lhc/atlas run2 w q Ý1 Ù z º p lhc/atlas run2 w q Ý n g g z j ñ > t º [email protected] 2016...

8
1 ڀݚ ˙հ LHC/ATLAS Run2 ͷݱژେ ཧڀݚՊ ۱ [email protected] 2016 (28 )2 15 1 Ίʹ LHC 2010 Β 2012 ·Ͱͷ Run1 ظʹ ɼώοάεͷݟͱେͳՌΛಘ [1]ɻ ͷޙ 2 ͷγϟοτμϯظ (Long Shutdown1ɼ LS1) ΛܦɼLHC িಥͷॏ৺ܥΤωϧΪʔΛ 8 TeV Β 13 TeV ʹେɼΑΑ 2015 4 ΒӡసΛ։ɻ ճಛͱɼRun2 ॳͱͳΔ 2015 ͷϥϯ ͷঢ়گͱ ATLAS ݧͰऔಘΕσʔλղੳͷݱঢ়ʹ 3 ͷهͰใΔɻཧղੳՌʹ ͷ 2 ͷهͰհΔͱͱɼͰ· Run2 ʹΔ LHC Ճثͱ ATLAS ݕثͷݱঢ়ʹ ड़Δɻ 2 LHC Ճ ثLHC (Large Hadron Collider) εΠεɾδϡωʔϒ ֎ͷ CERN ݐʹઃΕɼքେɼ ߴ࠷ΤωϧΪʔ ͷཅিಥܕՃثͰΔɻप 27 km ͷϦϯά Լ 100 m ͷτϯωϧʹઃஔΕΓɼઃܭͷ େॏ৺ܥΤωϧΪʔ ( s) 14 TeV ʹͳΔɻ LHC Ͱӡస։ޙͷ 2008 9 ɼಋ࣓ੴ ͷ߹෦ʹΔଓෆʹΑΓ٫༻ϔϦϜͷ ނ[2, 3] ΊɼຊతͳमΛߦ·Ͱ ϏʔϜΤωϧΪʔΛԼӡసΛߦͱʹɻ2010 ͱ 2011 s = 7 TeV ͰͷݧΛߦɼ2012 ʹ s = 8 TeV ·ͰΤωϧΪʔΛɻ ͷޙͷ LS1 ظͰɼಋઢͷվमͱڧɼ ߅ଌఆͳͲΛߦͰɼ2015 4 ʹ LHC Run2 ͱՔಇΛ։ɻͷ ޙ2ϲͷίϛογϣχϯ άΛܦɼ6 3 ʹॳΊॏ৺ܥΤωϧΪʔ 13 TeV ͷཅিಥʹɻͷޙΒ·Ͱͷظʹ গೖόϯνΛՃɼऴతʹόϯν 2244 όϯνɼϐʔΫϧϛϊγςΟ 5 × 10 33 cm 2 s 1 ʹୡɼఏڙϧϛϊγςΟ 4 fb 1 Λɻ 1: 2015 4 7 ʹΔ LHC ͷηΫλʔͷԹ ɻ4 3 ʹશηΫλʔͰ٫ [4]ɻ ͷΑʹɼLHC ՔಇޙͷେͳҰาΛ౿Έग़ ɼ2015 தͷ LHC Ճثͷӡసɼʑ ͳʹΑΓ༧ఆ௨ΓʹΒͳɻҎԼͰί ϛογϣχϯάΛΊӡసͷܦҢΛड़ɼݟΕ ΕΕͷʹઆΔɻ·ࡏݱͷঢ়ʹگ Δɻ 2.1 ಋ࣓ੴͷτϨʔχϯάΫΤϯν 1 ͷΑʹɼLHC 8 ͷηΫλʔʹΕ ΓɼΕΕͷηΫλʔͷڥքʹݕثஔΕΔɻ ATLAS ݕثΔͷϙΠϯτ 1ɼCMS ݕثΐͲϦϯάͷରଆͷϙΠϯτ 5 ͰΔɻ ηΫλʔͷϙΠϯτ൪߸Λ༻ɼηΫλʔ 12ɼ ηΫλʔ 67 ͳͲͱݺশΔɻ ϏʔϜΛۂΔΊͷۃ࣓ੴΛӡసঢ়ଶʹΔʹ ɼಋঢ়ଶʹΔΊͷ٫ͱ࣓ʹඞཁͳ ΕΔͲͷύϫʔςετඞཁͰΔɻҰͷߦͰͷʹ౸ୡͰΔΘͰͳɼΔ ʹΔͱ࣓ੴԿΒͷݪҼͰΫΤϯνΛىɼ 259

Upload: others

Post on 11-Jun-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

  • 1

    LHC/ATLAS Run2

    [email protected]

    2016 ( 28 ) 2 15

    1

    LHC 2010 2012 Run1

    [1]

    2 (Long Shutdown1

    LS1) LHC 8

    TeV 13 TeV 2015

    4

    Run2 2015

    ATLAS

    3

    2

    Run2 LHC ATLAS

    2 LHC

    LHC (Large Hadron Collider)

    CERN

    27 km

    100 m

    (√s) 14 TeV

    LHC 2008 9

    [2, 3]

    2010

    2011√s = 7 TeV 2012

    √s = 8 TeV

    LS1

    2015 4 LHC Run2

    2

    6 3 13 TeV

    2244 5× 1033 cm−2s−1

    4 fb−1

    1: 2015 4 7 LHC

    4 3 [4]

    LHC

    2015 LHC

    2.1

    1 LHC 8

    ATLAS 1 CMS

    5

    12

    67

    259

  • 2

    2: LHC 6.5 TeV

    ( ) 45

    50 [4]

    LHC 7 TeV

    (11.85 kA 8.3 T)

    ( ) 45

    6.5 TeV 50

    1

    8 34 78

    11

    2.2 2015

    LHC

    4 5 450 GeV 4 10

    6.5 TeV (1 )

    2

    6 3 LHC 13 TeV

    ”first stable beam” ( 3) LHC

    LHC

    7 14 50 ns 2015

    476

    1.6× 1033 cm−2s−1

    17 TeV ()

    3: 13 TeV LHC

    [5]

    Mean Number of Interactions per Crossing

    0 5 10 15 20 25 30 35 40 45 50

    /0.5

    ]-1

    Del

    iver

    ed L

    umin

    osity

    [pb

    0

    1

    2

    3

    4

    5

    6 =13 TeVsOnline Luminosity 2015, ATLAS

    > = 20µ50ns: <> = 17µ25ns: <

    4: 50 ns 25 ns

    [6]

    8 LHC 50 ns 25 ns

    50 ns

    1

    1

    ( )

    25 ns

    4 ATLAS

    50 ns 25 ns

    25 ns

    LHC

    2244

    5× 1033 cm−2s−1

    260

  • 2

    2: LHC 6.5 TeV

    ( ) 45

    50 [4]

    LHC 7 TeV

    (11.85 kA 8.3 T)

    ( ) 45

    6.5 TeV 50

    1

    8 34 78

    11

    2.2 2015

    LHC

    4 5 450 GeV 4 10

    6.5 TeV (1 )

    2

    6 3 LHC 13 TeV

    ”first stable beam” ( 3) LHC

    LHC

    7 14 50 ns 2015

    476

    1.6× 1033 cm−2s−1

    17 TeV ()

    3: 13 TeV LHC

    [5]

    Mean Number of Interactions per Crossing

    0 5 10 15 20 25 30 35 40 45 50

    /0.5

    ]-1

    Del

    iver

    ed L

    umin

    osity

    [pb

    0

    1

    2

    3

    4

    5

    6 =13 TeVsOnline Luminosity 2015, ATLAS

    > = 20µ50ns: <> = 17µ25ns: <

    4: 50 ns 25 ns

    [6]

    8 LHC 50 ns 25 ns

    50 ns

    1

    1

    ( )

    25 ns

    4 ATLAS

    50 ns 25 ns

    25 ns

    LHC

    2244

    5× 1033 cm−2s−1

    3

    5: LHC [7]

    2.3 2015

    Run2

    2.3.1 UFO

    13 TeV

    Unidentified Falling Objects (UFOs)

    [7] LHC ( 5)

    UFO

    UFO

    17 2

    1

    40 UFO 25 ns

    10 2016

    2.3.2 ULO

    UFO Run2

    Uniden-

    tified Lying Object (ULO) [8]

    3 mm 1 mm

    2016

    25 ns & electron cloud

    Beam screen

    25 ns Typical e– densities1010–1012 m–3

    Possible consequences:– instabilities, emittance growth, desorption – bad vacuum– excessive energy deposition in the cold sectors

    Electron bombardment of a surface has been proven to reduce drastically the secondary electron yield (SEY) of a material. This technique, known as scrubbing, provides a mean to suppress electron cloud build-up.

    Electron cloud significantly worse with 25 ns13

    SEY

    6: 2 [9]

    2.3.3

    (elec-

    tron cloud) 6

    2

    (Heat-

    Load)

    25 ns

    “scrubbing”

    5 ns

    (RF 2 )

    2016

    scrubbing

    2.3.4 QPS

    (Quench Protection

    System, QPS)

    LS1

    Single

    Event Upset

    8 1140

    QPS 43%

    7%

    261

  • 4

    1: 2012 2015 LHC

    2012 2015 ( )

    [TeV] 4 6.5 7

    [ns] 50 25 25

    β∗ [m] 0.60 0.80 0.55

    / [1011] 1.6 1.15 1.15

    [µm] 2.5 3.5 3.75

    1374 2244 2808

    1368 2232 2808

    [1034 cm−2s−1] > 0.7 ∼ 0.5 1.035 15 30

    [MJ] 140 270 362

    2.3.5 TDI

    SPS LHC

    Injection Protection Device (

    TDI) [10]

    450 ◦C

    288

    2015

    144

    TDI

    scrubbing

    TDI 2015-2016

    2016 288 2800

    2.4

    2015 LHC

    Run1

    1 LHC

    25 ns

    β∗

    2015

    60 cm

    2016

    4LHC Machine Status Report 125th LHCCFrédérick Bordry 2nd March 2016

    The main reasons for the lower value:- Start-up delays (~ 4 weeks),

    - Availability issues: radiation failures on the quench protection tunnel electronics; solved after TS2

    - Electron clouds mitigation

    2015 LHC Integrated Luminosity The initial projections of integrated luminosity for 2015 were ~ 8-10 fb-1.

    Achieved ~ 4.3 fb-1Slope at the end of the run better than in 2011,

    and close to 2012 slope(last week of operation > 1 fb-1)

    7: Run1 Run2 [4]

    40 cm 2

    7 LHC

    2011

    13 TeV 25 ns

    LHC

    3 ATLAS

    ATLAS LHC 1

    8 ATLAS

    [11]

    3.1

    ALTAS 2015

    ATLAS LS1

    2008 JINST 3 S08003

    Figure 1.1: Cut-away view of the ATLAS detector. The dimensions of the detector are 25 m inheight and 44 m in length. The overall weight of the detector is approximately 7000 tonnes.

    The ATLAS detector is nominally forward-backward symmetric with respect to the interac-tion point. The magnet configuration comprises a thin superconducting solenoid surrounding theinner-detector cavity, and three large superconducting toroids (one barrel and two end-caps) ar-ranged with an eight-fold azimuthal symmetry around the calorimeters. This fundamental choicehas driven the design of the rest of the detector.

    The inner detector is immersed in a 2 T solenoidal field. Pattern recognition, momentumand vertex measurements, and electron identification are achieved with a combination of discrete,high-resolution semiconductor pixel and strip detectors in the inner part of the tracking volume,and straw-tube tracking detectors with the capability to generate and detect transition radiation inits outer part.

    High granularity liquid-argon (LAr) electromagnetic sampling calorimeters, with excellentperformance in terms of energy and position resolution, cover the pseudorapidity range |η | < 3.2.The hadronic calorimetry in the range |η |< 1.7 is provided by a scintillator-tile calorimeter, whichis separated into a large barrel and two smaller extended barrel cylinders, one on either side ofthe central barrel. In the end-caps (|η | > 1.5), LAr technology is also used for the hadroniccalorimeters, matching the outer |η | limits of end-cap electromagnetic calorimeters. The LArforward calorimeters provide both electromagnetic and hadronic energy measurements, and extendthe pseudorapidity coverage to |η | = 4.9.

    The calorimeter is surrounded by the muon spectrometer. The air-core toroid system, with along barrel and two inserted end-cap magnets, generates strong bending power in a large volumewithin a light and open structure. Multiple-scattering effects are thereby minimised, and excellentmuon momentum resolution is achieved with three layers of high precision tracking chambers.

    – 4 –

    8: ATLAS

    262

  • 4

    1: 2012 2015 LHC

    2012 2015 ( )

    [TeV] 4 6.5 7

    [ns] 50 25 25

    β∗ [m] 0.60 0.80 0.55

    / [1011] 1.6 1.15 1.15

    [µm] 2.5 3.5 3.75

    1374 2244 2808

    1368 2232 2808

    [1034 cm−2s−1] > 0.7 ∼ 0.5 1.035 15 30

    [MJ] 140 270 362

    2.3.5 TDI

    SPS LHC

    Injection Protection Device (

    TDI) [10]

    450 ◦C

    288

    2015

    144

    TDI

    scrubbing

    TDI 2015-2016

    2016 288 2800

    2.4

    2015 LHC

    Run1

    1 LHC

    25 ns

    β∗

    2015

    60 cm

    2016

    4LHC Machine Status Report 125th LHCCFrédérick Bordry 2nd March 2016

    The main reasons for the lower value:- Start-up delays (~ 4 weeks),

    - Availability issues: radiation failures on the quench protection tunnel electronics; solved after TS2

    - Electron clouds mitigation

    2015 LHC Integrated Luminosity The initial projections of integrated luminosity for 2015 were ~ 8-10 fb-1.

    Achieved ~ 4.3 fb-1Slope at the end of the run better than in 2011,

    and close to 2012 slope(last week of operation > 1 fb-1)

    7: Run1 Run2 [4]

    40 cm 2

    7 LHC

    2011

    13 TeV 25 ns

    LHC

    3 ATLAS

    ATLAS LHC 1

    8 ATLAS

    [11]

    3.1

    ALTAS 2015

    ATLAS LS1

    2008 JINST 3 S08003

    Figure 1.1: Cut-away view of the ATLAS detector. The dimensions of the detector are 25 m inheight and 44 m in length. The overall weight of the detector is approximately 7000 tonnes.

    The ATLAS detector is nominally forward-backward symmetric with respect to the interac-tion point. The magnet configuration comprises a thin superconducting solenoid surrounding theinner-detector cavity, and three large superconducting toroids (one barrel and two end-caps) ar-ranged with an eight-fold azimuthal symmetry around the calorimeters. This fundamental choicehas driven the design of the rest of the detector.

    The inner detector is immersed in a 2 T solenoidal field. Pattern recognition, momentumand vertex measurements, and electron identification are achieved with a combination of discrete,high-resolution semiconductor pixel and strip detectors in the inner part of the tracking volume,and straw-tube tracking detectors with the capability to generate and detect transition radiation inits outer part.

    High granularity liquid-argon (LAr) electromagnetic sampling calorimeters, with excellentperformance in terms of energy and position resolution, cover the pseudorapidity range |η | < 3.2.The hadronic calorimetry in the range |η |< 1.7 is provided by a scintillator-tile calorimeter, whichis separated into a large barrel and two smaller extended barrel cylinders, one on either side ofthe central barrel. In the end-caps (|η | > 1.5), LAr technology is also used for the hadroniccalorimeters, matching the outer |η | limits of end-cap electromagnetic calorimeters. The LArforward calorimeters provide both electromagnetic and hadronic energy measurements, and extendthe pseudorapidity coverage to |η | = 4.9.

    The calorimeter is surrounded by the muon spectrometer. The air-core toroid system, with along barrel and two inserted end-cap magnets, generates strong bending power in a large volumewithin a light and open structure. Multiple-scattering effects are thereby minimised, and excellentmuon momentum resolution is achieved with three layers of high precision tracking chambers.

    – 4 –

    8: ATLAS

    5

    9: 13 TeV

    [12]

    2015

    97%

    AT-

    LAS

    9

    2015 6 3

    92%

    10 LHC 4.2 fb−1

    3.9 fb−1 2012

    93.5% Run2

    3.9 fb−1

    3.2 fb−1

    IBL

    3.2 Run2

    ATLAS LS1

    3.2.1 IBL

    ATLAS LS1

    Insertable B-Layer (IBL)

    1

    Day in 2015

    -1fb

    Tota

    l Int

    egra

    ted

    Lum

    inos

    ity

    0

    1

    2

    3

    4

    5

    1/6 1/7 1/8 1/9 1/10 1/11

    = 13 TeVs PreliminaryATLASLHC Delivered ATLAS RecordedAll Good for Physics

    Total Delivered: 4.2 fb-1

    Total Recorded: 3.9 fb-1

    All Good for Physics: 3.2 fb-1

    10: 2015 ATLAS

    [6]

    IBL

    [13] 2015

    IBL

    Run2

    IBL

    IBL

    TID(Total Ionization

    Dose)

    Stave FlexCooling PipeCarbon Foam

    Front-end ModuleBeam PipeInner Positioning Tube

    Inner Support Tube

    11: IBL [14] φ

    1 1

    263

  • 6

    12: IBL [14]

    ¥ によって、 [GeV]

    Tp

    -110×4 1 2 3 4 5 6 7 8 910 20

    m]

    µ) [ 0

    (dσ

    0

    50

    100

    150

    200

    250

    300

    350

    400

    ATLAS Preliminary < 0.2η0.0 <

    = 8 TeVsData 2012,

    = 13 TeVsData 2015,

    13: pT impact pa-

    rameter [15]

    12

    IBL

    13 pT

    Run2

    2015

    3.2.2

    ATLAS 1 (L1)

    (HLT) L1

    40 MHz

    100 kHz HLT

    L1 CPU

    1 kHz

    2 4 6 8 10 12 14 16

    2

    4

    6

    8

    10

    12 m

    0

    Large (odd numbered) sectors

    BIL

    BML

    BOL

    EEL

    EML

    EIL

    CSC

    1 2 3 4 5 6

    EIL4

    0

    1 2 3 4 5 6

    1 2 3 4 5 6

    TGCs

    1

    2

    3

    4

    5

    1

    2

    3

    End-cap

    magnet

    RPCs

    y

    1

    2

    TGCs

    End-cap toroid η=2.4

    η=1.3

    η=1.0

    [m]

    TGC-FI

    η=1.9

    TileCal

    14: ATLAS

    η z ∼ 10 m

    L1 2 µs

    FPGA ASIC

    L1

    Thin Gap Chamber (TGC)

    ATLAS

    [16] Run1

    LS1 Run2

    14 ATLAS 1/4

    TGC 3

    L1

    (pT )

    Run1

    LHC 7 × 1033 cm−2s−1√s = 8 TeV pT 20 GeV L1

    (L1 MU20) 7 kHz

    Run2 1.5×1034 cm−2s−1

    13 TeV W

    L1 MU20

    30 kHz

    L1

    20 kHz

    264

  • 7

    L1_MU15η

    3− 2− 1− 0 1 2 3

    /0.1

    -1 N

    umbe

    r of T

    rigge

    r [nb

    ]

    0

    20

    40

    60

    80

    100

    120

    ATLAS Preliminary =13TeVs

    -1 L dt = 11.1 pb∫L1_MU15 w/o FI coincidence, -1 L dt = 20.6 pb∫L1_MU15 w/ FI coincidence,

    L1_MU15η

    3− 2− 1− 0 1 2 3

    Rat

    e re

    duct

    ion

    0.2−

    0

    0.2

    0.4

    0.6

    0.8

    1ATLAS Preliminary =13TeVsL1_MU15 rate reduction

    15: η 15 GeV L1

    ( ) ( ) [17]

    FI

    LHC

    Run1 L1 MU20

    (”η”)

    |η| > 1

    TGC L1

    14

    pT

    TGC

    ”TGC-FI” TGC

    Run2

    2015

    9

    15

    L1 η

    FI 1.3 < η < 1.9

    ]-1 s-2 cm30Instantaneous luminosity / bunch [100 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

    Ave

    rage

    L1_

    XE

    35 ra

    te /

    bunc

    h [H

    z]

    0

    2

    4

    6

    8

    10

    12

    14OperationsATLAS

    = 13 TeVs2015 Data,

    50 ns pp Collision Data

    without pedestal correction

    with pedestal correction

    16: L1Calo

    [18]

    2016 LHC

    pT

    1.0 < η < 1.3 EIL4

    (TileCal)

    2016

    3.2.3 L1Calo

    L1

    (Missing ET,

    MET)

    Run1

    (

    )

    Run2 16

    MET

    L1Calo

    265

  • 8

    4

    2016 LHC 13 TeV

    2748 β∗ 40 cm

    2015

    scrubbing

    2016

    1× 1034 cm−2s−1

    25 fb−1

    2016

    ATLAS TileCal

    L1

    (”L1Topo”)

    LHC ATLAS ATLAS

    [19] [20]

    [21]

    [1] 33 245 (2015)

    [2] 28 270 (2010)

    [3] 27 163

    (2010)

    [4] http://lhc-commissioning.web.cern.ch

    [5] ”Start of run2 physics at the

    Large Hadron Collider (LHC)”,

    https://cds.cern.ch/record/2020852

    [6] https://twiki.cern.ch/twiki/bin/view/AtlasPublic/

    LuminosityPublicResultsRun2

    [7] T. Baer it et al., ”Very Fast Losses of the Circu-

    lating LHC Beam, their Mitigation and Machine

    Protection”, CERN-THESIS-2013-233

    [8] D. Mirarchi et al., LHC aperture and ULO

    restrictions: are they a possible limitation in

    2016? , 6th Evian Workshop, Evian, December

    2015 (2015).

    [9] G. Iadarola et al., Electron Cloud E ects ,

    These Pro- ceedings, LHC Performance Work-

    shop, Chamonix, France (2016).

    [10] D. Jacquet et al., Injection , 6th Evian Work-

    shop, Evian, France (2015).

    [11] G. Aad et al., ”The ATLAS Experiment at the

    CERN Large Hadron Collider.”, J. Instrum., 3,

    437 (2008)

    [12] https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EventDisplayRun2Physics

    [13] 33

    61 (2014)

    [14] ”Study of the mechanical stability of the AT-

    LAS Insertable B-Layer”, ATL-INDET-PUB-

    2015-001

    [15] ATL-PHYS-PUB-2015-018

    [16] 26 304 (2008)

    [17] https://twiki.cern.ch/twiki/bin/view/AtlasPublic/

    L1MuonTriggerPublicResults

    [18] https://twiki.cern.ch/twiki/bin/view/AtlasPublic/

    L1CaloTriggerPublicResults

    [19] http://atlas.kek.jp,

    https://sites.google.com/site/lhcpr2011

    [20] http://d.hatena.ne.jp/lhcatlasjapan

    [21] https://twitter.com/lhcatlasjapan

    8

    4

    2016 LHC 13 TeV

    2748 β∗ 40 cm

    2015

    scrubbing

    2016

    1× 1034 cm−2s−1

    25 fb−1

    2016

    ATLAS TileCal

    L1

    (”L1Topo”)

    LHC ATLAS ATLAS

    [19] [20]

    [21]

    [1] 33 245 (2015)

    [2] 28 270 (2010)

    [3] 27 163

    (2010)

    [4] http://lhc-commissioning.web.cern.ch

    [5] ”Start of run2 physics at the

    Large Hadron Collider (LHC)”,

    https://cds.cern.ch/record/2020852

    [6] https://twiki.cern.ch/twiki/bin/view/AtlasPublic/

    LuminosityPublicResultsRun2

    [7] T. Baer it et al., ”Very Fast Losses of the Circu-

    lating LHC Beam, their Mitigation and Machine

    Protection”, CERN-THESIS-2013-233

    [8] D. Mirarchi et al., LHC aperture and ULO

    restrictions: are they a possible limitation in

    2016? , 6th Evian Workshop, Evian, December

    2015 (2015).

    [9] G. Iadarola et al., Electron Cloud E ects ,

    These Pro- ceedings, LHC Performance Work-

    shop, Chamonix, France (2016).

    [10] D. Jacquet et al., Injection , 6th Evian Work-

    shop, Evian, France (2015).

    [11] G. Aad et al., ”The ATLAS Experiment at the

    CERN Large Hadron Collider.”, J. Instrum., 3,

    437 (2008)

    [12] https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EventDisplayRun2Physics

    [13] 33

    61 (2014)

    [14] ”Study of the mechanical stability of the AT-

    LAS Insertable B-Layer”, ATL-INDET-PUB-

    2015-001

    [15] ATL-PHYS-PUB-2015-018

    [16] 26 304 (2008)

    [17] https://twiki.cern.ch/twiki/bin/view/AtlasPublic/

    L1MuonTriggerPublicResults

    [18] https://twiki.cern.ch/twiki/bin/view/AtlasPublic/

    L1CaloTriggerPublicResults

    [19] http://atlas.kek.jp,

    https://sites.google.com/site/lhcpr2011

    [20] http://d.hatena.ne.jp/lhcatlasjapan

    [21] https://twitter.com/lhcatlasjapan

    EventDisplayRun2Physics

    266