lezione 1 2010

80
Prima parte Introduzione alla chimica. Struttura e composizione dell’atomo. Stechiometria Prof. Stefano Piotto Università di Salerno

Upload: lab13unisa

Post on 12-Jun-2015

29.179 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Lezione 1 2010

Prima parteIntroduzione alla chimica. Struttura e composizione

dell’atomo. Stechiometria

Prof. Stefano Piotto

Università di Salerno

Page 2: Lezione 1 2010

Prima parte

1. Presentazione del Corso. Finalità didattiche ed organizzazione

2. Materia e sostanza.

3. Atomo e particelle atomiche: elettrone, protone e neutrone.

4. Numero atomico ed isotopi.

5. Formule chimiche.

6. Bilanciamenti di materia

7. Calcoli stechiometrici

8. Reagenti in eccesso e in difetto

9. Formule minime e molecolari

10. Cenni sull’elettronegatività

11. Numero di ossidazione

12. Reazioni redox

13. Bilanciamento

Page 3: Lezione 1 2010

Orari lezioni CTF

Lunedì Martedì Mercoledì Giovedì Venerdì

14-16 14-16 11-13

Orario ricevimento

Lunedì Martedì Mercoledì Giovedì Venerdì

11-12 11-12

Page 4: Lezione 1 2010

Informazioni sul corso

Testi consigliati• K. W. Whitten - Chimica generale, Piccin €43.89 • Kotz, Treichel, Weaver, Chimica, Edises €49.00• Oxtoby, Gillis, Nachtrieb - Chimica Moderna, Edises. €40.00• Bertini, Mani - Stechiometria, Casa Editrice Ambrosiana

• Giomini; Balestrieri; Giustizi - Fondamenti di Stechiometria, Edises.

Dove trovare il materiale

Sito principale del corso: http://chimicagenerale.wordpress.comSito docente: http://www.farmacia.unisa.it/Area_Didattica/Fisica/piotto/didattica.php

Come [email protected] 089-969795

Page 5: Lezione 1 2010

Come funziona l’esame

40% prova scritta

20% prova intercorso

40% orale

Page 6: Lezione 1 2010

Perché l’Università/CTF?

Prospettive e sbocchi occupazionali

Costo università

Appelli e rappresentanti degli studenti

Veloci con media bassa o fuori corso con 110?

Raccomandati e non raccomandati

Metodo di studio

Come affrontare (e superare) le prive scritte e orali?

Page 7: Lezione 1 2010
Page 8: Lezione 1 2010
Page 9: Lezione 1 2010

Rappresentanti degli studenti

Prospettive e sbocchi occupazionali

Dipende dalla propensione individuale e dalle capacità:

http://www.jobrapido.ithttp://www.naturejobs.com

Page 10: Lezione 1 2010

Fascia Costo in euro

Costo orario in

euro

I 409 1.70II 457 1.90III 590 2.46IV 646 2.69V 839 3.50VI 1194 4.98VII 1310 5.46

Quanto costa l’università?

Page 11: Lezione 1 2010

Under US$10,000 Athens State UniversityArkansas Tech UniversityNational UniversityAdams State CollegeInternational CollegeWilmington CollegeOur Lady of the Lake CollegeWalsh College

William Carey CollegeLincoln UniversityPark UniversityCollege of the SouthwestEastern New Mexico University - PortalesShaw UniversityJamestown CollegeCameron University

Lincoln UniversityAllen UniversityMorris CollegeDallas Christian CollegeDixie State CollegeMarshall UniversityUniversity of WyomingAlcorn State UniversityLangston University 

Between US$10,000 and US$ 15,000

Sheldon Jackson CollegeGolden Gate UniversityFort Lewis CollegeLyon CollegeSouthwestern CollegeBethany CollegeClearwater Christian CollegeTuskegee UniversityPaine CollegeChaminade UniversityUniversity of IdahoCalumet College of Saint JosephMartin UniversityAllen CollegeChester College of New England

Oakland City UniversityAllen CollegeNorthern Kentucky UniversityUnion CollegeWestern Kentucky UniversityLouisiana CollegeSalisbury UniversityMassachusetts College of Liberal ArtsBelhaven CollegeColumbia CollegeDrury UniversityMissouri Valley CollegeRocky Mountain CollegeUniversity of Nevada - RenoBloomfield College

University of North DakotaUniversity of Rio GrandeWestern Oregon UniversityRhode Island CollegeNational American UniversityHardin-Simmons UniversityBurlington CollegeChamplain CollegeVermont Technical CollegeLiberty UniversityTrinity Lutheran CollegeGallaudet UniversityOhio Valley CollegeBarton CollegeMartin UniversitySaint Francis CollegeUnion College 

Page 12: Lezione 1 2010

Between US$15,000 and US$ 20,000

Pacific Oaks CollegeAlaska Pacific UniversityGrand Canyon UniversityColorado Christian UniversityUniversity of DelawarePost UniversityAmerican Intercontinental UniversityLaGrange CollegeUniversity of GeorgiaAlbertson College of IdahoBradley UniversityLewis UniversityMonmouth CollegeNational-Louis universityRoosevelt UniversityBethel CollegeManhattan College

Florida International UniversityClarke CollegeBaker UniversityBethany CollegeTabor CollegeColumbia Union CollegeSuffolk UniversityHillsdale CollegeNorthwood UniversityCrown CollegeSaint John's UniversityCollege of Saint MaryHastings CollegeSouthern New Hampshire UniversityUniversity of New HampshireCaldwell CollegeCedarville University

Concordia University - PortlandWarner Pacific CollegeColumbia CollegeDakota Wesleyan UniversityUniversity of Sioux FallsBelmont UniversityKing CollegeUnion UniversitySaint Edward's UniversitySouthwestern UniversityWestminster CollegeUniversity of CharlestonCarroll CollegeLakeland CollegeMount Mary CollegeCentral CollegeGardner-Webb UniversityTaylor University 

US$25,000 -

US$30,000

University of RedlandsSanta Clara UniversityEckerd CollegeFairfield UniversityLawrence University

Earlham CollegeClark UniversityDrew UniversitySaint John's College - Santa FeBard College

The College of WoosterUniversity of Puget SoundClarkson University

 

Above US$30,000

Bates CollegeColby College

Boston UniversityKenyon College

Reed College

Page 13: Lezione 1 2010

http://www-users.york.ac.uk/~jdh1/exams/index.htm

Page 14: Lezione 1 2010
Page 15: Lezione 1 2010

• Recognize from the start that chemistry is a subject that requires a lot of time and work. Be committed to investing the time and effort that the course demands. You have to be an active, aggressive student to do well in chemistry. You cannot afford to be passive in these courses.

• Remember that learning chemistry is your own responsibility. The professor will help you out as much as possible, but the professor can't learn it for you. It's just like peeing. Someone can show you to a toilet, but you have to pee for yourself

• Arrive on time and don't leave early. Don't miss class if you can possibly avoid it.• Sit as close to the front of the classroom as you can. Old high school habits may

dictate that you sit in the back of the room so that the teacher won't catch you fooling around. But this is college and you won't be fooling around. If you sit up front, you will see better, hear better, and generally be more alert.

• When the professor is working problems on the board, you may be tempted to think, "Oh, that's easy. I understand that. I don't need to do those problems." Don't be fooled! Watching the professor or your tutor or your friends work a problem is not the same as doing it yourself. Simply watching someone else play the piano or use a typewriter or play tennis would not enable you to play the piano or type or play tennis. You have to practice it yourself. Chemistry requires a lot of practice. YOU HAVE TO DO IT YOURSELF.

Dr. Brenna E. Lorenz Division of Natural Sciences University of Guam

Page 16: Lezione 1 2010

DON'T FALL INTO THESE COMMON TRAPS• thinking that you don't need the prerequisites;• skipping class and

getting the notes from friends;• showing up for class only on quiz days;• showing up for the quiz and then leaving;• copying someone else's work;• thinking that you can understand the material without working lots of

problems;• putting off studying until the night before the exam;• disappearing from the class after getting one good grade;• expecting to be able to catch up after missing much of the semester;• expecting to be allowed to do an extra credit project to salvage a failing

grade at the end of the semester;• expecting the professor not to count all the quizzes or homework you

missed;• expecting to pass even if you have all failing grades.

Dr. Brenna E. Lorenz Division of Natural Sciences University of Guam

Page 17: Lezione 1 2010

Come fare bene nel corso e nell’esame di Chimica Generale

Studia dal testo. Riguarda i tuoi appunti entro 24 ore dalla lezione.  Esercitati su vecchi problemi ed esami,

Crea un gruppo di studio fuori dalla classe.

Se ti senti perso, cerca aiuto il più presto possibile.

Page 18: Lezione 1 2010
Page 19: Lezione 1 2010

1. Peso atomico e molecolare

2. Mole

3. Massa molare e peso molecolare

4. Reazioni chimiche

5. Bilanciamento coefficienti stechiometrici

Page 20: Lezione 1 2010

La concezione atomica della materia: le leggi di massa

• Legge di conservazione della massa• Legge della composizione definita e

costante• Legge delle proporzioni multiple

Page 21: Lezione 1 2010

Legge di conservazione della massa

“La massa totale delle sostanze rimane invariata durante una reazione chimica”(Lavoisier, XVIII secolo)

Esempio: metabolismo del glucosio

180 g di glucosio 264 g di diossido di carbonio

+ +

192 g di ossigeno 108 g di acqua

372 g di reagenti 372 g di prodotti

In realtà, le variazioni di massa connesse alle reazioni chimiche ordinarie sono così piccole da risultare inapprezzabili. Però, nelle reazioni nucleari le variazioni di massa possono essere misurate facilmente.

Page 22: Lezione 1 2010

Legge della composizione definita e costante

“Indipendentemente dalla sua fonte, un particolare composto chimico è costituito dagli stessi elementi negli stessi rapporti in massa”(J.-L. Proust, XVIII secolo)

Pertanto, nota la frazione in massa di un elemento in un composto, è possibile calcolare la massa effettiva dell’elemento in un qualsiasi campione di quel composto:

massa dell’elementonel campione =

massa del compostonel campione x

frazione in massa dell’elemento nel composto

22

Page 23: Lezione 1 2010

Esempio: calcolo della massa di un elemento in un composto

Il carbonato di calcio (CaCO3) è un composto costituito da calcio, carbonio e ossigeno.

L’analisi indica che 40.0 g di carbonato di calcio contengono 16.0 g di calcio, 4.8 g di carbonio e 19.2 g di ossigeno.

Quanti g di calcio sono contenuti in un campione di 25 kg di carbonato di calcio?

massa di calcionel campione

=massa del campione di carbonato di calcio

xfrazione in massa del calcio nel composto

10 kg = 25 kg x 16g / 40g = 0.4

Page 24: Lezione 1 2010

Legge delle proporzioni multiple

“Se due elementi A e B reagiscono per formare due composti, le differenti masse di B che si combinano con una massa fissa di A possono essere espresse come rapporto di numeri interi piccoli”(Dalton, XVIII secolo)

Esempio. Consideriamo due composti formati da carbonio e ossigeno, aventi le seguenti composizioni in massa:Ossido I: 57.1% O e 42.9% C g di O / g di C = 57.1 / 42.9 = 1.33Ossido II: 72.7% O e 27.3% C g di O / g di C = 72.7 / 27.3 = 2.66

2.66 g di O / g di C in ossido II 21.33 g di O / g di C in ossido I 1

Page 25: Lezione 1 2010

La struttura dell’atomo

10-10 m

10-14 m

Page 26: Lezione 1 2010

Perché crediamo agli atomi?

48 atomi di Fe sono stati disposti a formare un recinto. Le onde nel centro rappresentano gli elettroni di superficie che sono rimasti “confinati”.

Page 27: Lezione 1 2010

Atomi di Cs e I su Cu

Atomi di Ni

Page 28: Lezione 1 2010

Superficie di Cu (111). Ci sono due difetti sulla superficie, probabilmente atomi diversi.

Perché crediamo agli atomi?

Page 29: Lezione 1 2010

Proprietà delle tre particelle subatomiche fondamentali

Carica Massa

Nome (simbolo)

relativa assoluta(C)

relativa(uma)*

Assoluta(g)

Posizione nell’atomo

Protone (p+) 1+ + 1.602 x 10-19 1.00727 1.67262 x 10-24 nucleo

Neutrone (n0) 0 0 1.00866 1.67493 x 10-24 nucleo

Elettrone (e-) 1- -1.602 x 10-19 0.00054858 9.10939 x 10-28 all’esterno del nucleo

* l’unità di massa atomica (simbolo: uma) è uguale a 1.660540 x 10-24 g.

Page 30: Lezione 1 2010

Numero atomico, numero di massa e simbolo atomico

Il numero atomico (Z) di un elemento è uguale al numero di protoni nel nucleo di ciascuno dei suoi atomi. Atomi con lo stesso numero di protoni hanno proprietà identiche.

Il numero di massa (A) di un elemento è il numero totale di protoni e di neutroni nel nucleo.

Numero di neutroni N = A - Z

XA

Z

Numero di massa(numero di p+ +

numero di n0)

Numero atomico(numero di p+)

Simbolo dell’elemento

Page 31: Lezione 1 2010

La Tavola Periodica

Page 32: Lezione 1 2010

Isotopi e masse atomiche

Tutti gli atomi di un elemento hanno lo stesso numero atomico ma non lo stesso numero di massa. Si dicono isotopi di un elemento gli atomi dell’elemento che hanno differenti numeri di neutroni e quindi differenti numeri di massa.

Poiché le proprietà chimiche sono determinate principalmente dal numero di elettroni, tutti gli isotopi di un elemento hanno un comportamento chimico quasi identico.

La massa atomica (o peso atomico) è la somma delle masse di tutte le particelle che compongono l'atomo.

L’unità di massa atomica (simbolo: uma) è definita pari a 1/12 della massa dell’atomo di carbonio 12. E’ chiamata anche Dalton (simbolo: Da).

La massa atomica di un elemento viene espressa come media delle masse dei suoi isotopi naturali ponderata secondo le rispettive abbondanze.

Page 33: Lezione 1 2010
Page 34: Lezione 1 2010

La materia

Gli elementi possono essere costituiti da:

Atomi isolati (gas nobili) Molecole discrete (H2, O2, P4, S8) Insieme di atomi legati fra loro da legami covalenti (Carbonio in

diamante e grafite) Insieme di atomi tenuti insieme da legame metallico (Na, Al, Fe)

Elementi (atomi tutti uguali fra loro)Sostanze pure

Composti (atomi diversi in rapporti ben Miscele definiti)

La formula di un elemento si indica con il simbolo dell’atomo e (nel caso in cui l’elemento sia formato da molecole) da un indice pari al numero di atomi legati

Page 35: Lezione 1 2010

Le formule chimicheI composti possono essere costituiti da:

• Molecole discrete (CO2, CH4, H2O)• Insieme di atomi diversi legati fra loro da legami covalenti

(Silice SiO2)• Insieme di ioni di carica opposta tenuti insieme da legame

ionico (NaCl)

Solo per i composti costituiti da molecole discrete la formula chimica indica sia il tipo che il numero di atomi che costituiscono la molecola.

Per i composti costituiti da un insieme continuo di atomi la formula è empirica, cioè indica solo il tipo di atomi e in quale rapporto essi sono presenti.

Anche per le sostanze di tipo ionico la formula è empirica

Page 36: Lezione 1 2010

Tipi di formule chimiche

In una formula chimica, i simboli degli elementi e i pedici numerici indicano la specie e il numero di ciascun atomo presente nella più piccola unità di sostanza.

1. La formula empirica mostra il numero relativo di atomi di ciascun elemento nel composto. Per esempio, il perossido di idrogeno ha formula empirica HO poiché contiene 1 parte in massa di H per ogni 16 parti in massa di O.

2. La formula molecolare mostra il numero reale di atomi di ciascun elemento in una molecola del composto. Per esempio, il perossido di idrogeno ha formula molecolare H2O2.

3. La formula di struttura mostra il numero di atomi e i legami tra di essi. Per esempio, il perossido di idrogeno ha formula di struttura

H—O—O—H.

Page 37: Lezione 1 2010

Peso atomico

Peso atomico: È il rapporto tra il peso dell’atomo considerato e il peso di un atomo di riferimento al quale si assegna un peso arbitrario

Peso di riferimento = 1/12 del peso dell’atomo di carbonio con numero di massa 12 (12C)

Es. l’atomo di ossigeno 16O ha massa relativa pari a 15.999, cioè una massa pari a 15.999 volte quella di 1/12 di 12C, e cioè = 15.999/12 di 12C

n.b.Il termine peso viene spesso usato al posto di massa, che sarebbe più corretto

Page 38: Lezione 1 2010

Peso atomico e peso molecolare

Se si prende 1/12 di 12C come unità di misura, il peso atomico diventa uguale al suo peso atomico assoluto, espresso in tale unità di misura.

Unità di misura della massa atomica è il dalton (unità di massa atomica):

1 dalton (u.m.a.) = 1,66 x 10-24 g

Peso molecolare:

Somma dei pesi atomici di tutti gli atomi che costituiscono la molecola

(solo per composti costituiti da molecole discrete)

Page 39: Lezione 1 2010

La mole

La mole (simbolo: n; unità di misura: mol) è definita come la quantità di sostanza che contiene tante unità elementari (atomi, molecole, ioni, …) quanti sono gli atomi contenuti in 12 g esatti di 12C.Tale numero è conosciuto come numero di Avogadro (o costante di Avogadro) ed è indicato con il simbolo NA.

La mole, a differenza della massa, tiene conto della struttura a particelle della materia: una mole di una qualunque sostanza contiene lo stesso numero di unità elementari, cosa che non accade per 1 kg di qualunque sostanza.

NA = 6.022 x 1023 mol-1

Page 40: Lezione 1 2010

La mole

Page 41: Lezione 1 2010

La mole

Page 42: Lezione 1 2010

Massa molare (Peso molecolare)

La massa in grammi di una mole di qualunque sostanza è espressa dallo stesso numero che ne esprime il peso atomico, il peso molecolare o il peso formula.

La massa di una mole di 12C è 12 g per definizione. Dato che la massa atomica media del carbonio è 12.011 volte 1/12 di quella del nuclide 12C, anche la massa di 1 mole di carbonio sarà 12.011 volte 1/12 della massa di una mole del nuclide 12C, cioè 12.011 g

La IUPAC definisce massa molare (M) il rapporto fra massa e quantità di sostanza.

m (g) M n (mol)

Page 43: Lezione 1 2010

Il peso molecolare è: PM = m (g)/n (mol)

Indicando con PM il peso molecolare di una sostanza pura, il numero di moli n, contenuto in una massa m di tale sostanza, è dato da:

n (moli) = m (g)

PM (g/mole)

La massa in grammi è:m (g) = PM(g/mol) x n (mol)

Il peso molecolare di una specie chimica è pari, come valore numerico, alla somma dei pesi atomici degli atomi che costituiscono la formula, e si esprime in g/mole

Page 44: Lezione 1 2010

Esempi:

1. Il peso atomico del germanio Ge è 72,59 dalton; 72,59 g di Ge corrispondono ad 1 mole di atomi di Ge e contengono 6,022x1023 atomi.

2. 1 mole di atomi di mercurio (Hg, P.A. = 200,61) corrisponde a: 1mole x 200,61g/mole = 200,61 g

3. 223,36 g di Fe (P.A. = 55,84) corrispondono a: 223,36(g)/55,84(g/mole) = 4 moli di atomi di Fe

4. 1kg di acqua (H2O, P.M.=18) corrisponde a: 1000 (g)/18,00(g/mole) = 55,5 moli

Page 45: Lezione 1 2010

Reazioni chimiche

“Un’equazione chimica è un enunciato, in formule, che esprime le identità e le quantità delle sostanze che partecipano ad una trasformazione chimica o fisica.”

Affinché l’equazione rappresenti correttamente queste quantità, deve essere bilanciata, ossia nei due membri dell’equazione deve comparire lo stesso numero di atomi di ciascuna specie.

reagenti prodotti

Page 46: Lezione 1 2010

Bilanciamento di una reazione

Si uguaglia il numero di atomi di ciascuna specie in ciascun membro dell’equazione utilizzando opportuni coefficienti stechiometrici (mediante bilanciamento per tentativi o bilanciamento analitico degli elementi).Si parte dal composto più complesso (quello con il massimo numero di atomi o di differenti specie di atomi) e si arriva a quello meno complesso.

Esempio:

__ Mg + __ O2 __ MgO

__ Mg + __ O2 1 MgO

1 Mg + __ O2 1 MgO

1 Mg + 1/2 O2 1 MgO

Page 47: Lezione 1 2010

La scelta dei coefficienti è regolata da alcune convenzioni:

si preferiscono i coefficienti costituiti dai numeri interi più piccoliil coefficiente 1 è implicito e viene normalmente omesso

L’equazione finale indica anche lo stato fisico di ciascuna sostanza o se essa sia disciolta in acqua. I simboli usati per denotare questi stati sono:

solido: (s)liquido: (l)gas: (g)soluzione acquosa: (aq)

La reazione dell’esempio precedente si scrive:

2 Mg (s) + O2 (g) 2 MgO (s)

Page 48: Lezione 1 2010

I coefficienti stechiometrici si riferiscono

sia a singole entità chimiche sia a moli di entità chimiche.

Riguardo al procedimento di bilanciamento, si devono tener presenti i seguenti punti essenziali:

– un coefficiente opera su tutti gli atomi nella formula che lo segue

– nel bilanciamento di un’equazione, le formule chimiche non possono essere modificate

– non si possono aggiungere altri reagenti o prodotti– un’equazione bilanciata rimane tale anche moltiplicando tutti

i coefficienti stechiometrici per lo stesso fattore

Page 49: Lezione 1 2010

Bilanciamento analitico degli elementi

a C4H10 (l) + b O2 (g) c CO2 (g) + d H2O (g)si bilancia C: 4 a = csi bilancia H: 10 a = 2 dsi bilancia O: 2 b = 2 c + d

Ponendo a =1, si ricavano i valori degli altri coefficienti:b = 13/2; c = 4; d = 5

a HNO3 (aq) + b H2S (g) c S (s) + d NO (g) + e H2O (l)

si bilancia H: a + 2 b = 2 esi bilancia N: a = dsi bilancia O: 3 a = d + esi bilancia S: b = c

Ponendo a =1, si ricavano i valori degli altri coefficienti:

b = 3/2; c = 3/2; d = 1; e = 2

Perché i coefficienti siano numeri interi, essi devono essere tutti moltiplicati per 2, ottenendo:

2 HNO3 (aq) + 3 H2S (g) 3 S (s) + 2 NO (g) + 4 H2O (l)

Page 50: Lezione 1 2010

Reazioni da bilanciare

SiO2 + C SiC + CO

Na + H2O H2 + NaOH

H2 + N2 NH3

Cr + HCl CrCl2 + H2

C8H18 + O2CO2 + H2O

HNO3 + CaCO3 CO2 + H2O + Ca(NO3)2

Page 51: Lezione 1 2010

Un po’ di esercizi…

Percentuale in pesoK4Fe(CN)6

Composizione percentuale degli elementi

Quanti gr di Fe sono presenti in 30g di composto puro

Mg2SiO4

Composizione percentuale degli elementi, di MgO e SiO2

Quanta silice è contenuta in 1ton di ortosilicato che contiene il 95% di Mg2SiO4

Page 52: Lezione 1 2010

Un po’ di esercizi…

• Formula minima

Un composto ha dato all’analisi i seguenti risultati:

C 76.93%

H 5.12%

N 17.95%

Qual è la formula minima?

Page 53: Lezione 1 2010

• Formula molecolare

• Purezza dei campioni

La formula molecolare di un composto è uguale o un multiplo intero della formula minima (o empirica)

La percentuale di purezza indica la massa percentuale di una specifica sostanza in un campione impuro.

Es. calcolare la massa di NaOH presente in 45.2g di NaOH al 98.2%

Page 54: Lezione 1 2010

Reagente in eccesso e in difetto

•Il reagente in difetto (reagente limitante) è quello che in una reazione quantitativa si consuma completamente.

• 1CH4 + 2O2 CO2 + 2H2O • 16g 48g

Corrispondono a

1 mole 1.5 moli

Il rapporto tra le moli necessario per una reazione completa deve essere pari al rapporto stechiometrico (nell’esempio ½)

n (CH4) = 1 mole > 1 in questo caso il rapporto in

n (O2) 1.5 moli 2 moli è superiore al rapporto

stechiometrico CH4 è in eccesso e l’ossigeno è limitante

Page 55: Lezione 1 2010

Esercizio 1

• Bilanciare la seguente reazione chimica e calcolare quanti grammi di CO2 si ottengono facendo reagire 2.00 g di CH4 con 3.00 g di O2. (p.a. C=12.01; p.a. O=16.00; p.a. H=1.008)

CH4 + O2 CO2 + H2O

Page 56: Lezione 1 2010

Esercizio 2

• Bilanciare la seguente reazione chimica (per tentativi) e calcolare quanti grammi di CO2 si ottengono facendo reagire 4.00 g di O2 con 8.00 g di C6H12O6.(p.a. C=12.01; p.a. O=16.00; p.a. H=1.008)

O2 + C6H12O6 CO2 + H2O

Page 57: Lezione 1 2010

Esercizio 3

• Calcolare i grammi di MgBr2 che si ottengono quando si mettono a reagire 48.02 g di AlBr3 con 38.53 g di MgSO4, secondo la seguente reazione da bilanciare (bilanciare mediante bilanciamento analitico dei singoli elementi):

• a AlBr3 + b MgSO4 → c Al2(SO4)3 + d MgBr2

(p.a. Al = 26.98; p.a. Br = 79.92; p.a. O = 16.00;

p.a. Mg = 24.32; p.a. S = 32.07)

Page 58: Lezione 1 2010

Esercizio 4

• Calcolare i grammi di Al2(SO4)3 che si ottengono quando si mettono a reagire 33.34 g di AlCl3 con 46.88 g di Na2SO4, secondo la seguente reazione da bilanciare (bilanciare mediante bilanciamento analitico dei singoli elementi):

• a AlCl3 + b Na2SO4 → c Al2(SO4)3 + d NaCl

(p.a. Al = 26.98; p.a. Cl = 35.46; p.a. Na = 22.99; p.a. S = 32.07; p.a. O = 16.00)

Page 59: Lezione 1 2010

Esercizio 5

• Calcolare i grammi di Mg3(PO4)2 che si ottengono quando si mettono a reagire 21.11 g di Mg2SiO4 con 30.49 g di AlPO4, secondo la seguente reazione da bilanciare (bilanciare mediante bilanciamento analitico dei singoli elementi):

• a Mg2SiO4 + b AlPO4 → c Mg3(PO4)2 + d Al4(SiO4)3

(p.a. Mg = 24.32; p.a. Si = 28.09; p.a. O = 16.00; p.a. Al = 26.98; p.a. P = 30.98)

Page 60: Lezione 1 2010

Esercizio 6

• Un composto organico, di peso molecolare 186.132, è costituito dal 38.71 % in peso di carbonio, 4.87 % di idrogeno, 25.79 % di ossigeno, 30.62% di fluoro. Si calcoli la formula molecolare del composto.

(p.a. C = 12.01; p.a. H = 1.008 ;

p.a. F = 19.00; p.a. O =16.00).

Page 61: Lezione 1 2010

Esercizio 7

1) Un composto organico, di peso molecolare 120.156, è costituito dal 39.98 % in peso di carbonio, 10.07 % di idrogeno, 26.63 % di ossigeno, 23.32 % di azoto. Si calcoli la formula molecolare del composto.

(p.a. C = 12.01; p.a. H = 1.008 ;

p.a. N = 14.01; p.a. O =16.00).

Page 62: Lezione 1 2010

Elettronegatività

Si definisce “elettronegatività” di un atomo la sua relativa tendenza ad attrarre verso di sé i cosiddetti “elettroni di legame”, ossia quegli elettroni che lo tengono unito

ad un altro atomo per formare una molecola. L’elettronegatività aumenta lungo un periodo (da sinistra verso destra) e diminuisce lungo un gruppo (dall’alto verso il basso).

I motivi di questo andamento sono i seguenti:

L’aumento che si verifica andando verso destra in un periodo deriva dalle sempre più ridotte dimensioni degli atomi, per cui c’è un minore effetto di schermo e quindi una maggiore attrazione degli elettroni;

La diminuzione che si ha, invece, scendendo lungo un gruppo deriva sia dall’aumento delle dimensioni atomiche sia dall’aumento dell’effetto schermo.

Page 63: Lezione 1 2010

Numero di ossidazioneÈ la carica (positiva o negativa) che l’atomo avrebbe se gli elettroni di legame non fossero condivisi bensì fossero trasferiti completamente dalla specie meno elettronegativa (più in basso a sinistra nella tavola periodica) a quella più elettronegativa (più in alto a destra).

Tutte le sostanze elementari (Na, He, O2, Cl2, ecc.) hanno n.o. = 0

Tutti gli ioni monoatomici (K+, Cl-, S2-, O2-, Fe3+, ecc.) hanno n.o. uguale alla carica dello ione

La somma dei valori dei numeri di ossidazione degli atomi in un composto neutro è uguale a 0

La somma dei valori dei numeri di ossidazione degli atomi in uno ione poliatomico è uguale alla carica dello ione

Page 64: Lezione 1 2010

Numero di ossidazione

Gruppo IA: n.o. = +1 Gruppo IIA: n.o. = +2 Idrogeno: n.o. = +1 (se combinato con i non

metalli)

n.o. = -1 (se combinato con i metalli e il B)

Fluoro: n.o. = -1 Ossigeno: n.o. = -2

n.o. = -1 (nei perossidi) Gruppo VIIA: n.o. = -1

Esempi. calcolare il numero di ossidazione delle seguenti specie:

MnO4-, KClO4, HAsO3

2-, K2Cr2O7, HCrO4-, Na3AsO3, Al2(SO4)3,

Na2SO3, Ca3(PO4)2

Page 65: Lezione 1 2010
Page 66: Lezione 1 2010

Reazioni di OSSIDO-RIDUZIONE o redox

• L’OSSIDAZIONE consiste nell’aumento del numero di ossidazione e corrisponde alla perdita di elettroni.

• La RIDUZIONE consiste nella diminuzione del numero di ossidazione e corrisponde ad un acquisto di elettroni.

In una reazione chimica gli elettroni non vengono né creati né distrutti

L’ossidazione e la riduzione avvengono sempre simultaneamente e nella stessa misura

Page 67: Lezione 1 2010

Reazioni redox

Page 68: Lezione 1 2010

Classificazione delle reazioni Redox

Page 69: Lezione 1 2010

Bilanciamento delle reazioni REDOX

Page 70: Lezione 1 2010
Page 71: Lezione 1 2010
Page 72: Lezione 1 2010
Page 73: Lezione 1 2010
Page 74: Lezione 1 2010
Page 75: Lezione 1 2010
Page 76: Lezione 1 2010
Page 77: Lezione 1 2010
Page 78: Lezione 1 2010
Page 79: Lezione 1 2010
Page 80: Lezione 1 2010