lena gorelick joint work with o. veksler i. ben ayed a. delong y. boykov

33
Submodularization for Binary Pairwise Energies Lena Gorelick joint work with O. Veksler I. Ben Ayed A. Delong Y. Boykov

Upload: noah-farmer

Post on 02-Jan-2016

217 views

Category:

Documents


0 download

TRANSCRIPT

Submodularization for Binary Pairwise Energies

Lena Gorelick

joint work with

O. Veksler

I. Ben Ayed

A. Delong

Y. Boykov

2

Νqp

xxp

pp qpxfE

,][1(x)

Example of Simple Binary Energy

Potts Modelf 1,0x

3

Binary Pairwise EnergyQuadratic Form

Submodular Energy global optimum with graphcut (Boros &

Hammer, 2002)

qp

qppqp

pp xxvxuE,

(x) 1,0x

pqpq vv 0

Potts Model

4

0, pqvpq

Non-Submodular Energy NP-hard

Binary Pairwise Energy Quadratic Form

const.)(,

qp

qppqp

pp xxvxuE x

Middlebury

Image credit: Carlos Hernandes

5

Standard Optimization Methods

General energy - NP-hardApproximate methods:

Global Linearization: QPBO, TRWS, SRMP (Kolmogorov et al. 2006, 2014)

Local Linearization: parallel ICM, IPFP (Leordeanu, 2009)

Message Passing: BP (Pearl 1989)

6

Related WorkGlobal Linearization

)(xE QPBO, TRWS, SRMP (Kolmogorov et al. 2006,

2014)

)(~

min..

yyE

Cts

Linearize introducing large number ofvariables and constraints

Solve relaxed LPor its dual

Integrality Gap

*relaxedyRounding

*integer x

Related WorkIterative Local Linearization

7

parallel ICM (Leordeanu, 2009) large steps weak min

IPFP (Leordeanu, 2009) controls step size by relaxation Integrality Gap

)(xE

x

tx

Et(x)~

1tx

N}1,0{Bounded domain of discrete configurations

8

Local Submodular Approximation LSA

Local Submodular Approximation model

Non-linear

Two ways to control step size

Et(x)~

)(xE

x

tx

1tx

N}1,0{Bounded domain of discrete configurations

9

Trust Region Local submodular approximation

Auxiliary Functions = Surrogate Functions = Upper Bounds = Majorize-Minimize Local submodular upper bound

Never leave the discrete domain

Iterative Optimization Framework

LSA-AUX

LSA-TR

10

Iterative Optimization Framework

Trust Region: Discrete High Order Energies Relaxed Quadratic Binary Energies Levenberg Marquardt

Auxiliary Functions=Surrogate Functions =Upper Bounds = Majorize-Minimize Discrete High Order Energies

Gorelick et al. 2012,2013

Ben Ayed et al. 2013

Olsson et al. 2008

Narasimhan & Bilmes 2005

Rother et al. 2006

Hartley & Zisserman 2004

11

Local Submodular ApproximationLSA

qp

qppqp

pp xxvxuE,

)(x

)()()( sup xxx EEE sub

+- x

tx

)(xE

12

Local Submodular ApproximationLSA

)()()( sup xxx EEE sub

x

tx)(xE

13

Approximate around

Local Submodular ApproximationLSA

)()()( sup xxx EEE sub

)(xE tx

)(~

x(x) subt EE

Et(x)~

x

tx)(xE

14

Submodular functionLSA

Approximate around

Local Submodular ApproximationLSA

)()()( sup xxx EEE sub

)(xE tx

)()(~

xx(x) approxt

subt EEE

Linear Approximation

Et(x)~

x

tx)(xE

15

0,)(sup pqqppq

pqvxxvE x

Linear Approximation of the Supermodular Term

16

qppq xxv

Linear Approximation of the Supermodular Term

17

Linear Approximation of the Supermodular Term

0 xy

18

0

1

x

y

1

Linear Approximation of the Supermodular Term

1,0

0,0

1,1

0,1

0 xy

19

Linear Approximation of the Supermodular Term

0

1

1

x

y

1,0

0 xy

20

1

constyx 0

0

1

Linear Approximation of the Supermodular Term

x

y

1,0

0,0

1,1

Linear (Unary)

approximation

21

Linear Approximation of the Supermodular Term

0

1

1

constyvxu

x

y

22

LSA-TR:Trust Region Overview

)(xE

x

tx

)()()( sup xxx EEE sub

23

LSA-TR:Trust Region Overview

)(xE

x

tx

Et(x)~

Newton Step

)()(~

xx(x) approxt

subt EEE

1tx

LSA-TRTrust Region Sub-Problem

24

)(xE

x

tx

Et(x)~

Trust Region

)()(~

xx(x) approxt

subt EEE

Trust Region Sub-Problem

td ||||s.t. txx

24

NP-hard!Constrained Submodular Optimization

25

fixed in each iteration inversely related to trust region size adjusted based on quality of approximation

LSA-TR: Approximate TR sub-problem

||||

)()(

tt

approxt

subt EEL

xx

xx(x)

Unary TermsBoykov et al. 2006

Gorelick et al. 2013

t

Submodular

26

Experiments & Results

27

Experiments & Results:Deconvolution

Binary De-convolution All pairwise terms supermodular

Original Img Convolved Convolved+Noise

?

Experiments & Results:Deconvolution

28

Noise:N(0,0.05)

SRMP

QPBOI

TRWS FTR-L

LBP

LSA-TR (0.3 sec.)E=21.13

LSA-AUX (0.04 sec)E=34.70

TRWS:5000 iter.E=65.07

LBP5000 iter.E=40.15

QPBO(0.1 sec.)

QPBO-I (0.2 sec.)E=66.44

IPFP(0.4 sec.)E=32.90

SRMP:5000 iter.E=39.06

Experiments & Results:Segmentation of Thin Structures

29

QPBO

QPBO-IE= -77.08

LBPE= -84.54

IPFPE= 163.25

Image

SRMP

Potts, v<0(submodula

r)

with edge repulsion, v>0(non-submodular)

TRWSE= -67.21

LSA-TRE= -175.05

LSA-AUXE= -120.03

SRMPE= -101.61

Repulsion = Reward different labels across high contrast edges

30

Experiments & Results:Inpainting

dtf-chinesechar database

LSA-TRInput ImgGround Truth

Kappes et al., 2013

31

Experiments & Results:In-painting Chinese Characters

32

Curvature Regularization

Efficient Squared Curvature model – (Nieuwenhuis et al. 2014, poster on Friday)

Potts Model Elastica

90-degree curvature

Heber et al. 2012

El-Zehiry&Grady, 2010

Our curvature Using LSA-TR

33

Summary

Two novel discrete optimization methods Simple, efficient, state-of-art results The code is available online -

http://vision.csd.uwo.ca/code/

Extensions: Find new applications▪ Convexity Shape Prior (in ECCV14)

Alternative optimization framework with LSA▪ Pseudo-Bounds (in ECCV14)

Please come by our poster