li liu, e. downey brill, g. mahinthakumar, james uber, emily m. zechman, s. ranjithan

25
Effects of Measurement Uncertainties on Adaptive Source Characterization in Water Distribution Networks Li Liu, E. Downey Brill, G. Mahinthakumar, James Uber, Emily M. Zechman, S. Ranjithan North Carolina State University

Upload: kalin

Post on 19-Jan-2016

24 views

Category:

Documents


0 download

DESCRIPTION

Effects of Measurement Uncertainties on Adaptive Source Characterization in Water Distribution Networks. Li Liu, E. Downey Brill, G. Mahinthakumar, James Uber, Emily M. Zechman, S. Ranjithan North Carolina State University. Contaminant Source Determination. Rapid identification of … - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Li Liu, E. Downey Brill, G. Mahinthakumar, James Uber, Emily M. Zechman, S. Ranjithan

Effects of Measurement Uncertainties on Adaptive Source Characterization in Water Distribution Networks

Li Liu, E. Downey Brill, G. Mahinthakumar,James Uber, Emily M. Zechman, S. Ranjithan

North Carolina State University

Page 2: Li Liu, E. Downey Brill, G. Mahinthakumar, James Uber, Emily M. Zechman, S. Ranjithan

Contaminant Source Determination Rapid identification of …

Contamination source location Starting time Mass loadings at different time

When to stop the search and make final decision Necessary information for threat management in water distribution systems

Page 3: Li Liu, E. Downey Brill, G. Mahinthakumar, James Uber, Emily M. Zechman, S. Ranjithan

Challenges of Source Identification

Inverse Problem Ill-posed/Non-uniqueness

Under dynamic environments Dynamic system Dynamically updated observations

Under noisy environments Measurement error Uncertain demands Model error

Page 4: Li Liu, E. Downey Brill, G. Mahinthakumar, James Uber, Emily M. Zechman, S. Ranjithan

Simulation-Optimization Method

Hydraulic Simulation

Water Quality Simulation

EA-based Optimizer

Observed Data

Csim

Source characteristics t

Co

b

s

Page 5: Li Liu, E. Downey Brill, G. Mahinthakumar, James Uber, Emily M. Zechman, S. Ranjithan

Adaptive Dynamic Optimization Technique (ADOPT) An EA-based search Solves as information becomes

available over time Multiple solutions to assess non-uniqueness

Page 6: Li Liu, E. Downey Brill, G. Mahinthakumar, James Uber, Emily M. Zechman, S. Ranjithan

Objective Investigate the effects of sensor

errors on source characteristics obtained

using ADOPT

Page 7: Li Liu, E. Downey Brill, G. Mahinthakumar, James Uber, Emily M. Zechman, S. Ranjithan

Assumptions Deterministic demand values Conservative contaminant Contamination occurs at any one location in the network Only sensor errors are considered

Page 8: Li Liu, E. Downey Brill, G. Mahinthakumar, James Uber, Emily M. Zechman, S. Ranjithan

Scenarios with Sensor Error Scenario 1: Sensor with continuous malfunction Scenario 2: Sensor with intermittent malfunction Scenario 3: Sensor activates after a lag time of first detection Scenario 4: Sensor with systematic reading error

Page 9: Li Liu, E. Downey Brill, G. Mahinthakumar, James Uber, Emily M. Zechman, S. Ranjithan

Contamination Case A

0

1

2

3

4

5

6

7

5 7 9 11 13 15 17

Time Step (10 min) .

Mass L

oadin

g (g/m

in)

.

Mass Loading Profile

Page 10: Li Liu, E. Downey Brill, G. Mahinthakumar, James Uber, Emily M. Zechman, S. Ranjithan

0

0.5

0 20 40

0

0.5

0 20 40

0

0.5

0 20 400

0.5

0 20 40

Contamination Case A…

Node 197 Node 184 Node 211

Node 115

Time Step (10 mins)

Obse

rved C

onc.

(m

g/L

)O

bse

rved C

onc.

(m

g/L

)

Time Step (10 mins) Time Step (10 mins) Time Step (10 mins)

Page 11: Li Liu, E. Downey Brill, G. Mahinthakumar, James Uber, Emily M. Zechman, S. Ranjithan

0

0.5

0 10 20 30 40

0

0.5

0 20 40

0

0.5

0 20 40

0

0.5

0 20 40

Results for Case A with Perfect Data

Node 197 Node 184 Node 211

Node 115

True source

Best solution

Best solution

Prediction Error = 0.026 mg/L

Obse

rved C

onc.

(m

g/L

)O

bse

rved C

onc.

(m

g/L

)

Time Step (10 mins)

Page 12: Li Liu, E. Downey Brill, G. Mahinthakumar, James Uber, Emily M. Zechman, S. Ranjithan

0

0.5

0 20 40

Case A : scenario 1Node 115

True concentration Observed concentration

Ob

serv

ed C

onc.

(m

g/L

)

Page 13: Li Liu, E. Downey Brill, G. Mahinthakumar, James Uber, Emily M. Zechman, S. Ranjithan

0

0.5

0 20 40

Case A : scenario 1Node 115

True concentration

0

0.5

0 20 40

Node 184

Observed concentration

Best solution

Ob

serv

ed C

onc.

(m

g/L

)

Time Step (10 mins)

Ob

serv

ed C

onc.

(m

g/L

)

Page 14: Li Liu, E. Downey Brill, G. Mahinthakumar, James Uber, Emily M. Zechman, S. Ranjithan

Case A: scenario 2, 3 & 4

Best solution

0

0.5

5 10 15 20 25 30

0

0.5

5 10 15 20 25 30

0

0.5

5 10 15 20 25 30

True concentration Observed concentration

Scenario 2

Scenario 3 Scenario 4

Ob

serv

ed C

onc.

(m

g/L

)

Time Step (10 mins) Time Step (10 mins)

Time Step (10 mins)

Ob

serv

ed C

onc.

(m

g/L

)

Node 115

Node 115 Node 115

Page 15: Li Liu, E. Downey Brill, G. Mahinthakumar, James Uber, Emily M. Zechman, S. Ranjithan

Contamination Case B

True Source Mass Loading Profile

0

1

2

3

4

5

6

7

5 7 9 11 13 15 17

Time Step (10 min) .

Mas

s Load

ing (g/m

in)

.

Page 16: Li Liu, E. Downey Brill, G. Mahinthakumar, James Uber, Emily M. Zechman, S. Ranjithan

Case B …

Time Step (10 mins)

Obse

rved C

onc.

(m

g/L

)

Time Step (10 mins)

Time Step (10 mins)

Obse

rved C

onc.

(m

g/L

)

0

0.5

1 9 17 25 33 41

0

0.5

1 9 17 25 33 41

0

0.5

1 9 17 25 33 41

Node 197

Node 184 Node 211

Page 17: Li Liu, E. Downey Brill, G. Mahinthakumar, James Uber, Emily M. Zechman, S. Ranjithan

Mass Loading Profile

0

1

2

3

4

5

6

7

8

9

0 5 10 15 20 25 30Time Step

Mass L

oadin

g (g/m

in)

.

True Source

Solution 1

Solution 2

Solution 3

Solution 4

Results for Case B with Perfect Data

Page 18: Li Liu, E. Downey Brill, G. Mahinthakumar, James Uber, Emily M. Zechman, S. Ranjithan

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 6 11 16 21 26 31 36 41Time Step

Conce

ntr

atio

n (m

g/L

)

.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 11 21 31 41

Time Step

Conce

ntr

atio

n (m

g/L

)

.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 11 21 31 41Time Step

Conce

ntr

atio

n (m

g/L

) .

True Solution

Solution 1

Solution 2

Solution 3

Solution 4

Node 197Node 211

Node 184

Results for Case B with Perfect Data

Page 19: Li Liu, E. Downey Brill, G. Mahinthakumar, James Uber, Emily M. Zechman, S. Ranjithan

Case B: scenario 1

Time Step (10 mins)

Obse

rved C

onc.

(m

g/L

)

Time Step (10 mins)

Time Step (10 mins)

Obse

rved C

onc.

(m

g/L

)

0

0.5

1 9 17 25 33 410

0.5

1 9 17 25 33 41

0

0.5

1 9 17 25 33 41

Node 197

Node 184 Node 211

Page 20: Li Liu, E. Downey Brill, G. Mahinthakumar, James Uber, Emily M. Zechman, S. Ranjithan

0

0.5

1 9 17 25 33 41

Case B: scenario 2

Time Step (10 mins)

Obse

rved C

onc.

(m

g/L

)

Time Step (10 mins)

Time Step (10 mins)

Obse

rved C

onc.

(m

g/L

)

0

0.5

1 9 17 25 33 41

0

0.5

1 9 17 25 33 41

Node 197

Node 184Node 211

Page 21: Li Liu, E. Downey Brill, G. Mahinthakumar, James Uber, Emily M. Zechman, S. Ranjithan

Case B: scenario 3 & 4Scenario 3 Scenario 4

Page 22: Li Liu, E. Downey Brill, G. Mahinthakumar, James Uber, Emily M. Zechman, S. Ranjithan

Summary for results

0

1

2

3

4

5

6

7

1 2 3 4

.

Case ACase B

Nu

mb

er

of

alt

ern

ati

ve

sou

rce locati

on

s

Scenario #

Page 23: Li Liu, E. Downey Brill, G. Mahinthakumar, James Uber, Emily M. Zechman, S. Ranjithan

0

0. 5

1

1. 5

2

1 2 3 4

Case ACase B

Summary for results…

Scenario #

Mass L

oad

ing

diff

ere

nce a

t tr

ue s

ou

rce locati

on

(g

/min

)

Page 24: Li Liu, E. Downey Brill, G. Mahinthakumar, James Uber, Emily M. Zechman, S. Ranjithan

Final Remarks Source characteristics identified by ADOPT are influenced by the type of sensor errors. Investigate effects of demand uncertainty. Update ADOPT to be robust under combined noisy conditions.

Page 25: Li Liu, E. Downey Brill, G. Mahinthakumar, James Uber, Emily M. Zechman, S. Ranjithan

Acknowledgements This work is supported by National Science

Foundation (NSF) under Grant No. CMS-0540316 under the DDDAS program.