cell.

Include user safety features to prevent electric shock

Feedback the fault information of the battery.

Be compatible with the CAN network.

Have a user friendly output display and input device.

Be small and easy to move.

Use a normal residential AC power supply.

Maximize battery life cycles.

Be disconnected automatically when critical fault occurs

Page 10: LiFePO4 Formula Hybrid Charger - The University of … 4 Formula Hybrid Charger Final Design Report Design Team #09 Kevin Friedman Michael Shepard Jiaming Zhou Faculty Advisors Dr

6

1.5 OBJECTIVE TREE (JZ)

Figure 2: Objective Tree of the LiFePO4 Charging System.

2 DESIGN REQUIREMENT SPECIFICATIONS (ALL) Marketing

Requirements

Engineering Requirements Justification

1 Must charge 75% of the battery in less

than 4 hours.

During the competition, quick

battery charge times are needed.

2,5,6 The user display must in decimal

number format using proper

engineering units for voltage, current

and temperature levels.

A user should not have to decode

CAN data to be able to read and

use the charger.

9 The charger must reduce the output

current to 1A once a single battery

cell reaches 3.9V and is shunted by

the battery controller.

If the current is more than 1A

when the Cell reaches 3.9V, the

battery risks overcharging.

Page 11: LiFePO4 Formula Hybrid Charger - The University of … 4 Formula Hybrid Charger Final Design Report Design Team #09 Kevin Friedman Michael Shepard Jiaming Zhou Faculty Advisors Dr

7

8 The charger must accept a 120V AC,

15A power input.

This is a standard rating for

residential outlets.

7 The entire charger must be movable

by a single person and have simple

connections to the car/ power source.

The charger will need to be

moved with the vehicle in order

to charge its batteries.

9,10 The charger must remove all power to

the battery within 1 second during a

fault or over-current situation.

One second should be enough

time for even a very slow relay

to trip and disconnect power.

3 The charger must contain a 20A fuse

and a GFI be able to detect a leakage

current of at least 15mA.

These safety features greatly

reduce the risk of electric shock.

4,6 The charger must display specific

errors including loss of CAN signal,

over-current, over-temperature, and

GFI fault.

Specific errors allow the user

some insight into why the

charger is not operating.

Marketing Requirements

1. Charge the battery-pack in a reasonably short time.

2. Be able to monitor each single cell.

3. Include user safety features to prevent electric shock.

4. Feedback the fault information of the battery.

5. Be compatible with the CAN network.

6. Have a user friendly output display and input device.

7. Be small and easy to move.

8. Use a normal residential AC power supply.

9. Maximize battery life cycles.

10. Be disconnected automatically when critical fault occurs.

Page 12: LiFePO4 Formula Hybrid Charger - The University of … 4 Formula Hybrid Charger Final Design Report Design Team #09 Kevin Friedman Michael Shepard Jiaming Zhou Faculty Advisors Dr

8

3 ACCEPTED TECHNICAL DESIGN

3.1 HARDWARE

3.1.1 HARDWARE LV 0 (JZ)

Hardware Block Diagram (level 0)

Figure 3: Level 0 Hardware Block Diagram.

Table 4: Level 0 Hardware Modules.

Module LiFePO4 Charger

Inputs CAN bus, 120VAC, User Controls, Power Switch

Outputs DC output voltage, User Display

Functionality

The charger will be connected to the onboard CAN system of the

vehicle through a wire bus and have some means of delivering charge

status to the user.

Theory of Operation: Hardware Block Level 0.

The LiFePO4 charger accepts a CAN bus signal containing voltage and temperature

readings of the battery cells. Based on these readings, the charger will adjust the output

current to prevent overcharging and resultant cell damage. In addition, the user will be

able to monitor the status of each cell using a simple display and user interface. The

charger will be supplied by a typical 120VAC outlet.

Page 13: LiFePO4 Formula Hybrid Charger - The University of … 4 Formula Hybrid Charger Final Design Report Design Team #09 Kevin Friedman Michael Shepard Jiaming Zhou Faculty Advisors Dr

9

3.1.2 HARDWARE LEVEL 1 (JZ)

Hardware Block Diagram (level 1)

Figure 4: Level 1 Hardware Block Diagram.

Table 5: Level 1 Hardware Modules.

Module Controller

Inputs CAN Bus, Charger Status

Outputs Command

Functionality

The controller coordinates all the processes for the battery charger. The

controller accepts input information from the CAN bus and determines

the appropriate output current to the battery. The amount of current to

the battery cells is sent to the charger module, and if a fault occurs in

the charger an error message is sent to the controller. The controller

will also show the user the status of the batteries/charger.

Page 14: LiFePO4 Formula Hybrid Charger - The University of … 4 Formula Hybrid Charger Final Design Report Design Team #09 Kevin Friedman Michael Shepard Jiaming Zhou Faculty Advisors Dr

10

Module AC/DC Converter

Inputs High Voltage(120VAC)

Outputs High Voltage(170VDC)

Functionality Converts the AC power supply to 170VDC as well as a DC output to

supply the variable charger.

Module Variable DC/DC Charger

Inputs High Voltage (170VDC), Low Voltage (5-12VDC), Charging Voltage

and Current data

Outputs ?-96V ?-20A DC Output, Present voltage and current data

Functionality

Convert the 170VDC power supply to a variable DC output according

to the command received from the controller to charge the battery.

The output Charging Voltage varies according to the A-h rating and

state of charge of the cells in order to get a constant current output

during the charging. The Low Voltage output energizes low voltage

components such as relays.

Theory of Operation: Hardware Block Level 1.

There are two major components to the level 1 hardware diagram. The first

component is an AC to DC converter, which will convert the 120V input into a fixed

170VDC output. The second component is a controller, which will accept the CAN bus

signal and measured values from the current sensor circuit and display these values to the

user. It will calculate the appropriate action based on the conditions. The controller would

send a signal to the DC/DC converter to vary the output or to cut off the current output to

the battery entirely.

Page 15: LiFePO4 Formula Hybrid Charger - The University of … 4 Formula Hybrid Charger Final Design Report Design Team #09 Kevin Friedman Michael Shepard Jiaming Zhou Faculty Advisors Dr

11

3.1.3 HARDWARE LEVEL 2/SCHEMATICS (MS)

Hardware Block Diagram (level 2)

Figure 5: Level 2 Hardware (AC/DC Converter) Block Diagram.

Table 6: Level 2 Hardware (AC/DC Converter) Modules.

Module Relay/Fuse

Inputs High Voltage (170V DC), Cut-off Signal

Outputs High Voltage (170V DC)

Functionality

The relay cuts off the charging circuit when an unexpected large

current is flowing through the cells or when a cut-off signal is received

from the controller in case a critical error occurs.

Module GFI

Inputs High Voltage(120VAC)

Outputs High Voltage(120VAC), Fault Signal

Functionality The GFI module monitors the current of the AC input. A fault signal is

sent to the controller and the relay when a current leakage occurs.

Page 16: LiFePO4 Formula Hybrid Charger - The University of … 4 Formula Hybrid Charger Final Design Report Design Team #09 Kevin Friedman Michael Shepard Jiaming Zhou Faculty Advisors Dr

12

Module Full-wave Rectifier

Inputs High Voltage (120VAC)

Outputs High Voltage (170VDC)

Functionality The rectifier converts the 120VAC input to a 170VDC output to supply

the charging system.

Module Filter

Inputs High Voltage (170VDC)

Outputs High Voltage (170VDC)

Functionality The filter removes the voltage ripple in the 170VDC input. The output

DC voltage ripple must be less than 1%.

Theory of Operation: AC/DC Converter.

GFI-Schematic (MS)

Figure 6: Schematic of the GFI circuit.

The primary purpose of this circuit is to eliminate the risk of electric shock to the

user. The circuit is designed to detect a leakage current of 15mA. The schematic for this

circuit can be seen in Figure 6 above. The idea behind the GFI is that it will measure the

difference between the input and output current (i.e. leakage current). To measure the

leakage current a current transformer will be used; this transformer allows the primary

wires going to the battery charger to pass through the transformer. The leakage current

will be converted to a voltage on the secondary side of the transformer via a burden

resistor (a resistor that is placed across the leads of the current transformer). The

manufacturer specifies a maximum burden resistance of 200Ω to ensure the core will not

Page 17: LiFePO4 Formula Hybrid Charger - The University of … 4 Formula Hybrid Charger Final Design Report Design Team #09 Kevin Friedman Michael Shepard Jiaming Zhou Faculty Advisors Dr

13

be saturated. The output voltage of the current transformer is found by

!!"#,!" =!!

!"#$%!!"#$%& =

!!!"!!

200Ω = !!×0.1978Ω.

The output voltage from the current transformer is connected to a low pass filter

which will remove noise that has entered from the current transformer. Since the GFI will

be measuring leakage currents at 60Hz it was decided to make the cut-off frequency of the

filter to be 100Hz. The capacitor and resistor values used in the filter were found by

!!"#$%% = 100!" = !!∗!∗!∗!

, !"# ! = 1!",

! = !!∗!∗!!"∗!""!"

= 1.592!! → !! = 1.58!! (!"#$%#&% 1% !"#$%).

At low leakage currents a very low voltage will be developed across the burden

resistor; for example, at a leakage current of 15mA only 3mV will be developed. To

increase the signal a basic non-inverting amplifier will be used. Implementing a gain of

101V/V will raise the 3mV signal to 300mV which will be sufficient to detect a fault. The

equation below shows the equation to determining the resistor values of the amplifier. !!"#$"#!!"

= 1+!!!!

, !"# !! = 182!! → !! =!!

101− 1 = 1.82!!

The final part of the GFI circuit is the Schmitt trigger the output of the amplifier

connected directly into the Schmitt trigger. This circuit outputs a logic high (5V) when the

input voltage reaches a upper hysteresis set point and will remain high until the input goes

below the lower hysteresis set point. This circuit is being used to keep the output high for

a set voltage range. The reference voltage and resistor values to set the upper and lower set

points are listed below. The upper set point was selected to be 0.25V since the input signal

will peek at 0.30V for a 15mA leakage current. However at this point it is now possible to

detect leakage currents down to 12.5mA. The lower set point was selected at 0.10V and

the set points are determined by

!!"!"#$%# =!!

!!!!!×5! = !"!Ω

!"!Ω!!!Ω×5! = 0.2426!,

!!" = !!"#!"$%"× 1+ !!!!

− !!!!×!! = 0.2426× 1+ !""Ω

!"!Ω− !""Ω

!"!Ω×5! = 0.10!,

!!" = !!"#!"$%"× 1+ !!!!

− !!!!×!! = 0.2426× 1+ !""Ω

!"!Ω− !""Ω

!"!Ω×0! = 0.250!.

Where !!"#!"$%" is the Input Reference Voltage, !!" is the Lower Hysteresis Set Point,

Page 18: LiFePO4 Formula Hybrid Charger - The University of … 4 Formula Hybrid Charger Final Design Report Design Team #09 Kevin Friedman Michael Shepard Jiaming Zhou Faculty Advisors Dr

14

!!" is the Higher Hysteresis Set Point, !! is the Positive Supply on Op-amp (5V), and !!

is the Negative Supply on Op-amp (0V).

Figure 7 below shows the simulation of the GFI circuit at 15mA leakage current;

the top plot shows the input current and the lower plot shows the output from the Schmitt

trigger. This shows that it took a total of 12mS for the circuit to detect and signal a ground

fault. The output of the GFI circuit will be connected to switch/cut-off circuit where it will

be latched and a GFI notification will be sent to LABVIEW and the safety switch will be

turned on to cut power from the charger. The GFI fault will latch until the user hits the rest

button or until the unit is restarted.

Figure 7: Simulation output of The GFI circuit at a leakage current of 15mA.

Rectifier/Filter-Schematic (MS)

Figure 8: Voltage waveform of power input.

A rectifier is a device commonly used to convert the AC voltage to a DC voltage. The

Page 19: LiFePO4 Formula Hybrid Charger - The University of … 4 Formula Hybrid Charger Final Design Report Design Team #09 Kevin Friedman Michael Shepard Jiaming Zhou Faculty Advisors Dr

15

sinusoidal AC voltage travels across a bridge of diodes which reverse the negative half of

the AC voltage to positive. Each diode only let the current pass while the voltage across it

is forward biased, so the combination of diodes will convert the AC input to positive

voltage output. Figure 8 shows the waveform of the voltage before and after a full-wave

rectifier.

In this design the AC/DC converter produces a constant DC voltage on its output. The

output DC voltage value was calculated using

!! = !!"#× 2 = 120× 2 = 169.705!!" ≅ 170!!" ,

where Vrms is the root mean square input voltage.

Figure 9: Rectifier and Filter Schematic.

Figure 9 shows the schematic for the rectifier and filter circuits. An integrated

bridge rectifier will be used for diodes D1-D4; this ensures the properties of the diodes are

nearly identical. To filter the rectifier a pi filter will be used, this filters the harmonics

created by the DC/DC converter and also smoothes the 60Hz fundamental frequency. The

components of this filter are limited by the budget of this project; this filter consists of two

2.2mF capacitors and a 15µH inductor. The cut-off frequency is calculated by

!!"#$%% =1

!× !"=

1!× 15µμH×2.2mF

= 1752!"

Figure 10 shows the simulation of the rectifier circuit, there is about 18% voltage ripple

and 20% current ripple. The average output voltage changes slightly compared to the

calculated value of 169V due to this filter.

Page 20: LiFePO4 Formula Hybrid Charger - The University of … 4 Formula Hybrid Charger Final Design Report Design Team #09 Kevin Friedman Michael Shepard Jiaming Zhou Faculty Advisors Dr

16

Figure 10: Rectifier and Filter Simulation.

Relay/Fuse-Schematic (MS)

Figure 11: Schematic of Relay/Fuse Circuit.

The purpose of the relay/fuse circuit is to provide additional safety to the user of

this charger.

Figure 11 shows the schematic for this circuit. This circuit will automatically disconnect

Page 21: LiFePO4 Formula Hybrid Charger - The University of … 4 Formula Hybrid Charger Final Design Report Design Team #09 Kevin Friedman Michael Shepard Jiaming Zhou Faculty Advisors Dr

17

power (using a relay (S1)) to the charger during an over-current or GFI event even if

LABVIEW loses communication to the charger. In addition LABVIEW can also control

the relay and disconnect power to the charger under dangerous conditions. In addition 20A

fast acting fuse is inserted to provide backup in case all other of failure of the relay circuit.

The primary IC of this circuit is the latch (IC5). This latch inputs a GFI or Over

current fault on the “set” pins. The output of the latch goes high (5V) when a fault occurs;

the latch will continue to output a high until the fault clears and buttons SW2 (GFI) and

SW3 (Over Current) are manually pushed to clear the respective fault. SW2 and SW3 are

connected to the reset pins of the latch; Table 7: Cell Count Table. shows the logic for the

latch IC, note that the enable pin is connected to 5V and therefore is always high. Table 7: Cell Count Table.

Set Reset Enable Q(output)

1 0 1 1

0 1 1 0

1 1 1 1

The output of the latch circuit is connected to a transistor to turn on LEDS to

indicate that a fault has occurred. D8 illuminates for a GFI fault and D9 illuminates for an

over current fault. The transistor is only drawing about 75µA at its base in order to allow

20mA to flow through the LEDS. The output of the latch is also connected to a mosfet

driver circuit IC (IC6), the outputs for the two faults are “or”ed together using D6 and D7.

In addition, a LABVIEW output is also “or”ed to turn on the relay. When the driver circuit

receives a circuit it will turn on the mosfet (Q1) and cause the normally closed relay to

open disconnected power to the charger. The driver IC was implemented to ensure the

mosfet fully turns on; even if the input to the driver circuit IC is 3V the driver will output

5V to the mosfet gate.

Page 22: LiFePO4 Formula Hybrid Charger - The University of … 4 Formula Hybrid Charger Final Design Report Design Team #09 Kevin Friedman Michael Shepard Jiaming Zhou Faculty Advisors Dr

18

Figure 12: Level 2 Hardware (Charger) Block Diagram.

Table 8: Level 2 Hardware (Charger) Modules.

Module Variable DC/DC Converter

Inputs High Voltage(170V DC), PWM

Outputs High Voltage( 67.2-96V 1-20A DC)

Functionality

The Buck-Boost converter is controlled by a PWM (pulse-width

modulation) signal sent from the supervisor controller. The input DC

voltage is converted to a constant current output to charge the battery.

The output voltage depends on the number of cells used, and the

output current depends on the state of charge of the battery pack.

Module Current Sensor

Inputs High Voltage ( 67.2-96V 1-20A DC)

Outputs Measured Current Value

Functionality

The current sensor measures the output current of the charger. The

current value is transferred to the supervisor controller as an output

voltage value proportional to the measured current.

Page 23: LiFePO4 Formula Hybrid Charger - The University of … 4 Formula Hybrid Charger Final Design Report Design Team #09 Kevin Friedman Michael Shepard Jiaming Zhou Faculty Advisors Dr

19

Module PWM Generator

Inputs LABVIEW PWM Signal

Outputs PWM Signal

Functionality Since LABVIEW cannot directly drive a 100kHz PWM signal an

intermediary circuit will be used to implement this.

Theory of operation: Charger.

DC voltage regulator overview (JZ,MS)

This module is used to energize the sensors and control chips in the charging system.

A non-isolated DC/DC converter uses the duty ratio of the switches to determine the ratio

of output voltage and input voltage. As the input and output voltage are defined for this

particular converter, a step-down DC/DC converter with a fixed duty ratio can satisfy the

design requirement.

Battery

As the LiFePO4 battery pack is the load of the charging system, the modeling of

the battery is necessary for designing the charger and charging processes. The Lithium ion

battery can be considered as a DC voltage source with internal resistance and capacitance.

Figure 13: Equivalent circuit of a LiFePO4 battery cell.

During the charging period, the internal capacitance of the battery cells could be

Page 24: LiFePO4 Formula Hybrid Charger - The University of … 4 Formula Hybrid Charger Final Design Report Design Team #09 Kevin Friedman Michael Shepard Jiaming Zhou Faculty Advisors Dr

20

ignored as a dc current is always applied. Therefore, the model of the battery cell consists

of a DC voltage source and an internal resistance. The internal resistance of the battery

cell is then determined experimentally by using ohms law. Table 9: Measurement of internal resistance of the battery cell.

charge V battery V R total R wire R battery 11 9.73 0.1814 0.0243 0.0393

11.5 10.4 0.1571 0.0243 0.0332 12 10.9 0.1571 0.0243 0.0332

12.5 11.4 0.1571 0.0243 0.0332 13 11.95 0.1500 0.0243 0.0314

13.5 12.23 0.1814 0.0243 0.0393 14 12.63 0.1957 0.0243 0.0429

Table 9 shows that the internal resistance of each battery cell is approximately 0.04Ω.

This value will be used later to simulate the variable DC/DC converter.

Figure 14: Current, voltage, and state of charge during charging process

Figure 14 shows the expected current, voltage, and state of charge during the full

charging process of the battery pack. When the battery cells are at low voltage levels, the

best charging current rate applied is C/3, which is 20A. Once any of the battery cells

reaches the bypass voltage of the monitoring board, the output current will be reduced to

Page 25: LiFePO4 Formula Hybrid Charger - The University of … 4 Formula Hybrid Charger Final Design Report Design Team #09 Kevin Friedman Michael Shepard Jiaming Zhou Faculty Advisors Dr

21

4A to prevent any damage to the battery cells and the monitoring board. The shunt resistor

used to bypass the current could only handle about 1A current. Therefore it is necessary to

reduce the charging current. It is expected that most of the battery cells are likely to be

charged to a high state of charge. After the total voltage of the battery pack reaches 93.6V,

which indicate that most of battery cells are charged to the bypass voltage, the output

current will further decreased to 1A. The charging process will be terminated in 15

minutes. This charging process could guarantee the battery pack can be charged in a

reasonable short time and prevents any damage to the cells.

Variable DC/DC Converter

This module is used to charge the battery pack. The output from this module varies

according to the current status of charge of the battery pack. Therefore, a pulse-width

modulation (PWM) controlled switch is required to adjust the output current and voltage

to the desired value. This converter operates as a current source with several different

current levels, so the value of output voltage of the converter is obtained from the

controller in order to maintain a constant output current. The PMW signal received is the

duty ratio of the converter. The relationship between the output voltage and the duty ratio

can be dependent on which type of DC/DC converter is chosen.

The output voltage of the DC/DC converter depends on the total voltage across the

battery cells. The maximum output current is 20A. By using ohms law, the maximum

output voltage is 115V. As the input voltage from the AC/DC converter is 169V, the buck

converter topology is chosen to construct the variable DC/DC converter.

Page 26: LiFePO4 Formula Hybrid Charger - The University of … 4 Formula Hybrid Charger Final Design Report Design Team #09 Kevin Friedman Michael Shepard Jiaming Zhou Faculty Advisors Dr

22

Figure 15: Topology of the buck converter.

The output voltage of the buck converter is related to the input voltage by the duty

ratio of the gate switch of the MOSFET. The relationship can be expressed as !!!!= !,

where Vo is the output voltage, Vs is the input voltage, and D is the duty ratio.

The inductance value is chosen to minimize the output current ripple. The

inductance is calculated by

! = !!!!!∆!!!

!,

where ΔiL is the current ripple, f is the gate switching frequency of the MOSFET, and D is

the duty ratio. For the worst case, the output voltage is equal to

!! = !!"##$%& + !!Σ! = 3.9×24+ 20×1.96 = 132.8!,

and the duty ratio is

! = !!!!= !"#.!

!"#= 0.786.

The switching frequency is selected to be 100kHz, which is normally used in power

circuits. The minimum inductance value to ensure continuous current is calculated as

!!"# =!!! ∗!!!

= (!!!)×!!""×!"!

= 10µμ!.

The largest inductor we could find that would meet our specifications and budget is a

15µμ! inductor.

The capacitance value is chosen to minimize the output voltage ripple. This

capacitance is calculated by

Page 27: LiFePO4 Formula Hybrid Charger - The University of … 4 Formula Hybrid Charger Final Design Report Design Team #09 Kevin Friedman Michael Shepard Jiaming Zhou Faculty Advisors Dr

23

! = !!!

!!(∆!!!!)!!

= !!!.!"#! !.!×!"!! !% (!"×!"!)!

= 8.73!".

Therefore, the minimum capacitance value is 8.73uF for a voltage ripple of 2%. A

larger value capacitor is selected to ensure the expected performance. To further improve

the output performance of the buck converter a pi filter containing 2 capacitors and an

inductor will be implemented. The components of this filter are limited by the budget of

this project; this filter consists of two 2.2mF capacitors and a 15µH inductor. The cut-off

frequency is calculated by

!!"#$%% =!

!× !"= !

!× !"#$×!.!"#= 1752!".

The pi filter will almost completely filter the harmonics (at 100 kHz) and some of the

fundamental frequency.

Figure 16 is the schematic of the buck converter which includes the output pi filter.

Figure 17 below shows the simulation for the converter at 90.25V output at 20A. The

output shows that there is about a 20% voltage and current ripple which was expected. In

addition Table 10 shows the theoretical output voltage and duty ration assuming a 169V

input. On the schematic, pin 3 of IC6 (mosfet driver IC) is connected to a PWM source.

The mosfet driver circuit accepts a logic level (5V) PWM, and will drive the switching

MOSFET (Q1) with a 12V PWM signal which means the FET will reach the saturation

region.

Page 28: LiFePO4 Formula Hybrid Charger - The University of … 4 Formula Hybrid Charger Final Design Report Design Team #09 Kevin Friedman Michael Shepard Jiaming Zhou Faculty Advisors Dr

24

Figure 16: Schematic of the buck converter.

Figure 17: Simulation Output of the Buck Converter.

Page 29: LiFePO4 Formula Hybrid Charger - The University of … 4 Formula Hybrid Charger Final Design Report Design Team #09 Kevin Friedman Michael Shepard Jiaming Zhou Faculty Advisors Dr

25

Table 10: Theoretical output voltage and duty ratio at different battery voltages.

Vs Vo D Io Vbat r

169 79.2 0.468639 20 60 0.96

169 89.2 0.527811 20 70 0.96

169 99.2 0.586982 20 80 0.96

169 109.2 0.646154 20 90 0.96

169 115.2 0.681657 20 96 0.96

PWM Generator (MS)

Figure 18: PWM Generator Circuit

Figure 18 is the schematic for the PWM generator circuit. This circuit accepts a

signal from LABVIEW and will output a 100 kHz PWM signal to the DC/DC converter

switch. The signal from LABVIEW varies from 0-5V which is proportional to the duty

ratio where 5V equivalent to a duty ration of 1.0, 2.5V is equivalent to 0.5 duty ratio, etc.

Hall Effect Sensor (MS)

Figure 19: Current Sensing Circuit.

Figure 19 above shows the schematic for the current sensing circuit. The current

Page 30: LiFePO4 Formula Hybrid Charger - The University of … 4 Formula Hybrid Charger Final Design Report Design Team #09 Kevin Friedman Michael Shepard Jiaming Zhou Faculty Advisors Dr

26

will be sensed using a Hall Effect sensor (IC7). It was decided to use this sensor because it

provides good isolation between the sensing and output sides (protection up to 2.1kV) and

it has a low current measuring error (1.5% or less). This unit also dissipates very little heat

since the internal resistance for the current path is only 1.2mΩ. The power dissipation in

the sensor is

P!"#!$%,!"# = I!"#!"$,!"#!×1.2mΩ = 20A!×1.2mΩ = 0.48W.

Since this sensor is handling large amount of current there is two current input pins and

two current output pins.

An added benefit of the Hall Effect used in the charger (ACS715) is that is the bandwidth

can be set by using the filtering pin on the IC. In the case of measuring DC current the

manufacturer recommends placing a 1nF capacitor between the filter pin and ground. The

graph in Figure 20 below shows the relationship between the sensed current and output

voltage. It can be seen that the there is a linear response from this Hall Effect sensor.

Figure 20:Hall Effect Sensor Output Voltage versus Sensed Current(at 77°F).

For added safety the output of the Hall Effect sensor is connected to a comparator.

When the output of the sensor reaches 3.8V (equivalent to 25A output current) the

comparator will go high indicating over current. This signal is connected to the switch/cut-

off circuit where the signal is latched and will stay latched until the current decreases and

0 0.5 1

1.5 2

2.5 3

3.5 4

4.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Outpu

t Voltage (V

)

Sensed Current (A)

Hall Effect Sensor Output Voltage versus Sensed Current(at 77°F)

Page 31: LiFePO4 Formula Hybrid Charger - The University of … 4 Formula Hybrid Charger Final Design Report Design Team #09 Kevin Friedman Michael Shepard Jiaming Zhou Faculty Advisors Dr

27

the user pushes the reset button. When this signal is latched it will also turn switch the

relay cutting power to the charger.

Figure 21: Level 2 Hardware (Controller) Block Diagram.

Table 11: Level 2 Hardware (Controller) Modules.

Module User Interface

Inputs Display Out

Outputs User Input

Functionality

This device will allow the user to a setting that will be available in the

controller device. In addition this device will also display the battery

cell parameters (voltage and temperature) as well as any errors on an

easy to read display.

Page 32: LiFePO4 Formula Hybrid Charger - The University of … 4 Formula Hybrid Charger Final Design Report Design Team #09 Kevin Friedman Michael Shepard Jiaming Zhou Faculty Advisors Dr

28

Module Supervisor Controller

Inputs ADC In, Decoded Data Input, User Input

Outputs Display Output, Duty Ratio Command, ADC Out

Functionality

This device will be a computer running LabVIEW. It accepts the GFI

status, Current output of the charger, and data received on the CAN

bus. With this information the control module calculates the signal

sent to the DC/DC Module. If the output current is over the max range

then the GFI trips. If the device losses the CAN signal then the control

block will send a signal that cuts the power to the charger.

Module CAN bus

Inputs CAN signal

Outputs Decoded Data Input

Functionality

This module performs the most important task for the charger. The

module converts the CAN bus signal from the vehicle into a signal that

can be accepted by the control module.

Module Digital/Analog I/O

Inputs Measured Current Value, GFI

Outputs Cut-Off Signal, Duty Ratio Value

Functionality

This module serves as a way for the chargers’ I/O signals to be

connected to the controller. The device creates a PWM with data from

the Control Block for the DC/DC module to utilize.

Theory of Operation: Controller

Controller Hardware/Schematic (MS,JZ)

Page 33: LiFePO4 Formula Hybrid Charger - The University of … 4 Formula Hybrid Charger Final Design Report Design Team #09 Kevin Friedman Michael Shepard Jiaming Zhou Faculty Advisors Dr

29

Figure 22: Controller Hardware.

Figure 22 above shows the schematic of the LABVIEW hardware and Power

Supply Connected to the charger circuit. LV1 is the NI USB 6009 data acquisition unit,

for this charger 2 pins from this DAQ will be used as an analog input and 2 pins will be

used as an analog output.LV2 is the NI USB 8473 CAN-USB adaptor CAN_Low,

CAN_HIGH, and CAN_V- are the only three signals that are required to be connected to

this adaptor in order to read the Can signals. Both of these devices are connected to the

LABVIEW computer via USB.

Controller Overview (JZ)

The output of the buck converter is normally a constant voltage when the duty

ratio of the switch is fixed. And the battery cell is a variable load at different state of

charge. Furthermore, when the shunt of the battery monitoring board is turned on to

prevent overcharging, the load resistance also changes. Therefore, a closed-loop control

system is required to keep the output current to be constant.

Page 34: LiFePO4 Formula Hybrid Charger - The University of … 4 Formula Hybrid Charger Final Design Report Design Team #09 Kevin Friedman Michael Shepard Jiaming Zhou Faculty Advisors Dr

30

Figure 23: Voltage and current waveform of the buck converter inductor.

Figure 23: Voltage and current waveform of the buck converter inductor. shows the Voltage

and current waveform of the inductor of the buck converter for one period. The output

current of the buck converter is the same as the current flowing through the inductor. A

transfer function could be built to estimate the current at the end of one period according

to the current at the beginning of the period. The equation is found to be

!! !" = !! 0 + !"!!"!

!",

which leads to

!! ! = !! 0 + !"!!"!

!" + !!

−!" !"!!" = !! 0 + !"#$!!"#

!,

where iL(0) is the inductor current at the beginning of the period, iL(T) is the inductor

current at the end of the period, Vs is the input voltage, Vo is the output voltage of the

buck converter, L is the inductance, T is the period, and D is the duty ratio of the switch of

the converter. The duty ratio is the only parameter used to control the buck converter.

Therefore, the modeling of the buck converter needs to relate the inductor current to the

change of the duty ratio using the equations

!" = !! + ∆!,

!! =!!!!!,

Page 35: LiFePO4 Formula Hybrid Charger - The University of … 4 Formula Hybrid Charger Final Design Report Design Team #09 Kevin Friedman Michael Shepard Jiaming Zhou Faculty Advisors Dr

31

!!! = !!!!,

!! ! = !! 0 + !!(!" !!!)!

,

and

!! ! = !! 0 + !!∆!!

,

where T1 is the nominal period, and Δt is the change of the pulse width. This equation

shows that the inductor current at the end of the period equals to the summation of

inductor current at the beginning of the period and a function linearly proportional to the

change of the pulse width. A state equation of the inductor current could be derived from

the calculation

!! ! + 1 = !! ! + !!(!)!∆!.

However, the sampling period of the closed-loop controller is slower than the gate

switching period of the buck converter. This also needs to be taken in to account for the

state equation as the change in pulse width within one sampling period will cause n times

change in current. This is represented as

!! ! + 1 = !! ! + ! !!(!)!∆!,

where n is the number of switching periods per sampling period. The modeling of the

buck converter is then established based on this state equation.

Figure 24: Block diagram of the buck converter model.

The z domain transfer function of the buck converter derived from the state

equation is

Page 36: LiFePO4 Formula Hybrid Charger - The University of … 4 Formula Hybrid Charger Final Design Report Design Team #09 Kevin Friedman Michael Shepard Jiaming Zhou Faculty Advisors Dr

32

!" ! = !!(!)∆!(!)

= !"#(!)/!!!!

.

The sampling period of the LABVIEW software is 1ms, and the switching frequency is

100kHz. So n in this case is 100 times per sampling period. By substituting Vs = 169V

and L=0.9mH, the transfer function of the buck converter is

!" ! = !.!"×!"!

!!!.

Based on this plant transfer function, the compensator could be designed to control the

output current.

Figure 25: Root locus plot of the plant transfer function.

Figure 25 shows the root locus plot of the model of the buck converter. A

proportional control compensator will be able to bring the closed-loop pole inside the unit

circle to stabilize the control system.

Page 37: LiFePO4 Formula Hybrid Charger - The University of … 4 Formula Hybrid Charger Final Design Report Design Team #09 Kevin Friedman Michael Shepard Jiaming Zhou Faculty Advisors Dr

33

Figure 26: Frequency response of the closed-loop system.

Figure 27: Step response of the closed-loop system.

Page 38: LiFePO4 Formula Hybrid Charger - The University of … 4 Formula Hybrid Charger Final Design Report Design Team #09 Kevin Friedman Michael Shepard Jiaming Zhou Faculty Advisors Dr

34

Figure 26 and Figure 27 show the frequency response and step response of the

compensated closed-loop control system with a proportional gain of Kp. The compensated

system has a good phase margin and rising time. And there is no steady state error for this

system.

Figure 28: Implementation of the control system.

Figure 28 shows the implementation of the entire control system with the buck

converter. By comparing the desired current and measured output current from the current

sensor, the control system will determine the amount of change of the pulse width to reach

a constant output current. The nominal period T1 could be calculated by !! =!"!"!. Where

Vo and Vs are the output and input voltage of the buck converter respectively. The input

voltage and switching period T is constant. And the output voltage could be obtained from

the CAN signal from the monitoring board mounted on the battery cells.

Pseudo Code of the closed-loop control system:

INFINITE LOOP

READ value of desired current

READ value of current sensor voltage

COMPUTE value of measured current as V/I factor times current sensor voltage

COMPUTE value of current difference as desired current – measured current

COMPUTE pulse width difference as current difference times proportional control

Page 39: LiFePO4 Formula Hybrid Charger - The University of … 4 Formula Hybrid Charger Final Design Report Design Team #09 Kevin Friedman Michael Shepard Jiaming Zhou Faculty Advisors Dr

35

gain Kp

READ value of total output voltage

COMPUTE nominal duty ratio as total output voltage divided by input voltage of

DC/DC converter

COMPUTE value of nominal pulse width as nominal duty ratio times switching

period

COMPUTE value of pulse width as pulse width as nominal pulse width + pulse

width difference

COMPUTE value of duty ratio as pulse width divided by switching period

WHILE duty ratio > 0.8

duty ratio = 0.8

ENDWHILE

COMPUTE value of PWM command voltage represents the duty ratio

PRINT value of PWM command voltage

UNTIL cut-off signal = high

Figure 29: LabVIEW block diagram of closed loop controller.

Cycle life

The cycle life of the battery pack mostly depends on the charging capacity. It is

assumed that the battery cells will not experience negative effects from overcharge, over-

Page 40: LiFePO4 Formula Hybrid Charger - The University of … 4 Formula Hybrid Charger Final Design Report Design Team #09 Kevin Friedman Michael Shepard Jiaming Zhou Faculty Advisors Dr

36

discharge, or over current. According to the data provided by the manufacture of the

LiFePO4 battery, the cycle life of the battery varies according to the percentage of the

charge and discharge capacity. The cycle life should be more than 3000 times at 80%

depth of discharge (DOD), and more than 5000 times at 70% DOD.

The charge termination voltage used in the charger system is 3.9V, where 4.0V is the

termination voltage of 100% charge capacity. Although the charge capacity is not linearly

proportional to the termination voltage, this serves as an adequate approximation. The

percentage of the charge capacity at 3.9V is therefore

P! =!!!!!(!!!!!)

×100% = !.!!!.!!.!!!.!

×100% = 91.7%,

where Vp is the partial charge termination voltage, Vc is the full charge termination voltage

and Vd is the discharge termination voltage.

The cycle life of the battery cells could be much less than 3000 times for the worst

case scenario that the battery is discharged to its discharge termination voltage every time.

However, this is not a realistic presumption. The cycle life of the battery can be extended

if the charge termination value is set lower. The number, space and weight of the battery

cells are limited, so the battery is desired to have a higher charge capacity. The selection

of charge capacity is a tradeoff between performance and durability.

Safety consideration

As the battery cells are connected in series, the overall voltage of the charger could

get to as high as 96V (24cells x 4V/cell), which is more than enough to cause a ventricular

fibrillation. In order to prevent a critical damage caused by the electric shock, the ground

fault interrupter (GFI) installed at the power supply must be able to cut-off the power

within 40 milliseconds when a leakage current of 15mA is detected.

Page 41: LiFePO4 Formula Hybrid Charger - The University of … 4 Formula Hybrid Charger Final Design Report Design Team #09 Kevin Friedman Michael Shepard Jiaming Zhou Faculty Advisors Dr

37

Complete Battery Charger Schematic

Figure 30: Complete Battery Charger Schematic.

Page 42: LiFePO4 Formula Hybrid Charger - The University of … 4 Formula Hybrid Charger Final Design Report Design Team #09 Kevin Friedman Michael Shepard Jiaming Zhou Faculty Advisors Dr

38

Table 12: Parts list for the proposed battery charger

Qty. Refdes Part Num. Description 1 D1-D4 GBJ2504-F RECT BRIDGE GPP 400V 25A GBJ 1 D5 APT30S20BG DIODE SCHOTTKY 45A 200V TO-247 3 D6,D7,D10 1N5821RL DIODE SCHOTTKY 30V 3A DO-201AD 2 D8,D9 C503B-BCN-CV0Z0461 LED 5MM BLUE CLEAR 470NM 30DEG 2 R12,R17 CMF5010R000FHEB RES 10.0 OHM 1% 50PPM 1/4W 1 R1 CMF50200R00FHEB RES 200 OHM 1% 50PPM 1/4W 2 R18,R19 CMF50221R00FHEB RES 221 OHM 1% 50PPM 1/4W 1 R5 CMF50301R00FHEB RES 301 OHM 1% 50PPM 1/4W 1 R2 CMF501K5800FHEB RES 1.58K OHM 1% 50PPM 1/4W 1 R3 CMF1.82KQFCT-ND RES 1.82K OHM 1% 50PPM 1/4W 1 R6 CMF5010K000FHEB RES 10.0K OHM 1% 50PPM 1/4W 1 R13 CMF5012K100FHEB RES 12.1K OHM 1% 50PPM 1/4W 1 R14 CMF5039K200FHEB RES 39.2K OHM 1% 50PPM 1/4W 1 R7 CMF5024R900FHEB RES 24.9 OHM 1% 50PPM 1/4W 2 R20,R21 CMF5057K600FHEB RES 57.6K OHM 1% 50PPM 1/4W 2 R15,R16 CMF50100K00FHEB RES 100K OHM 1% 50PPM 1/4W 1 R4 CMF182KQFCT-ND RES 182K OHM 1% 50PPM 1/4W 1 R8 CMF50499K00FHEB RES 499K OHM 1% 50PPM 1/4W 4 C1,C4,C15,C16 EET-UQ2E222LA CAP ALUM 2200UF 250V 20% SNAP

10 C7,C8,C10-C14 FK28X7R1H104K CAP CER 0.1UF 50V 10% RADIAL

1 C9 445-2409-ND CAP CER 1000PF 250V 20% RADIAL 1 C2 FK28X5R1A105K CAP CER 1UF 10V 10% RADIAL 1 C3 EKXG251ELL101ML25S CAP ALUM 100UF 250V 20% RADIAL 5 L1-L3 535-11401-ND INDUCTOR PWR DRUM CORE 15UH 2 IC1,IC3 LMC6484IN-ND IC OP AMP QUAD CMOS R-R 14-DIP 1 IC2 RV350 Rosewill RV350 350W ATX 1.3 Power Supply 2 IC4,IC6 FAN3111ESXCT-ND IC GATE DVR SGL 1A EXTER SOT23-5 1 IC5 CD4044BE IC QUAD NAND R/S LATCH 16-DIP 1 IC7 ACS715ELCTR-30A-T SENSOR CURRENT 30A 5V UNI 8-SOI 1 IC8 PIC12F617-I/P nIC MCU 8BIT 3.5KB FLASH 8DIP 1 SW1 781XAXM4L-12D General Purpose / Industrial Relays SPDT, 20A 2 SW2,SW3 PS1023ARED SWITCH PUSH SPST-NO 3A 125 1 SW4 R5BBLKREDFF1 SWITCH ROCKER DPST 20A 125V 1 Q1 NTD4963N-35G MOSFET N-CH 30V 8.1A IPAK 1 Q2 IRFP260MPBF MOSFET N-CH 200V 50A TO-247AC 2 Q3,Q4 BC547BTA TRANS NPN 45V 100MA TO-92 1 T1 CR8410-1000 TRANSFORMER CURRENT GP WIRE LEA

1 J1 61400413321 USB Connectors Interface Connectors USB B CONN 4 RCPT

1 J3 HH-201S DCT Factory HH-201S 4 Ports USB 2.0 Hub 1 From Previous List 1 J2 EC11.0001.001 MOD PWR ENTRY 2PL SW QC SCRW PN

1 Cable 233082-06 AC Power Cords 10' GRAY/GRAY PLUG 3 X 14 AWG HOSP

1 Heatsink WV-T247-101E Heat Sinks Heatsink for TO-247 DEGREASED 1 F1 0314020.HXP FUSE CERAMIC 250V FAST 3AB 20A 1 Fuse Holder 03420004H FUSEHOLDER 3AG FLUTED RT ANGLE NI USB 8473 NI USB 6009

Page 43: LiFePO4 Formula Hybrid Charger - The University of … 4 Formula Hybrid Charger Final Design Report Design Team #09 Kevin Friedman Michael Shepard Jiaming Zhou Faculty Advisors Dr

39

3.2 SOFTWARE (KF)

3.2.1 CONTROLLER AREA NETWORK

The Controller Area Network (CAN) is a standard developed by Bosch in 1983

with the intended application of vehicle systems interfacing. It reduces wiring required by

establishing a common line connecting all subsystems. The maximum speed of data

transfer with this standard is 1Mbit/s, which is only practical for lengths less than 40m.

This is because it takes time for the signal to actually travel along the wire, where

additional length means additional delay of transmission. If there is too much delay

between the transmission and subsequent reception of the signal, there could be aliasing

problems; devices on the network would misinterpret bits and the message would

essentially be lost. It is common for automobiles to operate at half of this maximum rated

speed, or 500kbits/s. This allows for longer lengths of wire to reach every part of the

vehicle.

The CAN standard sends information on two wires: CAN high and CAN low. The

dominant logical state is a zero, wherein the CAN high is 5Vdc and CAN low is 0Vdc.

The recessive logical state is a one, wherein the CAN high and CAN low are both

approximately 2.5Vdc. A sequence of particular logical high and low states is referred to

as a message or frame. To begin sending a message, a dominant (zero) bit is sent to let all

devices on the network know the line is being used. After this zero bit, an identifier string

of eleven bits is sent. Each message has a prioritized numerical identifier, with lower

numbers signifying a higher priority. In the event that two devices attempt to send a

message at exactly the same instant, the message with the higher identifier will cease its

transmission, allowing the prioritized message to transmit instead.

Following the identification of the message is a remote transmit request (RTR) bit.

This bit differentiates between data frames (dominant zero) and remote frames (recessive

one). Data frames are messages being sent by some device on the network. Remote frames

are requests made with a particular message identifier for that message to be sent. By this

means a device may request data to be sent rather than waiting for a device to send it. This

feature will be very useful to the project because all CAN data will be received by Lab

Page 44: LiFePO4 Formula Hybrid Charger - The University of … 4 Formula Hybrid Charger Final Design Report Design Team #09 Kevin Friedman Michael Shepard Jiaming Zhou Faculty Advisors Dr

40

View.

Following the RTR bit is the identifier extension bit, which differentiates between

a standard 11-bit identifier (dominant zero) and an extended 29-bit identifier (recessive

one). In the case that this bit is a one, the 18 bits that follow will be continued

identification bits. This is useful if the system has many messages it needs to send with

unique identifiers for each.

After the identifier extension bit, as well as the 18-bit extended identifier in the

case that it was recessive, a data length code (DLC) is sent. This code is 4 bits long,

indicating how many bytes are in the data frame. A valid range for this DLC lies between

0 and 8. The data bytes themselves then follow this DLC. A cyclic redundancy check

(CRC) is a 15-bit value calculated by the transmitter of the message based on the bits

preceding it in the message. This value is recalculated by each receiving device, and

reliability is therefore quite good. If the value differs between any devices, an error is sent.

Further verification comes in the form of an acknowledge bit, which is a dominant

zero sent by every receiving device on the line. If it so happens that there is only one

device on the line, no acknowledge bit can be sent and the transmitter will therefore

continuously send and resend its message awaiting verification. At the termination of a

message, assuming acknowledgement has been achieved, the transmitter sends a series of

6 recessive bits. To make sure this only occurs at the end of a message, CAN messaging

adopts the practice of bit stuffing. This means that every 5 consecutive bits of information,

a dummy bit is “stuffed” into the frame of opposite logical value. The receiver then

effectively de-stuffs these anticipated dummy bits from the message to read it (Bosch).

Page 45: LiFePO4 Formula Hybrid Charger - The University of … 4 Formula Hybrid Charger Final Design Report Design Team #09 Kevin Friedman Michael Shepard Jiaming Zhou Faculty Advisors Dr

41

3.2.2 SOFTWARE LEVEL 0 (KF)

Computer with LabVIEWNI USB-8473 NI-USB-6009

CAN message

Analog Current

Shutdown Signal

Voltage to Control Current

Car Charger

Figure 31: Level 0 Software Block Diagram

Table 13: Level 0 Software Modules

Module Computer with LabVIEW

Inputs CAN message, Analog Current

Outputs Voltage to Control Current, Shutdown Signal

Functionality

The software accepts the current sensor reading and CAN message,

which it decodes into cell temperature and voltage readings. Using

these values, it determines at what rate to charge the batteries, or

whether to send a shutdown signal.

Theory of Operation: Software Block Level 0.

The software takes in the measured current value from the charger circuit and the

CAN bus message, which contains cell voltage and temperature readings. These values are

then converted into a format that is simple to read on a display. The software will

determine the appropriate output current value based on these inputs. It will additionally

decide whether the charger needs to be turned off if the values are in extreme.

Page 46: LiFePO4 Formula Hybrid Charger - The University of … 4 Formula Hybrid Charger Final Design Report Design Team #09 Kevin Friedman Michael Shepard Jiaming Zhou Faculty Advisors Dr

42

3.2.3 SOFTWARE LEVEL 1 (KF)

Compare Values

Trigger Shutdown

Store decoded CAN message

values

Output Voltage to Control CurrentRead CAN

Count

Read ADC Store Current Sensor Reading

Figure 32: Level 1 Software Block Diagram

Table 14: Level 1 Software Modules

module Read CAN

inputs CAN data from existing hybrid vehicle control

outputs Cell voltage and cell temperature data

function Retrieves CAN data from the vehicle.

module Store decoded CAN message values

inputs Cell voltage and temperature data

outputs Cell voltage and temperature data

function Stores voltage and temperature values into memory.

module Read ADC

inputs Analog signal from current sensor

outputs Digital current level

function Converts the analog current to digital for processing.

module Store Current Sensor Reading

inputs Charging current

outputs Charging current

function Stores current level into memory.

Page 47: LiFePO4 Formula Hybrid Charger - The University of … 4 Formula Hybrid Charger Final Design Report Design Team #09 Kevin Friedman Michael Shepard Jiaming Zhou Faculty Advisors Dr

43

module Compare Values

inputs Cell voltage, cell temperature, digital current

outputs Control current signal, shutdown signal

function Compares levels with predefined warning levels; cuts power if these levels

are dangerous for the batteries. Sends a current control signal according to

battery voltage of the cell with the highest reading.

module Trigger Shutdown

inputs Shutdown signal

outputs Trip relay signal

function Physically disconnects power in case of a fault or completion of charging.

module Output Voltage to Control Current

inputs Control current signal

outputs Reduce charge current signal

function Cuts back the current charging the batteries when one cell reaches 3.7VDC,

and again when a cell reaches 3.9VDC.

module Count

inputs Reduce charge current signal

outputs Shutdown signal

function When the second current reduction happens, a timer begins counting for

approximately one hour, after which the charger shuts down.

Page 48: LiFePO4 Formula Hybrid Charger - The University of … 4 Formula Hybrid Charger Final Design Report Design Team #09 Kevin Friedman Michael Shepard Jiaming Zhou Faculty Advisors Dr

44

Theory of Operation: Software Block Level 1. (KF)

Figure 33: National Instruments Devices

The Read ADC and Read CAN functions are implemented via National

Instruments USB devices. These devices can be seen in Figure 33. The NI USB-8473

gathers the CAN information to be stored in an array in LabVIEW, while the NI USB

6009 gathers analog information from the current sensor to be converted into a digital

signal. It additionally provides analog and digital output capabilities for driving a PWM to

change the battery charging current, and to trip relays to cut power to the batteries.

Once the values are collected and stored into LabVIEW, they must be compared to

some levels of interest. The maximum battery voltage is 4.0VDC, but exceeding this

voltage by even a small amount will greatly reduce the cycle life. It was therefore decided

that 3.7 VDC is an appropriate level at which to reduce the charge current from 15-20A to a

mere 4A. The current will reduce once a single cell has reached this voltage level. This

will ensure that other batteries in the pack have a chance to “catch up” with this cell. Once

a single cell reaches 3.7 VDC, the charge current is further reduced to match that of the

Page 49: LiFePO4 Formula Hybrid Charger - The University of … 4 Formula Hybrid Charger Final Design Report Design Team #09 Kevin Friedman Michael Shepard Jiaming Zhou Faculty Advisors Dr

45

shunt current which is 1A. These current reductions are performed by outputting a voltage

via the NI USB 6009 which will control a PWM, in turn controlling the charging current

to the battery pack.

When the charging current is cut back to 1A, a timer must be set. The battery

chemistry of lithium polymer cells does not allow for so-called “trickle charging”, and this

will eventually damage them. If all of the cells reach at least 3.8VDC, the trigger shutdown

will occur. If it has been a considerable length of time (approximately one hour) and all

cells are not yet at 3.8VDC, the trigger shutdown will also occur. Figure 32 shows the

software level 1 block diagram, with Table 14 describing each module. Figure 34 shows

the software flowchart to further clarify system operation.

Page 50: LiFePO4 Formula Hybrid Charger - The University of … 4 Formula Hybrid Charger Final Design Report Design Team #09 Kevin Friedman Michael Shepard Jiaming Zhou Faculty Advisors Dr

46

3.2.4 SOFTWARE FLOWCHART (KF)

Decode

Shutdown signal

Temp/VoltageCAN data

Analog Current A/D Conversion Digital Current

Compare to Warning Presets

Compare to Warning Presets

Out of Bounds?

Any Cells Over 3.7V?

Cut Power

Yes

Yes

No

Any Temp Over Limit?

Any Cells Over 3.9V?

Reduce Charging Current to

4Amps

No

Reduce Charging Current to

1Amp

Count

Timer Overflow?

YesYes

No

YesNo

Figure 34: Software Flowchart

3.2.5 SOFTWARE PWM GENERATOR PSEUDO CODE (MS) Data DUTY_ON PWM_PERIOD DUTY_OFF PWM_voltage PR2 DUTY_RATIO

Page 51: LiFePO4 Formula Hybrid Charger - The University of … 4 Formula Hybrid Charger Final Design Report Design Team #09 Kevin Friedman Michael Shepard Jiaming Zhou Faculty Advisors Dr

47

Code Configure PM0 for output PWM_Voltage=ADC_PIN6 DUTY_RATIO= PWM_Voltage/5 PWM_PERIOD=(PR2+1)*4*Tosc DUTY_ON= PWM_PERIOD*DUTY_RATIO DUTY_OFF = PWM_PERIOD - DUTY_ON WHILE (1) turn on PIN 5 delay for DUTY_ON turn off PIN 5 delay for DUTY_OFF

Page 52: LiFePO4 Formula Hybrid Charger - The University of … 4 Formula Hybrid Charger Final Design Report Design Team #09 Kevin Friedman Michael Shepard Jiaming Zhou Faculty Advisors Dr

48

3.2.5 MECHANICAL DRAWINGS (KF)

Figure 35: Mechanical Drawing (Enclosed)

Figure 36: Mechanical Drawing (Exploded)

Page 53: LiFePO4 Formula Hybrid Charger - The University of … 4 Formula Hybrid Charger Final Design Report Design Team #09 Kevin Friedman Michael Shepard Jiaming Zhou Faculty Advisors Dr

49

4. PARTS LIST Table 15: Budget for the proposed battery charger.

Qty. Part Num. Description Cost Cost 1 GBJ2504-F RECT BRIDGE GPP 400V 25A GBJ $2.02 $2.02

1 APT30S20BG DIODE SCHOTTKY 45A 200V TO-247 3.67 3.67

3 1N5821RL DIODE SCHOTTKY 30V 3A DO-201AD 0.07 0.21

2 C503B-BCN-CV0Z0461 LED 5MM BLUE CLEAR 470NM 30DEG 0.19 0.38

2 CMF5010R000FHEB RES 10.0 OHM 1% 50PPM 1/4W 0.31 0.62

1 CMF50200R00FHEB RES 200 OHM 1% 50PPM 1/4W 0.31 0.31

2 CMF50221R00FHEB RES 221 OHM 1% 50PPM 1/4W 0.31 0.62

1 CMF50301R00FHEB RES 301 OHM 1% 50PPM 1/4W 0.31 0.31

1 CMF501K5800FHEB RES 1.58K OHM 1% 50PPM 1/4W 0.31 0.31

1 CMF1.82KQFCT-ND RES 1.82K OHM 1% 50PPM 1/4W 0.31 0.31

1 CMF5010K000FHEB RES 10.0K OHM 1% 50PPM 1/4W 0.31 0.31

1 CMF5012K100FHEB RES 12.1K OHM 1% 50PPM 1/4W 0.31 0.31

1 CMF5039K200FHEB RES 39.2K OHM 1% 50PPM 1/4W 0.31 0.31

1 CMF5024R900FHEB RES 24.9 OHM 1% 50PPM 1/4W 0.31 0.31

2 CMF5057K600FHEB RES 57.6K OHM 1% 50PPM 1/4W 0.31 0.62

2 CMF50100K00FHEB RES 100K OHM 1% 50PPM 1/4W 0.31 0.62

1 CMF182KQFCT-ND RES 182K OHM 1% 50PPM 1/4W 0.49 0.49

1 CMF50499K00FHEB RES 499K OHM 1% 50PPM 1/4W 0.49 0.49

4 EET-UQ2E222LA CAP ALUM 2200UF 250V 20% SNAP 9.83 39.32

10 FK28X7R1H104K CAP CER 0.1UF 50V 10% RADIAL 0.32 3.20

1 445-2409-ND CAP CER 1000PF 250V 20% RADIAL 0.29 0.29

1 FK28X5R1A105K CAP CER 1UF 10V 10% RADIAL 0.43 0.43

1 EKXG251ELL101ML25S CAP ALUM 100UF 250V 20% RADIAL 1.64 1.64

5 535-11401-ND INDUCTOR PWR DRUM CORE 15UH 3.84 19.20

2 LMC6484IN-ND IC OP AMP QUAD CMOS R-R 14-DIP 3.61 7.22

1 RV350 Rosewill RV350 350W ATX 1.3 Power Supply 24.99 24.99

2 FAN3111ESXCT-ND IC GATE DVR SGL 1A EXTER SOT23-5 1.09 2.18

1 CD4044BE IC QUAD NAND R/S LATCH 16-DIP 0.56 0.56

1 ACS715ELCTR-30A-T SENSOR CURRENT 30A 5V UNI 8-SOI 4.66 4.66

1 PIC12F617-I/P nIC MCU 8BIT 3.5KB FLASH 8DIP 1.16 1.16

1 781XAXM4L-12D General Purpose / Industrial Relays SPDT, 20A 6.82 6.82

2 PS1023ARED SWITCH PUSH SPST-NO 3A 125 1.81 3.62

1 R5BBLKREDFF1 SWITCH ROCKER DPST 20A 125V 2.75 2.75

1 NTD4963N-35G MOSFET N-CH 30V 8.1A IPAK 0.45 0.45

1 IRFP260MPBF MOSFET N-CH 200V 50A TO-247AC 3.05 3.05

2 BC547BTA TRANS NPN 45V 100MA TO-92 0.42 0.84

1 CR8410-1000 TRANSFORMER CURRENT GP WIRE LEA 8.15 8.15

1 61400413321 USB Connectors Interface Connectors USB B CONN 4 RCPT 1.46 1.46

1 HH-201S DCT Factory HH-201S 4 Ports USB 2.0 Hub 5.99 5.99

1 From Previous List $150.20 $150.20

1 EC11.0001.001 MOD PWR ENTRY 2PL SW QC SCRW PN 16.68 16.68

1 233082-06 AC Power Cords 10' GRAY/GRAY PLUG 3 X 14 AWG HOSP 13.99 13.99

1 WV-T247-101E Heat Sinks Heatsink for TO-247 DEGREASED 2.04 2.04

1 0314020.HXP FUSE CERAMIC 250V FAST 3AB 20A 1.46 1.46

1 03420004H FUSEHOLDER 3AG FLUTED RT ANGLE 3.98 3.98

NI USB 8473 and NI USB 6009

Total $188.35

Page 54: LiFePO4 Formula Hybrid Charger - The University of … 4 Formula Hybrid Charger Final Design Report Design Team #09 Kevin Friedman Michael Shepard Jiaming Zhou Faculty Advisors Dr

50

5. PROJECT SCHEDULES

5.1 FINAL GANTT CHART (JZ,MS) Table 16: Midterm Gantt Chart

Page 55: LiFePO4 Formula Hybrid Charger - The University of … 4 Formula Hybrid Charger Final Design Report Design Team #09 Kevin Friedman Michael Shepard Jiaming Zhou Faculty Advisors Dr

51

Page 56: LiFePO4 Formula Hybrid Charger - The University of … 4 Formula Hybrid Charger Final Design Report Design Team #09 Kevin Friedman Michael Shepard Jiaming Zhou Faculty Advisors Dr

52

5.2 IMPLEMENTATION GANTT CHART (KV,JZ) Table 17: Implementation Gantt chart.

Page 57: LiFePO4 Formula Hybrid Charger - The University of … 4 Formula Hybrid Charger Final Design Report Design Team #09 Kevin Friedman Michael Shepard Jiaming Zhou Faculty Advisors Dr

53

6. DESIGN TEAM INFORMATION (JZ)

Kevin Friedman, Electrical Engineering

Michael Shepard, Electrical Engineering

Jiaming Zhou, Electrical Engineering

7. CONCLUSION (ALL)

As a part of the University of Akron’s entry into the SAE Formula Hybrid

competition, the battery-pack is one of the most important parts of the electrical system of

the vehicle. After experiencing failures during charging the new type LiFePO4 battery

several times, the demand of a dedicated charging system is the created. This project is to

build the charging system so that each cell in the battery-pack is monitored and charged to

its best condition avoiding any charging failures. By learning and demonstrating the main

concepts of this project, Lithium iron phosphate batteries, power circuits, and CAN

protocol, the knowledge and skills as an electrical engineer can be practiced and expanded.

8. REFERENCES “Formula Hybrid” 12 September, 2011 <http://www.formula-hybrid.org/pdf/Formula-Hybrid-2010-Rules.pdf>

“Building Safer Li-Ion Batteries” House of Batteries 15. Spet. 2011 <http://www.houseofbatteries.com/articles.php?id=27>

"Internal structure and operation theory of LiFePO4 battery" kinglitech. kinglitech.

<http://www.kinglitech.com/info.asp?id=268>

“Bosch CAN Specification Version 2.0”

<http://esd.cs.ucr.edu/webres/can20.pdf>

DATA SHEETS (MS)

• Opamp http://www.national.com/ds/LM/LMC6484.pdf

• Gate Driver

Page 58: LiFePO4 Formula Hybrid Charger - The University of … 4 Formula Hybrid Charger Final Design Report Design Team #09 Kevin Friedman Michael Shepard Jiaming Zhou Faculty Advisors Dr

54

http://www.fairchildsemi.com/ds/FA%2FFAN3111E.pdf

• Latch

http://www.fairchildsemi.com/ds/FA%2FFAN3111E.pdf

• Current IC Sensor

http://www.allegromicro.com/en/Products/Part_Numbers/0715/0715.pdf

• Microcontroller

http://ww1.microchip.com/downloads/en/DeviceDoc/41302D.pdf

• Relay

http://www.allegromicro.com/en/Products/Part_Numbers/0715/0715.pdf

• Current Transformer

http://media.digikey.com/pdf/Data%20Sheets/CR%20Magnetics%20Inc%20PDFs/CR

8400%20Series.pdf