lesson 18: maximum and minimum values (section 041 slides)

93
Section 4.1 Maximum and Minimum Values V63.0121.041, Calculus I New York University November 8, 2010 Announcements I Quiz 4 on Sections 3.3, 3.4, 3.5, and 3.7 next week (November 16, 18, or 19) . . . . . .

Upload: matthew-leingang

Post on 18-May-2015

647 views

Category:

Technology


0 download

DESCRIPTION

There are various reasons why we would want to find the extreme (maximum and minimum values) of a function. Fermat's Theorem tells us we can find local extreme points by looking at critical points. This process is known as the Closed Interval Method.

TRANSCRIPT

Page 1: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Section 4.1Maximum and Minimum Values

V63.0121.041, Calculus I

New York University

November 8, 2010

Announcements

I Quiz 4 on Sections 3.3, 3.4, 3.5, and 3.7 next week (November16, 18, or 19)

. . . . . .

Page 2: Lesson 18: Maximum and Minimum Values (Section 041 slides)

. . . . . .

Announcements

I Quiz 4 on Sections 3.3,3.4, 3.5, and 3.7 next week(November 16, 18, or 19)

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 2 / 34

Page 3: Lesson 18: Maximum and Minimum Values (Section 041 slides)

. . . . . .

Objectives

I Understand and be able toexplain the statement ofthe Extreme ValueTheorem.

I Understand and be able toexplain the statement ofFermat’s Theorem.

I Use the Closed IntervalMethod to find the extremevalues of a function definedon a closed interval.

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 3 / 34

Page 4: Lesson 18: Maximum and Minimum Values (Section 041 slides)

. . . . . .

Outline

Introduction

The Extreme Value Theorem

Fermat’s Theorem (not the last one)Tangent: Fermat’s Last Theorem

The Closed Interval Method

Examples

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 4 / 34

Page 5: Lesson 18: Maximum and Minimum Values (Section 041 slides)

.

.

Optimize

Page 6: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Why go to the extremes?

I Rationally speaking, it isadvantageous to find theextreme values of afunction (maximize profit,minimize costs, etc.)

I Many laws of science arederived from minimizingprinciples.

I Maupertuis’ principle:“Action is minimizedthrough the wisdom ofGod.”

Pierre-Louis Maupertuis(1698–1759)V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 6 / 34

Page 7: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Design

..Image credit: Jason TrommV63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 7 / 34

Page 8: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Why go to the extremes?

I Rationally speaking, it isadvantageous to find theextreme values of afunction (maximize profit,minimize costs, etc.)

I Many laws of science arederived from minimizingprinciples.

I Maupertuis’ principle:“Action is minimizedthrough the wisdom ofGod.”

Pierre-Louis Maupertuis(1698–1759)V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 8 / 34

Page 9: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Optics

..Image credit: jacreativeV63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 9 / 34

Page 10: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Why go to the extremes?

I Rationally speaking, it isadvantageous to find theextreme values of afunction (maximize profit,minimize costs, etc.)

I Many laws of science arederived from minimizingprinciples.

I Maupertuis’ principle:“Action is minimizedthrough the wisdom ofGod.”

Pierre-Louis Maupertuis(1698–1759)V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 10 / 34

Page 11: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Outline

Introduction

The Extreme Value Theorem

Fermat’s Theorem (not the last one)Tangent: Fermat’s Last Theorem

The Closed Interval Method

Examples

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 11 / 34

Page 12: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Extreme points and values

DefinitionLet f have domain D.

I The function f has an absolutemaximum (or global maximum)(respectively, absolute minimum) at c iff(c) ≥ f(x) (respectively, f(c) ≤ f(x)) for allx in D

I The number f(c) is called the maximumvalue (respectively, minimum value) of fon D.

I An extremum is either a maximum or aminimum. An extreme value is either amaximum value or minimum value.

.

.Image credit: Patrick Q

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 12 / 34

Page 13: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Extreme points and values

DefinitionLet f have domain D.

I The function f has an absolutemaximum (or global maximum)(respectively, absolute minimum) at c iff(c) ≥ f(x) (respectively, f(c) ≤ f(x)) for allx in D

I The number f(c) is called the maximumvalue (respectively, minimum value) of fon D.

I An extremum is either a maximum or aminimum. An extreme value is either amaximum value or minimum value.

.

.Image credit: Patrick Q

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 12 / 34

Page 14: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Extreme points and values

DefinitionLet f have domain D.

I The function f has an absolutemaximum (or global maximum)(respectively, absolute minimum) at c iff(c) ≥ f(x) (respectively, f(c) ≤ f(x)) for allx in D

I The number f(c) is called the maximumvalue (respectively, minimum value) of fon D.

I An extremum is either a maximum or aminimum. An extreme value is either amaximum value or minimum value.

.

.Image credit: Patrick Q

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 12 / 34

Page 15: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Extreme points and values

DefinitionLet f have domain D.

I The function f has an absolutemaximum (or global maximum)(respectively, absolute minimum) at c iff(c) ≥ f(x) (respectively, f(c) ≤ f(x)) for allx in D

I The number f(c) is called the maximumvalue (respectively, minimum value) of fon D.

I An extremum is either a maximum or aminimum. An extreme value is either amaximum value or minimum value.

.

.Image credit: Patrick Q

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 12 / 34

Page 16: Lesson 18: Maximum and Minimum Values (Section 041 slides)

The Extreme Value Theorem

Theorem (The Extreme Value Theorem)

Let f be a function which is continuous on the closed interval [a,b].Then f attains an absolute maximum value f(c) and an absoluteminimum value f(d) at numbers c and d in [a,b].

.

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 13 / 34

Page 17: Lesson 18: Maximum and Minimum Values (Section 041 slides)

The Extreme Value Theorem

Theorem (The Extreme Value Theorem)

Let f be a function which is continuous on the closed interval [a,b].Then f attains an absolute maximum value f(c) and an absoluteminimum value f(d) at numbers c and d in [a,b].

...a

..b

.

.

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 13 / 34

Page 18: Lesson 18: Maximum and Minimum Values (Section 041 slides)

The Extreme Value Theorem

Theorem (The Extreme Value Theorem)

Let f be a function which is continuous on the closed interval [a,b].Then f attains an absolute maximum value f(c) and an absoluteminimum value f(d) at numbers c and d in [a,b].

...a

..b

.

.

.cmaximum

.maximum

value.f(c)

.

.d

minimum

.minimum

value.f(d)

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 13 / 34

Page 19: Lesson 18: Maximum and Minimum Values (Section 041 slides)

No proof of EVT forthcoming

I This theorem is very hard to prove without using technical factsabout continuous functions and closed intervals.

I But we can show the importance of each of the hypotheses.

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 14 / 34

Page 20: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Bad Example #1

Example

Consider the function

f(x) =

{x 0 ≤ x < 1x− 2 1 ≤ x ≤ 2.

. .|.1

.

.

.

.

Then although values of f(x) get arbitrarily close to 1 and never biggerthan 1, 1 is not the maximum value of f on [0,1] because it is neverachieved. This does not violate EVT because f is not continuous.

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 15 / 34

Page 21: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Bad Example #1

Example

Consider the function

f(x) =

{x 0 ≤ x < 1x− 2 1 ≤ x ≤ 2.

. .|.1

.

.

.

.

Then although values of f(x) get arbitrarily close to 1 and never biggerthan 1, 1 is not the maximum value of f on [0,1] because it is neverachieved. This does not violate EVT because f is not continuous.

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 15 / 34

Page 22: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Bad Example #1

Example

Consider the function

f(x) =

{x 0 ≤ x < 1x− 2 1 ≤ x ≤ 2.

. .|.1

.

.

.

.

Then although values of f(x) get arbitrarily close to 1 and never biggerthan 1, 1 is not the maximum value of f on [0,1] because it is neverachieved.

This does not violate EVT because f is not continuous.

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 15 / 34

Page 23: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Bad Example #1

Example

Consider the function

f(x) =

{x 0 ≤ x < 1x− 2 1 ≤ x ≤ 2.

. .|.1

.

.

.

.

Then although values of f(x) get arbitrarily close to 1 and never biggerthan 1, 1 is not the maximum value of f on [0,1] because it is neverachieved. This does not violate EVT because f is not continuous.

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 15 / 34

Page 24: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Bad Example #2

Example

Consider the function f(x) = x restricted to the interval [0,1).

. .|.1

.

.

There is still no maximum value (values get arbitrarily close to 1 but donot achieve it). This does not violate EVT because the domain is notclosed.

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 16 / 34

Page 25: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Bad Example #2

Example

Consider the function f(x) = x restricted to the interval [0,1).

. .|.1

.

.

There is still no maximum value (values get arbitrarily close to 1 but donot achieve it). This does not violate EVT because the domain is notclosed.

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 16 / 34

Page 26: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Bad Example #2

Example

Consider the function f(x) = x restricted to the interval [0,1).

. .|.1

.

.

There is still no maximum value (values get arbitrarily close to 1 but donot achieve it).

This does not violate EVT because the domain is notclosed.

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 16 / 34

Page 27: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Bad Example #2

Example

Consider the function f(x) = x restricted to the interval [0,1).

. .|.1

.

.

There is still no maximum value (values get arbitrarily close to 1 but donot achieve it). This does not violate EVT because the domain is notclosed.

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 16 / 34

Page 28: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Final Bad Example

Example

Consider the function f(x) =1xis continuous on the closed interval

[1,∞).

. ..1

.

There is no minimum value (values get arbitrarily close to 0 but do notachieve it). This does not violate EVT because the domain is notbounded.

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 17 / 34

Page 29: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Final Bad Example

Example

Consider the function f(x) =1xis continuous on the closed interval

[1,∞).

. ..1

.

There is no minimum value (values get arbitrarily close to 0 but do notachieve it). This does not violate EVT because the domain is notbounded.

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 17 / 34

Page 30: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Final Bad Example

Example

Consider the function f(x) =1xis continuous on the closed interval

[1,∞).

. ..1

.

There is no minimum value (values get arbitrarily close to 0 but do notachieve it).

This does not violate EVT because the domain is notbounded.

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 17 / 34

Page 31: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Final Bad Example

Example

Consider the function f(x) =1xis continuous on the closed interval

[1,∞).

. ..1

.

There is no minimum value (values get arbitrarily close to 0 but do notachieve it). This does not violate EVT because the domain is notbounded.

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 17 / 34

Page 32: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Outline

Introduction

The Extreme Value Theorem

Fermat’s Theorem (not the last one)Tangent: Fermat’s Last Theorem

The Closed Interval Method

Examples

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 18 / 34

Page 33: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Local extrema.

.

Definition

I A function f has a local maximum or relative maximum at c if f(c) ≥ f(x)when x is near c. This means that f(c) ≥ f(x) for all x in some open intervalcontaining c.

I Similarly, f has a local minimum at c if f(c) ≤ f(x) when x is near c.

..|.a

.|.b

.

.

.

.local

maximum

.

.local

minimum

.globalmax

.local and global

min

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 19 / 34

Page 34: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Local extrema.

.

Definition

I A function f has a local maximum or relative maximum at c if f(c) ≥ f(x)when x is near c. This means that f(c) ≥ f(x) for all x in some open intervalcontaining c.

I Similarly, f has a local minimum at c if f(c) ≤ f(x) when x is near c.

..|.a

.|.b

.

.

.

.local

maximum

.

.local

minimum

.globalmax

.local and global

min

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 19 / 34

Page 35: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Local extrema.

.

I So a local extremum must be inside the domain of f (not on the end).I A global extremum that is inside the domain is a local extremum.

..|.a

.|.b

.

.

.

.local

maximum

.

.local

minimum

.globalmax

.local and global

min

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 19 / 34

Page 36: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Fermat's Theorem

Theorem (Fermat’s Theorem)

Suppose f has a local extremum at c and f is differentiable at c. Thenf′(c) = 0.

..|.a

.|.b

.

.

.

.local

maximum

.

.local

minimum

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 21 / 34

Page 37: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Fermat's Theorem

Theorem (Fermat’s Theorem)

Suppose f has a local extremum at c and f is differentiable at c. Thenf′(c) = 0.

..|.a

.|.b

.

.

.

.local

maximum

.

.local

minimum

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 21 / 34

Page 38: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Sketch of proof of Fermat's Theorem

Suppose that f has a local maximum at c.

I If x is slightly greater than c, f(x) ≤ f(c). This means

f(x)− f(c)x− c

≤ 0 =⇒ limx→c+

f(x)− f(c)x− c

≤ 0

I The same will be true on the other end: if x is slightly less than c,f(x) ≤ f(c). This means

f(x)− f(c)x− c

≥ 0 =⇒ limx→c−

f(x)− f(c)x− c

≥ 0

I Since the limit f′(c) = limx→c

f(x)− f(c)x− c

exists, it must be 0.

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 22 / 34

Page 39: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Sketch of proof of Fermat's Theorem

Suppose that f has a local maximum at c.I If x is slightly greater than c, f(x) ≤ f(c). This means

f(x)− f(c)x− c

≤ 0

=⇒ limx→c+

f(x)− f(c)x− c

≤ 0

I The same will be true on the other end: if x is slightly less than c,f(x) ≤ f(c). This means

f(x)− f(c)x− c

≥ 0 =⇒ limx→c−

f(x)− f(c)x− c

≥ 0

I Since the limit f′(c) = limx→c

f(x)− f(c)x− c

exists, it must be 0.

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 22 / 34

Page 40: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Sketch of proof of Fermat's Theorem

Suppose that f has a local maximum at c.I If x is slightly greater than c, f(x) ≤ f(c). This means

f(x)− f(c)x− c

≤ 0 =⇒ limx→c+

f(x)− f(c)x− c

≤ 0

I The same will be true on the other end: if x is slightly less than c,f(x) ≤ f(c). This means

f(x)− f(c)x− c

≥ 0 =⇒ limx→c−

f(x)− f(c)x− c

≥ 0

I Since the limit f′(c) = limx→c

f(x)− f(c)x− c

exists, it must be 0.

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 22 / 34

Page 41: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Sketch of proof of Fermat's Theorem

Suppose that f has a local maximum at c.I If x is slightly greater than c, f(x) ≤ f(c). This means

f(x)− f(c)x− c

≤ 0 =⇒ limx→c+

f(x)− f(c)x− c

≤ 0

I The same will be true on the other end: if x is slightly less than c,f(x) ≤ f(c). This means

f(x)− f(c)x− c

≥ 0

=⇒ limx→c−

f(x)− f(c)x− c

≥ 0

I Since the limit f′(c) = limx→c

f(x)− f(c)x− c

exists, it must be 0.

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 22 / 34

Page 42: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Sketch of proof of Fermat's Theorem

Suppose that f has a local maximum at c.I If x is slightly greater than c, f(x) ≤ f(c). This means

f(x)− f(c)x− c

≤ 0 =⇒ limx→c+

f(x)− f(c)x− c

≤ 0

I The same will be true on the other end: if x is slightly less than c,f(x) ≤ f(c). This means

f(x)− f(c)x− c

≥ 0 =⇒ limx→c−

f(x)− f(c)x− c

≥ 0

I Since the limit f′(c) = limx→c

f(x)− f(c)x− c

exists, it must be 0.

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 22 / 34

Page 43: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Sketch of proof of Fermat's Theorem

Suppose that f has a local maximum at c.I If x is slightly greater than c, f(x) ≤ f(c). This means

f(x)− f(c)x− c

≤ 0 =⇒ limx→c+

f(x)− f(c)x− c

≤ 0

I The same will be true on the other end: if x is slightly less than c,f(x) ≤ f(c). This means

f(x)− f(c)x− c

≥ 0 =⇒ limx→c−

f(x)− f(c)x− c

≥ 0

I Since the limit f′(c) = limx→c

f(x)− f(c)x− c

exists, it must be 0.

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 22 / 34

Page 44: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Meet the Mathematician: Pierre de Fermat

I 1601–1665I Lawyer and number

theoristI Proved many theorems,

didn’t quite prove his lastone

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 23 / 34

Page 45: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Tangent: Fermat's Last Theorem

I Plenty of solutions tox2 + y2 = z2 amongpositive whole numbers(e.g., x = 3, y = 4, z = 5)

I No solutions tox3 + y3 = z3 amongpositive whole numbers

I Fermat claimed nosolutions to xn + yn = zn

but didn’t write down hisproof

I Not solved until 1998!(Taylor–Wiles)

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 24 / 34

Page 46: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Tangent: Fermat's Last Theorem

I Plenty of solutions tox2 + y2 = z2 amongpositive whole numbers(e.g., x = 3, y = 4, z = 5)

I No solutions tox3 + y3 = z3 amongpositive whole numbers

I Fermat claimed nosolutions to xn + yn = zn

but didn’t write down hisproof

I Not solved until 1998!(Taylor–Wiles)

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 24 / 34

Page 47: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Tangent: Fermat's Last Theorem

I Plenty of solutions tox2 + y2 = z2 amongpositive whole numbers(e.g., x = 3, y = 4, z = 5)

I No solutions tox3 + y3 = z3 amongpositive whole numbers

I Fermat claimed nosolutions to xn + yn = zn

but didn’t write down hisproof

I Not solved until 1998!(Taylor–Wiles)

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 24 / 34

Page 48: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Tangent: Fermat's Last Theorem

I Plenty of solutions tox2 + y2 = z2 amongpositive whole numbers(e.g., x = 3, y = 4, z = 5)

I No solutions tox3 + y3 = z3 amongpositive whole numbers

I Fermat claimed nosolutions to xn + yn = zn

but didn’t write down hisproof

I Not solved until 1998!(Taylor–Wiles)

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 24 / 34

Page 49: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Outline

Introduction

The Extreme Value Theorem

Fermat’s Theorem (not the last one)Tangent: Fermat’s Last Theorem

The Closed Interval Method

Examples

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 25 / 34

Page 50: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Flowchart for placing extremaThanks to Fermat

Suppose f is a continuous function on the closed, bounded interval[a,b], and c is a global maximum point.

..start

.Is c an

endpoint?

. c = a orc = b

.c is a

local max

.Is f diff’ble

at c?

.f is notdiff at c

.f′(c) = 0

.no

.yes

.no

.yes

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 26 / 34

Page 51: Lesson 18: Maximum and Minimum Values (Section 041 slides)

The Closed Interval Method

This means to find the maximum value of f on [a,b], we need to:I Evaluate f at the endpoints a and bI Evaluate f at the critical points or critical numbers x where

either f′(x) = 0 or f is not differentiable at x.I The points with the largest function value are the global maximum

pointsI The points with the smallest or most negative function value are

the global minimum points.

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 27 / 34

Page 52: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Outline

Introduction

The Extreme Value Theorem

Fermat’s Theorem (not the last one)Tangent: Fermat’s Last Theorem

The Closed Interval Method

Examples

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 28 / 34

Page 53: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Extreme values of a linear function

Example

Find the extreme values of f(x) = 2x− 5 on [−1,2].

SolutionSince f′(x) = 2, which is never zero, we have no critical points and weneed only investigate the endpoints:

I f(−1) = 2(−1)− 5 = −7I f(2) = 2(2)− 5 = −1

SoI The absolute minimum (point) is at −1; the minimum value is −7.I The absolute maximum (point) is at 2; the maximum value is −1.

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 29 / 34

Page 54: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Extreme values of a linear function

Example

Find the extreme values of f(x) = 2x− 5 on [−1,2].

SolutionSince f′(x) = 2, which is never zero, we have no critical points and weneed only investigate the endpoints:

I f(−1) = 2(−1)− 5 = −7I f(2) = 2(2)− 5 = −1

SoI The absolute minimum (point) is at −1; the minimum value is −7.I The absolute maximum (point) is at 2; the maximum value is −1.

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 29 / 34

Page 55: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Extreme values of a linear function

Example

Find the extreme values of f(x) = 2x− 5 on [−1,2].

SolutionSince f′(x) = 2, which is never zero, we have no critical points and weneed only investigate the endpoints:

I f(−1) = 2(−1)− 5 = −7I f(2) = 2(2)− 5 = −1

SoI The absolute minimum (point) is at −1; the minimum value is −7.I The absolute maximum (point) is at 2; the maximum value is −1.

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 29 / 34

Page 56: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Extreme values of a quadratic function

Example

Find the extreme values of f(x) = x2 − 1 on [−1,2].

SolutionWe have f′(x) = 2x, which is zero when x = 0.

So our points to checkare:

I f(−1) =I f(0) =I f(2) =

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 30 / 34

Page 57: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Extreme values of a quadratic function

Example

Find the extreme values of f(x) = x2 − 1 on [−1,2].

SolutionWe have f′(x) = 2x, which is zero when x = 0.

So our points to checkare:

I f(−1) =I f(0) =I f(2) =

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 30 / 34

Page 58: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Extreme values of a quadratic function

Example

Find the extreme values of f(x) = x2 − 1 on [−1,2].

SolutionWe have f′(x) = 2x, which is zero when x = 0. So our points to checkare:

I f(−1) =I f(0) =I f(2) =

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 30 / 34

Page 59: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Extreme values of a quadratic function

Example

Find the extreme values of f(x) = x2 − 1 on [−1,2].

SolutionWe have f′(x) = 2x, which is zero when x = 0. So our points to checkare:

I f(−1) = 0I f(0) =I f(2) =

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 30 / 34

Page 60: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Extreme values of a quadratic function

Example

Find the extreme values of f(x) = x2 − 1 on [−1,2].

SolutionWe have f′(x) = 2x, which is zero when x = 0. So our points to checkare:

I f(−1) = 0I f(0) = − 1I f(2) =

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 30 / 34

Page 61: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Extreme values of a quadratic function

Example

Find the extreme values of f(x) = x2 − 1 on [−1,2].

SolutionWe have f′(x) = 2x, which is zero when x = 0. So our points to checkare:

I f(−1) = 0I f(0) = − 1I f(2) = 3

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 30 / 34

Page 62: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Extreme values of a quadratic function

Example

Find the extreme values of f(x) = x2 − 1 on [−1,2].

SolutionWe have f′(x) = 2x, which is zero when x = 0. So our points to checkare:

I f(−1) = 0I f(0) = − 1 (absolute min)I f(2) = 3

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 30 / 34

Page 63: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Extreme values of a quadratic function

Example

Find the extreme values of f(x) = x2 − 1 on [−1,2].

SolutionWe have f′(x) = 2x, which is zero when x = 0. So our points to checkare:

I f(−1) = 0I f(0) = − 1 (absolute min)I f(2) = 3 (absolute max)

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 30 / 34

Page 64: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Extreme values of a cubic function

Example

Find the extreme values of f(x) = 2x3 − 3x2 + 1 on [−1,2].

SolutionSince f′(x) = 6x2 − 6x = 6x(x− 1), we have critical points at x = 0 andx = 1.

The values to check are

I f(−1) =

− 4 (global min)

I f(0) =

1 (local max)

I f(1) =

0 (local min)

I f(2) =

5 (global max)

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 31 / 34

Page 65: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Extreme values of a cubic function

Example

Find the extreme values of f(x) = 2x3 − 3x2 + 1 on [−1,2].

SolutionSince f′(x) = 6x2 − 6x = 6x(x− 1), we have critical points at x = 0 andx = 1.

The values to check are

I f(−1) =

− 4 (global min)

I f(0) =

1 (local max)

I f(1) =

0 (local min)

I f(2) =

5 (global max)

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 31 / 34

Page 66: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Extreme values of a cubic function

Example

Find the extreme values of f(x) = 2x3 − 3x2 + 1 on [−1,2].

SolutionSince f′(x) = 6x2 − 6x = 6x(x− 1), we have critical points at x = 0 andx = 1. The values to check are

I f(−1) =

− 4 (global min)

I f(0) =

1 (local max)

I f(1) =

0 (local min)

I f(2) =

5 (global max)

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 31 / 34

Page 67: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Extreme values of a cubic function

Example

Find the extreme values of f(x) = 2x3 − 3x2 + 1 on [−1,2].

SolutionSince f′(x) = 6x2 − 6x = 6x(x− 1), we have critical points at x = 0 andx = 1. The values to check are

I f(−1) = − 4

(global min)I f(0) =

1 (local max)

I f(1) =

0 (local min)

I f(2) =

5 (global max)

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 31 / 34

Page 68: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Extreme values of a cubic function

Example

Find the extreme values of f(x) = 2x3 − 3x2 + 1 on [−1,2].

SolutionSince f′(x) = 6x2 − 6x = 6x(x− 1), we have critical points at x = 0 andx = 1. The values to check are

I f(−1) = − 4

(global min)

I f(0) = 1

(local max)I f(1) =

0 (local min)

I f(2) =

5 (global max)

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 31 / 34

Page 69: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Extreme values of a cubic function

Example

Find the extreme values of f(x) = 2x3 − 3x2 + 1 on [−1,2].

SolutionSince f′(x) = 6x2 − 6x = 6x(x− 1), we have critical points at x = 0 andx = 1. The values to check are

I f(−1) = − 4

(global min)

I f(0) = 1

(local max)

I f(1) = 0

(local min)I f(2) =

5 (global max)

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 31 / 34

Page 70: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Extreme values of a cubic function

Example

Find the extreme values of f(x) = 2x3 − 3x2 + 1 on [−1,2].

SolutionSince f′(x) = 6x2 − 6x = 6x(x− 1), we have critical points at x = 0 andx = 1. The values to check are

I f(−1) = − 4

(global min)

I f(0) = 1

(local max)

I f(1) = 0

(local min)

I f(2) = 5

(global max)

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 31 / 34

Page 71: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Extreme values of a cubic function

Example

Find the extreme values of f(x) = 2x3 − 3x2 + 1 on [−1,2].

SolutionSince f′(x) = 6x2 − 6x = 6x(x− 1), we have critical points at x = 0 andx = 1. The values to check are

I f(−1) = − 4 (global min)I f(0) = 1

(local max)

I f(1) = 0

(local min)

I f(2) = 5

(global max)

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 31 / 34

Page 72: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Extreme values of a cubic function

Example

Find the extreme values of f(x) = 2x3 − 3x2 + 1 on [−1,2].

SolutionSince f′(x) = 6x2 − 6x = 6x(x− 1), we have critical points at x = 0 andx = 1. The values to check are

I f(−1) = − 4 (global min)I f(0) = 1

(local max)

I f(1) = 0

(local min)

I f(2) = 5 (global max)

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 31 / 34

Page 73: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Extreme values of a cubic function

Example

Find the extreme values of f(x) = 2x3 − 3x2 + 1 on [−1,2].

SolutionSince f′(x) = 6x2 − 6x = 6x(x− 1), we have critical points at x = 0 andx = 1. The values to check are

I f(−1) = − 4 (global min)I f(0) = 1 (local max)I f(1) = 0

(local min)

I f(2) = 5 (global max)

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 31 / 34

Page 74: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Extreme values of a cubic function

Example

Find the extreme values of f(x) = 2x3 − 3x2 + 1 on [−1,2].

SolutionSince f′(x) = 6x2 − 6x = 6x(x− 1), we have critical points at x = 0 andx = 1. The values to check are

I f(−1) = − 4 (global min)I f(0) = 1 (local max)I f(1) = 0 (local min)I f(2) = 5 (global max)

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 31 / 34

Page 75: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Extreme values of an algebraic function

Example

Find the extreme values of f(x) = x2/3(x+ 2) on [−1,2].

SolutionWrite f(x) = x5/3 + 2x2/3, then

f′(x) =53x2/3 +

43x−1/3 =

13x−1/3(5x+ 4)

Thus f′(−4/5) = 0 and f is not differentiable at 0.

So our points tocheck are:

I f(−1) =I f(−4/5) =

I f(0) =I f(2) =

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 32 / 34

Page 76: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Extreme values of an algebraic function

Example

Find the extreme values of f(x) = x2/3(x+ 2) on [−1,2].

SolutionWrite f(x) = x5/3 + 2x2/3, then

f′(x) =53x2/3 +

43x−1/3 =

13x−1/3(5x+ 4)

Thus f′(−4/5) = 0 and f is not differentiable at 0.

So our points tocheck are:

I f(−1) =I f(−4/5) =

I f(0) =I f(2) =

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 32 / 34

Page 77: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Extreme values of an algebraic function

Example

Find the extreme values of f(x) = x2/3(x+ 2) on [−1,2].

SolutionWrite f(x) = x5/3 + 2x2/3, then

f′(x) =53x2/3 +

43x−1/3 =

13x−1/3(5x+ 4)

Thus f′(−4/5) = 0 and f is not differentiable at 0. So our points tocheck are:

I f(−1) =

I f(−4/5) =

I f(0) =I f(2) =

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 32 / 34

Page 78: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Extreme values of an algebraic function

Example

Find the extreme values of f(x) = x2/3(x+ 2) on [−1,2].

SolutionWrite f(x) = x5/3 + 2x2/3, then

f′(x) =53x2/3 +

43x−1/3 =

13x−1/3(5x+ 4)

Thus f′(−4/5) = 0 and f is not differentiable at 0. So our points tocheck are:

I f(−1) = 1I f(−4/5) =

I f(0) =I f(2) =

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 32 / 34

Page 79: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Extreme values of an algebraic function

Example

Find the extreme values of f(x) = x2/3(x+ 2) on [−1,2].

SolutionWrite f(x) = x5/3 + 2x2/3, then

f′(x) =53x2/3 +

43x−1/3 =

13x−1/3(5x+ 4)

Thus f′(−4/5) = 0 and f is not differentiable at 0. So our points tocheck are:

I f(−1) = 1I f(−4/5) = 1.0341I f(0) =

I f(2) =

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 32 / 34

Page 80: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Extreme values of an algebraic function

Example

Find the extreme values of f(x) = x2/3(x+ 2) on [−1,2].

SolutionWrite f(x) = x5/3 + 2x2/3, then

f′(x) =53x2/3 +

43x−1/3 =

13x−1/3(5x+ 4)

Thus f′(−4/5) = 0 and f is not differentiable at 0. So our points tocheck are:

I f(−1) = 1I f(−4/5) = 1.0341I f(0) = 0I f(2) =

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 32 / 34

Page 81: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Extreme values of an algebraic function

Example

Find the extreme values of f(x) = x2/3(x+ 2) on [−1,2].

SolutionWrite f(x) = x5/3 + 2x2/3, then

f′(x) =53x2/3 +

43x−1/3 =

13x−1/3(5x+ 4)

Thus f′(−4/5) = 0 and f is not differentiable at 0. So our points tocheck are:

I f(−1) = 1I f(−4/5) = 1.0341I f(0) = 0I f(2) = 6.3496

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 32 / 34

Page 82: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Extreme values of an algebraic function

Example

Find the extreme values of f(x) = x2/3(x+ 2) on [−1,2].

SolutionWrite f(x) = x5/3 + 2x2/3, then

f′(x) =53x2/3 +

43x−1/3 =

13x−1/3(5x+ 4)

Thus f′(−4/5) = 0 and f is not differentiable at 0. So our points tocheck are:

I f(−1) = 1I f(−4/5) = 1.0341I f(0) = 0 (absolute min)I f(2) = 6.3496

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 32 / 34

Page 83: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Extreme values of an algebraic function

Example

Find the extreme values of f(x) = x2/3(x+ 2) on [−1,2].

SolutionWrite f(x) = x5/3 + 2x2/3, then

f′(x) =53x2/3 +

43x−1/3 =

13x−1/3(5x+ 4)

Thus f′(−4/5) = 0 and f is not differentiable at 0. So our points tocheck are:

I f(−1) = 1I f(−4/5) = 1.0341I f(0) = 0 (absolute min)I f(2) = 6.3496 (absolute max)

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 32 / 34

Page 84: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Extreme values of an algebraic function

Example

Find the extreme values of f(x) = x2/3(x+ 2) on [−1,2].

SolutionWrite f(x) = x5/3 + 2x2/3, then

f′(x) =53x2/3 +

43x−1/3 =

13x−1/3(5x+ 4)

Thus f′(−4/5) = 0 and f is not differentiable at 0. So our points tocheck are:

I f(−1) = 1I f(−4/5) = 1.0341 (relative max)I f(0) = 0 (absolute min)I f(2) = 6.3496 (absolute max)

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 32 / 34

Page 85: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Extreme values of another algebraic function

Example

Find the extreme values of f(x) =√4− x2 on [−2,1].

SolutionWe have f′(x) = − x√

4− x2, which is zero when x = 0. (f is not

differentiable at ±2 as well.)

So our points to check are:

I f(−2) =I f(0) =I f(1) =

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 33 / 34

Page 86: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Extreme values of another algebraic function

Example

Find the extreme values of f(x) =√4− x2 on [−2,1].

SolutionWe have f′(x) = − x√

4− x2, which is zero when x = 0. (f is not

differentiable at ±2 as well.)

So our points to check are:

I f(−2) =I f(0) =I f(1) =

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 33 / 34

Page 87: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Extreme values of another algebraic function

Example

Find the extreme values of f(x) =√4− x2 on [−2,1].

SolutionWe have f′(x) = − x√

4− x2, which is zero when x = 0. (f is not

differentiable at ±2 as well.) So our points to check are:I f(−2) =

I f(0) =I f(1) =

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 33 / 34

Page 88: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Extreme values of another algebraic function

Example

Find the extreme values of f(x) =√4− x2 on [−2,1].

SolutionWe have f′(x) = − x√

4− x2, which is zero when x = 0. (f is not

differentiable at ±2 as well.) So our points to check are:I f(−2) = 0I f(0) =

I f(1) =

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 33 / 34

Page 89: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Extreme values of another algebraic function

Example

Find the extreme values of f(x) =√4− x2 on [−2,1].

SolutionWe have f′(x) = − x√

4− x2, which is zero when x = 0. (f is not

differentiable at ±2 as well.) So our points to check are:I f(−2) = 0I f(0) = 2I f(1) =

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 33 / 34

Page 90: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Extreme values of another algebraic function

Example

Find the extreme values of f(x) =√4− x2 on [−2,1].

SolutionWe have f′(x) = − x√

4− x2, which is zero when x = 0. (f is not

differentiable at ±2 as well.) So our points to check are:I f(−2) = 0I f(0) = 2I f(1) =

√3

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 33 / 34

Page 91: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Extreme values of another algebraic function

Example

Find the extreme values of f(x) =√4− x2 on [−2,1].

SolutionWe have f′(x) = − x√

4− x2, which is zero when x = 0. (f is not

differentiable at ±2 as well.) So our points to check are:I f(−2) = 0 (absolute min)I f(0) = 2I f(1) =

√3

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 33 / 34

Page 92: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Extreme values of another algebraic function

Example

Find the extreme values of f(x) =√4− x2 on [−2,1].

SolutionWe have f′(x) = − x√

4− x2, which is zero when x = 0. (f is not

differentiable at ±2 as well.) So our points to check are:I f(−2) = 0 (absolute min)I f(0) = 2 (absolute max)I f(1) =

√3

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 33 / 34

Page 93: Lesson 18: Maximum and Minimum Values (Section 041 slides)

Summary

I The Extreme Value Theorem: a continuous function on a closedinterval must achieve its max and min

I Fermat’s Theorem: local extrema are critical pointsI The Closed Interval Method: an algorithm for finding global

extremaI Show your work unless you want to end up like Fermat!

V63.0121.041, Calculus I (NYU) Section 4.1 Maximum and Minimum Values November 8, 2010 34 / 34