lees-doroditsyn compressible boundary layer equations

22
Finite Difference Solutions to the Lees-Dorodnitsyn Compressible Boundary Layer Equations Chelsea Onyeador May 12, 2020 2.29 Final Project 1

Upload: others

Post on 18-Apr-2022

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lees-Doroditsyn Compressible Boundary Layer Equations

Finite Difference Solutions to the Lees-DorodnitsynCompressible Boundary Layer Equations

Chelsea Onyeador

May 12, 2020

2.29 Final Project

1

Page 2: Lees-Doroditsyn Compressible Boundary Layer Equations

Motivation

β€’ Compressible, and specifically hypersonic, boundary layers can have complex velocity and temperature profiles

β€’ Lees-Doroditsyn transformation results in decreased need for boundary layer scaling

β€’ Boundary layer analysis is necessary to assess surface heating, skin friction, and external flow displacement effects

β€’ Developing robust methods for modeling hypersonic boundary layers

5/12/2020 C. ONYEADOR 2

Page 3: Lees-Doroditsyn Compressible Boundary Layer Equations

TSL L-D Coordinate Transformation

πœ‰ = ΰΆ±0

π‘₯

πœŒπ‘’π‘’π‘’πœ‡π‘’ 𝑑π‘₯ Ξ· =𝑒𝑒

2πœ‰ΰΆ±0

𝑦

𝜌 𝑑𝑦

𝐢𝑓′′ β€² + 𝑓𝑓′′ =2πœ‰

𝑒𝑒𝑓′ 2 βˆ’

πœŒπ‘’πœŒ

π‘‘π‘’π‘’π‘‘πœ‰

+ 2πœ‰ π‘“β€²πœ•π‘“β€²

πœ•πœ‰βˆ’πœ•π‘“

πœ•πœ‰π‘“β€²β€²

πœ•π‘

πœ•πœ‚= 0

𝐢

π‘ƒπ‘Ÿπ‘”β€²

β€²

+ 𝑓𝑔′ = 2πœ‰ π‘“β€²πœ•π‘”

πœ•πœ‰+𝑓′𝑔

β„Žπ‘’

πœ•β„Žπ‘’πœ•πœ‰

βˆ’ π‘”β€²πœ•π‘“

πœ•πœ‰+πœŒπ‘’π‘’π‘’πœŒβ„Žπ‘’

π‘“β€²π‘‘π‘’π‘’π‘‘πœ‰

βˆ’ 𝐢𝑒𝑒2

β„Žπ‘’π‘“β€²β€² 2

𝐢 =πœŒπœ‡

πœŒπ‘’πœ‡π‘’, 𝑔 =

β„Ž

β„Žπ‘’, and, 𝑓′ =

𝑒

𝑒𝑒

5/12/2020 C. ONYEADOR 3

Page 4: Lees-Doroditsyn Compressible Boundary Layer Equations

Lees-Dorodnitsyn Equationsβ€’ For 2D, Laminar, Compressible Boundary Layers

β€’ Effectively Parabolic

β€’ 5th Order system of coupled equations

β€’ Introduce F, U, S, H, and Q to simplify into 5 - 1st order equations

β—¦ 𝐹 = 𝑓 =πœ‘

2πœ‰(stream function relation)

β—¦ π‘ˆ =πœ•π‘“

πœ•πœ‚=

𝑒

𝑒𝑒(velocity relation)

β—¦ 𝑆 =πœ•π‘ˆ

πœ•πœ‚=

πœ•2𝑓

πœ•πœ‚2(shear stress relation)

β—¦ 𝐻 = 𝑔 =β„Ž

β„Žπ‘’=

𝑇

𝑇𝑒=

πœŒπ‘’

𝜌(enthalpy/temperature relation)

β—¦ 𝑄 =πœ•π‘”

πœ•πœ‚=

πœ•π»

πœ•πœ‚(heat transfer relation)

5/12/2020 C. ONYEADOR 4

Page 5: Lees-Doroditsyn Compressible Boundary Layer Equations

Flow Parameters

FLUID MODELS

β€’ Viscosity Sutherland’s Law

β—¦ πœ‡ =πœ‡π‘Ÿπ‘’π‘“

𝑇

π‘‡π‘Ÿπ‘’π‘“

32π‘‡π‘Ÿπ‘’π‘“+π‘†π‘Ÿπ‘’π‘“

𝑇+π‘†π‘Ÿπ‘’π‘“

β€’ Calorically Perfect Gas

β—¦ β„Ž = 𝑐𝑝𝑇

β—¦ 𝛾 = 1.4

β€’ Constant Pr

β—¦ 0.71 (Van Driest), 0.75, or 1

β€’ Isothermal wall

SPECIFIED PARAMETERS

β—¦ πœ‰π‘šπ‘Žπ‘₯

β—¦ πœ‚π‘’β—¦ 𝑇𝑒 β†’ β„Žπ‘’β—¦ π‘€π‘Žπ‘’ πœ‰ β†’ 𝑒𝑒

β—¦β„Žπ‘€

β„Žπ‘’β†’ β„Žπ‘€

β—¦ 𝑃𝑒 = πœŒπ‘’

5/12/2020 C. ONYEADOR 5

Page 6: Lees-Doroditsyn Compressible Boundary Layer Equations

Flow Parameters

FLUID MODELS

β€’ Viscosity Sutherland’s Law

β—¦ πœ‡ =πœ‡π‘Ÿπ‘’π‘“

𝑇

π‘‡π‘Ÿπ‘’π‘“

32π‘‡π‘Ÿπ‘’π‘“+π‘†π‘Ÿπ‘’π‘“

𝑇+π‘†π‘Ÿπ‘’π‘“

β€’ Calorically Perfect Gas

β—¦ β„Ž = 𝑐𝑝𝑇

β—¦ 𝛾 = 1.4

β€’ Constant Pr

β—¦ 0.71 (Van Driest), 0.75, or 1

β€’ Isothermal wall

SPECIFIED PARAMETERS

β—¦ πœ‰π‘šπ‘Žπ‘₯

β—¦ πœ‚π‘’β—¦ 𝑇𝑒 β†’ β„Žπ‘’β—¦ π‘€π‘Žπ‘’ πœ‰ β†’ 𝑒𝑒

β—¦β„Žπ‘€

β„Žπ‘’β†’ β„Žπ‘€

β—¦ 𝑃𝑒 = πœŒπ‘’

5/12/2020 C. ONYEADOR 6

Page 7: Lees-Doroditsyn Compressible Boundary Layer Equations

Boundary Conditionsβ€’ 5 Required for a 5th Order system:

β€’ Wall:

β—¦ πΉπ‘€π‘Žπ‘™π‘™ = 0

β—¦ π‘ˆπ‘€π‘Žπ‘™π‘™ = 0

β—¦ πΊπ‘€π‘Žπ‘™π‘™ = 𝐺𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑

β€’ Edge:

β—¦ π‘ˆπ‘’π‘‘π‘”π‘’ = 1

β—¦ 𝐺𝑒𝑑𝑔𝑒 = 1

β€’ Initial condition @ πœ‰ = 0

β—¦ 1D Flat plate similarity solution (calculated with Newton-Raphson method)

5/12/2020 C. ONYEADOR 7

Page 8: Lees-Doroditsyn Compressible Boundary Layer Equations

Residual Form

Fβ€² βˆ’ π‘ˆ = 0

π‘ˆβ€² βˆ’ 𝑆 = 0

𝐢𝑆 β€² + 𝐹𝑆 +2πœ‰

𝑒𝑒𝐻 βˆ’ π‘ˆ 2

π‘‘π‘’π‘’π‘‘πœ‰

+ 2πœ‰πœ•πΉ

πœ•πœ‰π‘† βˆ’ π‘ˆ

πœ•π‘ˆ

πœ•πœ‰= 0

𝐢

π‘ƒπ‘Ÿπ‘„

β€²

+ 𝐹𝑄 βˆ’ 2πœ‰ π‘ˆπœ•π»

πœ•πœ‰+π‘ˆπ»

β„Žπ‘’

πœ•β„Žπ‘’πœ•πœ‰

βˆ’ π‘„πœ•πΉ

πœ•πœ‰+π»π‘’π‘’β„Žπ‘’

π‘ˆπ‘‘π‘’π‘’π‘‘πœ‰

+ 𝐢𝑒𝑒2

β„Žπ‘’π‘† 2 = 0

𝐻′ βˆ’ 𝑄 = 0

5/12/2020 C. ONYEADOR

𝐹, π‘ˆ, 𝑆, 𝐻, 𝑄 are unknowns

8

Page 9: Lees-Doroditsyn Compressible Boundary Layer Equations

Finite Difference StencilBOX SCHEME

β€’ Space-march in πœ‰ direction

β€’ 2nd Order

β€’ Centered Difference in both directions

β€’ Similar to Crank Nicholson

3-POINT BACKWARD DIFFERENCE

β€’ Space-march in πœ‰ direction

β€’ 2nd Order

β€’ Centered Difference in πœ‚

β€’ 3-pt Backward Difference in πœ‰

5/12/2020 C. ONYEADOR

𝑖

𝑗 +1

2𝑗

𝑗 + 1

𝑖 +1

2

𝑖 + 1πœ‰

πœ‚

𝑖 βˆ’ 2

𝑗 +1

2𝑗

𝑗 + 1

𝑖

πœ‰

πœ‚

𝑖 βˆ’ 1

space marchspace march

9

Page 10: Lees-Doroditsyn Compressible Boundary Layer Equations

Box Stencil

𝑋 = 𝑋𝑖+12

𝑗+12 =

1

4𝑋𝑖𝑗+ 𝑋𝑖

𝑗+1+ 𝑋𝑖+1

𝑗+ 𝑋𝑖+1

𝑗+1

𝑋′ = 𝑋′𝑖+12

𝑗+12 =

𝑋𝑖+12

𝑗+1βˆ’ 𝑋

𝑖+12

𝑗

Ξ”πœ‚=

12 𝑋𝑖+1

𝑗+1+ 𝑋𝑖

𝑗+1βˆ’12 𝑋𝑖+1

𝑗+ 𝑋𝑖

𝑗

Ξ”πœ‚

πœ•π‘‹

πœ•πœ‰= α‰€πœ•π‘‹

πœ•πœ‰π‘–+12

𝑗+12

=𝑋𝑖+1

𝑗+12 βˆ’ 𝑋

𝑖

𝑗+12

Ξ”πœ‰=

12 𝑋𝑖+1

𝑗+1+ 𝑋𝑖+1

π‘—βˆ’12 𝑋𝑖

𝑗+1+ 𝑋𝑖

𝑗

Ξ”πœ‰

5/12/2020 C. ONYEADOR

𝑖

𝑗 +1

2𝑗

𝑗 + 1

𝑖 +1

2

𝑖 + 1πœ‰

πœ‚

10

Page 11: Lees-Doroditsyn Compressible Boundary Layer Equations

3pt - Backward Stencil

5/12/2020 C. ONYEADOR

𝑋 = 𝑋𝑖

𝑗+12 =

1

2𝑋𝑖𝑗+ 𝑋𝑖

𝑗+1

𝑋′ = 𝑋′𝑖

𝑗+12 =

𝑋𝑖𝑗+1

βˆ’ 𝑋𝑖𝑗

Ξ”πœ‚

πœ•π‘‹

πœ•πœ‰= α‰€πœ•π‘‹

πœ•πœ‰π‘–

𝑗+12

=

32𝑋𝑖

𝑗+12 βˆ’ 2𝑋

π‘–βˆ’1

𝑗+12 +

12π‘‹π‘–βˆ’2

𝑗+12

2Ξ”πœ‰=

32 𝑋𝑖

𝑗+1+ 𝑋𝑖

π‘—βˆ’ 2 π‘‹π‘–βˆ’1

𝑗+1+ π‘‹π‘–βˆ’1

𝑗+12 π‘‹π‘–βˆ’1

𝑗+1+ π‘‹π‘–βˆ’1

𝑗

4Ξ”πœ‰

𝑖 βˆ’ 2

𝑗 +1

2𝑗

𝑗 + 1

𝑖

πœ‰

πœ‚

𝑖 βˆ’ 1

11

Page 12: Lees-Doroditsyn Compressible Boundary Layer Equations

3pt - Backward Stencil

5/12/2020 C. ONYEADOR

𝑋 = 𝑋𝑖

𝑗+12 =

1

2𝑋𝑖𝑗+ 𝑋𝑖

𝑗+1

𝑋′ = 𝑋′𝑖

𝑗+12 =

𝑋𝑖𝑗+1

βˆ’ 𝑋𝑖𝑗

Ξ”πœ‚

πœ•π‘‹

πœ•πœ‰= α‰€πœ•π‘‹

πœ•πœ‰π‘–

𝑗+12

=

32𝑋𝑖

𝑗+12 βˆ’ 2𝑋

π‘–βˆ’1

𝑗+12 +

12π‘‹π‘–βˆ’2

𝑗+12

2Ξ”πœ‰=

32 𝑋𝑖

𝑗+1+ 𝑋𝑖

π‘—βˆ’ 2 π‘‹π‘–βˆ’1

𝑗+1+ π‘‹π‘–βˆ’1

𝑗+12 π‘‹π‘–βˆ’1

𝑗+1+ π‘‹π‘–βˆ’1

𝑗

4Ξ”πœ‰

πœ‰ = πœ‰π‘–π‘’π‘’ = 𝑒𝑒𝑖 = 𝑒𝑒 πœ‰π‘–β„Žπ‘’ = β„Žπ‘’π‘– = β„Žπ‘’ πœ‰π‘–

α‰€πœ•β„Žπ‘’πœ•πœ‰

=πœ•β„Žπ‘’πœ•πœ‰

𝑖

=πœ•β„Žπ‘’πœ•πœ‰

πœ‰π‘–

α‰€πœ•π‘’π‘’πœ•πœ‰

=πœ•π‘’π‘’πœ•πœ‰

𝑖

=πœ•π‘’π‘’πœ•πœ‰

πœ‰π‘–

𝑖 βˆ’ 2

𝑗 +1

2𝑗

𝑗 + 1

𝑖

πœ‰

πœ‚

𝑖 βˆ’ 1

Analytical Evaluations:

Finite difference approximations:

12

Page 13: Lees-Doroditsyn Compressible Boundary Layer Equations

Newton-Raphson Solverβ€’ Necessary for Non-linear system

β€’ 10 – Diagonal Sparse Matrix

β€’ Analytically calculated jacobian

β€’ Utilized MATLAB built in matrix solver

β€’ Quadratic convergence

β€’ Convergence criteria based on magnitude of max residual

5/12/2020 C. ONYEADOR

Matrix pattern

13

Page 14: Lees-Doroditsyn Compressible Boundary Layer Equations

Newton vs. MATLAB FSolveβ€’ Compared the Newton-Raphson Method against MATLAB’s nonlinear solver

β€’ Fsolve is a quasi-Newton method

β€’ Assumed both solution methods had similar accuracies

5/12/2020 C. ONYEADOR

Newton-Raphson MATLAB FSolve

Runtime 6-7 sec 116 sec

# of Iterations 3-4 2

Implementation Complexity ~650 lines ~125 lines

# of Function Evaluations 525 243

(Solved for 30 x 30 system)

14

Page 15: Lees-Doroditsyn Compressible Boundary Layer Equations

Selected Results

5/12/2020 C. ONYEADOR 15

Page 16: Lees-Doroditsyn Compressible Boundary Layer Equations

Error Analysisβ€’ L2 Error Analysis of π›Ώβˆ— πœ‰ , displacement

thickness

β€’ Compared to solution with fine resolution

β€’ Roughly 2nd order convergence, as expected

β€’ Comparable performance of Box Scheme and 3-pt scheme

5/12/2020 C. ONYEADOR

π›Ώβˆ— = ΰΆ±0

πœ‚π‘’

1 βˆ’Ο

Οπ‘’π‘ˆ

πœ•π‘¦

πœ•πœ‚π‘‘πœ‚ = ΰΆ±

0

πœ‚π‘’

1 βˆ’Ο

Οπ‘’π‘ˆ

𝐻 2πœ‰

π‘’π‘’πœŒπ‘’π‘‘πœ‚

16

Page 17: Lees-Doroditsyn Compressible Boundary Layer Equations

Conclusionsβ€’ Newton-Raphson (in this case) is significantly preferable to FSolve

β€’ Stability is not a significant concern for the backwards difference scheme

β€’ Oscillations are not present in the box scheme

β€’ There is no clear advantage to using the box scheme instead of the 3-pt backwards difference

β€’ Further sampling of the solution space may be necessary to determine overall behavior of solution methods

5/12/2020 C. ONYEADOR 17

Page 18: Lees-Doroditsyn Compressible Boundary Layer Equations

Thank youQuestions?

5/12/2020 C. ONYEADOR 18

Page 19: Lees-Doroditsyn Compressible Boundary Layer Equations

Appendix

5/12/2020 C. ONYEADOR 19

Page 20: Lees-Doroditsyn Compressible Boundary Layer Equations

5/12/2020 C. ONYEADOR 20

πœ‰ = πœ‰π‘–+12

𝑒𝑒 = 𝑒𝑒𝑖+12

= 𝑒𝑒 πœ‰π‘–+12

β„Žπ‘’ = β„Žπ‘’π‘–+12

= β„Žπ‘’ πœ‰π‘–+12

α‰€πœ•β„Žπ‘’πœ•πœ‰

=πœ•β„Žπ‘’πœ•πœ‰

𝑖+12

=πœ•β„Žπ‘’πœ•πœ‰

πœ‰π‘–+12

α‰€πœ•π‘’π‘’πœ•πœ‰

=πœ•π‘’π‘’πœ•πœ‰

𝑖+12

=πœ•π‘’π‘’πœ•πœ‰

πœ‰π‘–+12

Analytical Evaluations:

πœ‰ = πœ‰π‘–π‘’π‘’ = 𝑒𝑒𝑖 = 𝑒𝑒 πœ‰π‘–β„Žπ‘’ = β„Žπ‘’π‘– = β„Žπ‘’ πœ‰π‘–

α‰€πœ•β„Žπ‘’πœ•πœ‰

=πœ•β„Žπ‘’πœ•πœ‰

𝑖

=πœ•β„Žπ‘’πœ•πœ‰

πœ‰π‘–

α‰€πœ•π‘’π‘’πœ•πœ‰

=πœ•π‘’π‘’πœ•πœ‰

𝑖

=πœ•π‘’π‘’πœ•πœ‰

πœ‰π‘–

Analytical Evaluations:

Page 21: Lees-Doroditsyn Compressible Boundary Layer Equations

Chapman Rubesin factorβ€’ 𝐢 = 𝐢 𝑔

β€’ 𝐢𝑖+

1

2

𝑗+1

2 = 𝐢 𝑔𝑖+

1

2

𝑗+1

2

β€’ 𝐢𝑖+

1

2

𝑗+1

2 =1

4𝐢 𝑔𝑖

𝑗+ 𝐢 𝑔𝑖+1

𝑗+ 𝐢 𝑔𝑖

𝑗+1+ 𝐢 𝑔𝑖+1

𝑗+1

5/12/2020 C. ONYEADOR 21

Page 22: Lees-Doroditsyn Compressible Boundary Layer Equations

Similarity Equations

𝐢𝑓′′ β€² + 𝑓𝑓′′ = 0

𝐢

π‘ƒπ‘Ÿπ‘”β€²

β€²

+ 𝑓𝑔′ + 𝐢𝑒𝑒2

β„Žπ‘’π‘“β€²β€² 2 = 0

Fβ€² = π‘ˆ

π‘ˆβ€² = 𝑆

𝐢𝑆 β€² + 𝐹𝑆 = 0

𝐻′ = 𝑄

𝐢

π‘ƒπ‘Ÿπ‘„

β€²

+ 𝐹𝑄 + 𝐢𝑒𝑒2

β„Žπ‘’π‘† 2 = 0

𝑔 = 𝐻

𝑓 = 𝐹

2 - Coupled 2nd and 3rd Order Diff. Eqns 5 - Coupled 1st Order ODEs (Drela Notation)

Where πœ™β€² =πœ•πœ™

πœ•πœ‚

5/12/2020 C. ONYEADOR 22