lectures 08 decision making

15
Fahiem Bacchus, University of Toronto 1 Dec i s i on Ma k i ng U nd er Uncertainty. C ha pter 1 6 i n y o ur tex t. C SC 384 h: Int r o t o A r t i fi c i a l I nt e l l i gence  w  w  w  .   j    n  t   u  w  o r  l    d   .  c  o  m  w  w  w  . j    n  t   u  w  o r  l    d   .  c  o  m  w  w  w  .   j    w   j    o  b   s  .  n  e  t  

Upload: navathi1

Post on 07-Aug-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 1/64

Fahiem Bacchus, University of Toronto1

Decision Making Under

Uncertainty.

Chapter 16 in your text.

CSC384h: Intro to Artificial Intelligence

 w w w .  j    n t   u w or  l    d   . c o

 m

 w w w .j    n t   u w or  l    d   . c o m

 w

 w w .  j    w  j    o b   s  . n e t  

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 2/64

Preferences

I give robot a planning problem: I want coffee

but coffee maker is broken: robot reports “No plan!”

Fahiem Bacchus, University of Toronto2

 w w w .  j    n t   u w or  l    d   . c o

 m

 w w w .j    n t   u w or  l    d   . c o m

 w

 w w .  j    w  j    o b   s  . n e t  

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 3/64

Preferences

We really want more robust behavior. Robot to know what to do if my primary goal can’t

be satisfied – I should provide it with some indication

of my p re fe re nc e s o ve r a lte rna t ive s  e.g., coffee better than tea, tea better than water,

water better than nothing, etc.

But it’s more complex: it could wait 45 minutes for coffee maker to be fixed

what’s better: tea now? coffee in 45 minutes?

could express preferences for <beverage,time> pairs

Fahiem Bacchus, University of Toronto3

 w w w .  j    n t   u w or  l    d   . c o

 m

 w w w .j    n t   u w or  l    d   . c o m

 w

 w w .  j    w  j    o b   s  . n e t  

 w

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 4/64

Preference Orderings

A p re fe re nc e o rd e ring  ≽ is a ranking of all

possible states of affairs (worlds) S

these could be outcomes of actions, truth assts,states in a search problem, etc.

s≽ t: means that state s is a t le a st a s g o o d a s t

s≻ t: means that state s is stric t ly p re fe rre d to t

We insist that ≽ is

reflexive: i.e., s ≽ s for all states s transitive: i.e., if s≽ t and t ≽ w, then s ≽ w

connected: for all states s,t, either s≽ t or t ≽ s

Fahiem Bacchus, University of Toronto4

w w w .  j    n t   u w or  l    d   . c o

 m

 w w w .j    n t   u w or  l    d   . c o m

 w

 w w .  j    w  j    o b   s  . n e t  

 w

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 5/64

Why Impose These Conditions?

Structure of preference orderingimposes certain “rationality

requirements” (it is a weak ordering)E.g., why transitivity?

Suppose you (strictly) prefer coffee to

tea, tea to OJ , OJ to coffee If you prefer X to Y, you’ll trade me Y

plus $1 for X

I can construct a “money pump” andextract arbitrary amounts of moneyfrom you

Fahiem Bacchus, University of Toronto5

Best

Worst

w w w .  j    n t   u w or  l    d   . c o

 m

 w w w .j    n t   u w or  l    d   . c o m

 w

 w w .  j    w  j    o b   s  . n e t  

 w

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 6/64

Decision Problems: Certainty

A d e c isio n p ro b lem und e r c e rta in ty is: a set of decis ions D

e.g., paths in search graph, plans, actions… a set of o u t c ome s or states S

e.g., states you could reach by executing a plan

an o u tc om e func t io n f : D→

S the outcome of any decision

a preference ordering ≽ over S

A solution to a decision problem is any d*∊ Dsuch that f(d*) ≽ f(d) for all d∊D

Fahiem Bacchus, University of Toronto6

w w w .  j    n t   u w or  l    d   . c o

 m

 w w w .j    n t   u w or  l    d   . c o m

 w

 w w .  j    w  j    o b   s  . n e t  

 w

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 7/64

Decision Problems: Certainty

A d e c isio n p ro b lem und e r c e rta in ty is: a set of decis ions D

a set of o u t c ome s or states S

an ou t c om e func t ion f : D →S

a preference ordering ≽ over S

A solution to a decision problem is any d*∊ D such

that f(d*) ≽ f(d) for all d∊D

e.g., in classical planning we that any goal state s ispreferred/equal to every other state. So d* is a solution iff

f(d*) is a solution state. I.e., d* is a solution iff it is a plan thatachieves the goal.

More generally, in classical planning we might considerdifferent goals with different values, and we want d* to be

a plan that optimizes our value.

Fahiem Bacchus, University of Toronto7

w w w .  j    n t   u w or  l    d   . c o

 m

 w w w .j    n t   u w or  l    d   . c o m

 w

 w w .  j    w  j    o b   s  . n e t  

 w 

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 8/64

Decision Making under Uncertainty

Suppose actions don’t have deterministic outcomes e.g., when robot pours coffee, it spills 20% of time, making a

mess preferences: chc, ¬mess≻ ¬chc,¬mess≻ ¬chc, mess

What should robot do? decision ge t co f f ee leads to a good outcome and a bad

outcome with some probability

decision dono th ing leads to a medium outcome for sure Should robot be optimistic? pessimistic? Really odds of success should influence decision

but how?

Fahiem Bacchus, University of Toronto8

getcoffee

chc, ¬mess

¬chc, mess

donothing ¬chc, ¬mess.8

.2

ww w .  j    n t   u w or  l    d   . c o

 m

 w w w .j    n t   u w or  l    d   . c o m

 w

 w w .  j    w  j    o b   s  . n e t  

 w w

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 9/64

Utilities

Rather than just ranking outcomes, we mustquantify our degree of preference

e.g., how much more important is having coffeethan having tea?

A u tility func tio n U: S→ℝ associates a real-

valued utility with each outcome (state). U(s) quantifies our degree of preference for s

Note: U induces a preference ordering ≽U over

the states S defined as: s≽U t iff U(s) ≥ U(t)

  ≽U is reflexive, transitive, connected

Fahiem Bacchus, University of Toronto9

ww w .  j    n t   u w or  l    d   . c o

 m

 w w w .j    n t   u w or  l    d   . c o m

 w

 w w .  j    w  j    o b   s  . n e t  

 w w

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 10/64

Expected Utility

With utilities we can compute expected utilities!

In decision making under uncertainty, each

decision d induces a distribution Prd overpossible outcomes

Prd(s) is probability of outcome s under decision d

 The e xp e c te d ut ilit y of decision d is defined

Fahiem Bacchus, University of Toronto10

∑∈

=

S s

d  sU sd  EU  )()(Pr )(

ww w .  j    n t   u w or  l    d   . c o

 m

 w w w .j    n t   u w o

r  l    d   . c o m

 w

 w w .  j    w  j    o b   s  . n e t  

 w w

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 11/64

Expected Utility

Say U(chc,¬ms) = 10, U(¬chc,¬ms) = 5,U(¬chc,ms) = 0,

 Then EU(getcoffee) = 8

EU(donothing) = 5

If U(chc,¬ms) = 10, U(¬chc,¬ms) = 9,U(¬chc,ms) = 0,

EU(getcoffee) = 8

EU(donothing) = 9

Fahiem Bacchus, University of Toronto11

w w .  j    n t   u w or  l    d   . c o m

 w w w .j    n t   u w o

r  l    d   . c o m

 w

 w w .  j    w  j    o b   s  . n e t  

 w w

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 12/64

 The MEU Principle

 The p rinc ip le o f m a xim um e xp e c te d ut ilit y(MEU) states that the optimal decision under

conditions of uncertainty is the decision that hasgreatest expected utility.

In our example

if my utility function is the first one, my robot shouldget coffee

if your utility function is the second one, your robot

should do nothing

Fahiem Bacchus, University of Toronto12

w w .  j    n t   u w or  l    d   . c o m

 w w w .j    n t   u w o

r  l    d   . c o m

 w

 w w .  j    w  j    o b   s  . n e t  

 w w

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 13/64

Computational Issues

At some level, solution to a dec. prob. is trivial complexity lies in the fact that the decisions and outcome

function are rarely specified explicitly

e.g., in planning or search problem, you const ruct the set ofdecisions by constructing paths or exploring search paths. Then we have to evaluate the expected utility of each.Computationally hard!

e.g., we find a plan achieving some expected utility e

Can we stop searching?

Must convince ourselves no better plan exists

Generally requires searching entire plan space, unlesswe have some c lever tricks

Fahiem Bacchus, University of Toronto13

w w .  j    n t   u w or  l    d   . c o m

 w w w .j    n t   u w o

r  l    d   . c o m

 w

 w w .  j    w  j    o b   s  . n e t  

 w w w

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 14/64

Decision Problems: Uncertainty

A d e c isio n p ro b lem und e r unc e rta in ty is: a set of decis ions D

a set of o u t c ome s or states S an o u tc om e func t io n Pr : D →Δ(S)

 Δ(S) is the set of distributions over S (e.g., Prd)

a utility function U over SA solution to a decision problem under

uncertainty is any d*∊ D such that EU(d*) ≽ EU(d)

for all d∊D

Fahiem Bacchus, University of Toronto14

w .  j    n t   u w or  l    d   . c o m

 w w w .j    n t   u w o

r  l    d   . c o m

 w

 w w .  j    w  j    o b   s  . n e t  

 w w w

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 15/64

Expected Utility: Notes

Note that this viewpoint accounts for both:

uncertainty in action outcomes

uncertainty in state of knowledge any combination of the two

Fahiem Bacchus, University of Toronto15

s0

s1

s2a

0.80.2

s3

s4

b 0.30.7

0.7 s1

0.3 s2

0.7 t1

0.3 t2

0.7 w1

0.3 w2

a

b

Stochastic actions Uncertain knowledge

w .  j    n t   u w or  l    d   . c o m

 w w w .j    n t   u w o

r  l    d   . c o m

 w

 w w .  j    w  j    o b   s  . n e t  

 w w w

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 16/64

Expected Utility: Notes

Why MEU? Where do utilities come from?

underlying foundations of utility theory tightlycouple utility with action/choice

a utility function can be determined by askingsomeone about their preferences for actions inspecific scenarios (or “lotteries” over outcomes)

Utility functions needn’t be unique

if I multiply U by a positive constant, all decisionshave same relative utility

if I add a constant to U, same thing

U is un iq ue up to p o sit ive a ffine tra nsfo rm a t io n 

Fahiem Bacchus, University of Toronto16

w .  j    n t   u w or  l    d   . c o m

 w w w .j    n t   u w o

r  l    d   . c o m

 w

 w w .  j    w  j    o b   s  . n e t  

 w w w

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 17/64

So What are the Complications?

Outcome space is large

like all of our problems, states spaces can be huge

don’t want to spell out distributions like Prd explicitly Soln: Bayes nets (or related: in flue nc e d ia g ra m s )

Fahiem Bacchus, University of Toronto17

w .  j    n t   u w or  l    d   . c o m

 w w w .j    n t   u w o

r  l    d   . c o m

 w

 w w .  j    w  j    o b   s  . n e t  

 w w w

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 18/64

So What are the Complications?

Decision space is large

usually our decisions are not one-shot actions

rather they involve sequential choices (like plans) if we treat each plan as a distinct decision, decision

space is too large to handle directly

Soln: use dynamic programming methods toconst ruct optimal plans (actually generalizations ofplans, called policies… like in game trees)

Fahiem Bacchus, University of Toronto18

w .  j    n t   u w or  l    d   . c o m

 w w w .j    n t   u w o

r  l    d   . c o m

 w

 w w .  j    w  j    o b   s  . n e t  

 w w w

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 19/64

An Simple Example

Suppose we have two actions: a, b

We have time to execute tw o actions in

sequence  This means we can do either:

[a,a], [a,b], [b,a], [b,b]

Actions are stochastic: action a inducesdistribution Pra(si | s j) over states

e.g., Pra(s2 | s1) = .9 means prob. of moving to state

s2 when a is performed at s1 is .9 similar distribution for action b

How good is a particular sequence of actions?

Fahiem Bacchus, University of Toronto19

w .  j    n t   u w or  l    d   . c o m

 w w w .j    n t   u w o

r  l    d   . c o m

 w

 w w .  j    w  j    o b   s  . n e t  

 w w w .

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 20/64

Distributions for Action Sequences

Fahiem Bacchus, University of Toronto20

s1

s13s12s3s2

a b

.9 .1 .2 .8

s4 s5

.5 .5

s6 s7

.6 .4

a b

s8 s9

.2 .8

s10 s11

.7 .3

a b

s14 s15

.1 .9

s16 s17

.2 .8

a b

s18 s19

.2 .8

s20 s21

.7 .3

a b

.  j    n t   u w or  l    d   . c o m

 w w w .j    n t   u w o

r  l    d   . c o m

 w

 w w .  j    w  j    o b   s  . n e t  

 w w w .j

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 21/64

Distributions for Action Sequences

Sequence [a,a] gives distribution over “final states” Pr(s4) = .45, Pr(s5) = .45, Pr(s8) = .02, Pr(s9) = .08

Similarly: [a,b]: Pr(s6) = .54, Pr(s7) = .36, Pr(s10) = .07, Pr(s11) = .03 and similar distributions for sequences [b,a] and [b,b]

Fahiem Bacchus, University of Toronto21

s1

s13s12s3s2

a b

.9 .1 .2 .8

s4 s5

.5 .5

s6 s7

.6 .4

a b

s8 s9

.2 .8

s10 s11

.7 .3

a b

s14 s15

.1 .9

s16 s17

.2 .8

a b

s18 s19

.2 .8

s20 s21

.7 .3

a b

  j    n t   u w or  l    d   . c o m

 w w w .j    n t   u w o

r  l    d   . c o m

 w

 w w .  j    w  j    o b   s  . n e t  

 w w w .  j   

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 22/64

How Good is a Sequence?

We associate ut ilit ie s w ith the “fina l” o utc om e s  how good is it to end up at s4, s5, s6, …

Now we have: EU(aa) = .45u(s4) + .45u(s5) + .02u(s8) + .08u(s9)

EU(ab) = .54u(s6) + .36u(s7) + .07u(s10) + .03u(s11)

etc…

Fahiem Bacchus, University of Toronto22

j n t   u w or  l    d   . c o m

 w w w .j    n t   u w o

r  l    d   . c o m

 w

 w w .  j    w  j    o b   s  . n e t  

 w w w .  j   

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 23/64

Utilities for Action Sequences

Fahiem Bacchus, University of Toronto23

s1

s13s12s3s2

a b

.9 .1 .2 .8

u(s4) u(s5)

.5 .5u(s6)

.6 .4

a b

.2 .8 .7 .3

a b

.1 .9 .2 .8

a b

.2 .8u(s21)

.7 .3

a b

etc….Looks a lot like a game tree, but with chance nodes 

instead of min nodes. (We average instead of minimizing) 

j n t   u w or  l    d   . c o m

 w w w .j    n t   u w o

r  l    d   . c o m

 w

 w w .  j    w  j    o b   s  . n e t  

 w w w .  j   

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 24/64

Ac t io n Se q uenc e s are not sufficient

Suppose we do a first; we could reach s2 or s3: At s2, assume: EU(a) = .5u(s4) + .5u(s5) > EU(b) = .6u(s6) + .4u(s7)

At s3: EU(a) = .2u(s8) + .8u(s9) < EU(b) = .7u(s10) + .3u(s11)

After doing a first, we want to do a next if w e re a c h s2 , but wewant to do b second if w e re a c h s3 

Fahiem Bacchus, University of Toronto24

s1

s13s12s3s2

a b

.9 .1 .2 .8

s4 s5

.5 .5

s6 s7

.6 .4

a b

s8 s9

.2 .8

s10 s11

.7 .3

a b

s14 s15

.1 .9

s16 s17

.2 .8

a b

s18 s19

.2 .8

s20   s21

.7 .3

a b

j n t   u w or  l    d   . c o m

 w w w .j    n t   u w o

r  l    d   . c o m

 w

 w w .  j    w  j    o b   s  . n e t  

 w w w .  j    n

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 25/64

Policies

 This suggests that when dealing with uncertaintywe want to consider pol ic ies , not just sequencesof actions (plans)

We have eight policies for this decision tree:

[a; if s2 a, if s3 a] [b; if s12 a, if s13 a]

[a; if s2 a, if s3 b] [b; if s12 a, if s13 b][a; if s2 b, if s3 a] [b; if s12 b, if s13 a]

[a; if s2 b, if s3 b] [b; if s12 b, if s13 b]

Contrast this with four “plans” [a; a], [a; b], [b; a], [b; b]

note: each plan corresponds to a policy, so we can

only ga in by allowing decision maker to use policiesFahiem Bacchus, University of Toronto25

n t   u w or  l    d   . c o m

 w w w .j    n t   u w or  l    d   . c o m

 w w w .  j    w  j    o b   s  . n e t  

 w w w .  j    n

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 26/64

Evaluating Policies

Number of plans (sequences) of length k  exponential in k : | A | k  if A is our action set

Number of policies is even larger if we have n=| A |  actions and m=| O |  outcomes

per action, then we have ( nm) k policies

Fortunately, d ynam ic p ro g ra mm ing can be used e.g., suppose EU(a) > EU(b) at s2

never consider a policy that does anything else at

s2How to do this?

back values up the tree much like minimax search

Fahiem Bacchus, University of Toronto26

n t   u w or  l    d   . c o m

 w w w .j    n t   u w or  l    d   . c o m

 w w w .  j    w  j    o b   s  . n e t  

 w w w .  j    n

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 27/64

Decision TreesSquares denote cho i ce nodes

these denote action choicesby decision maker (decis ionnodes ) 

Circles denote c h a n c e  nodes these denote uncertainty

regarding action effects “Nature” will choose the child

with specified probability

 Terminal nodes labeled withutilities 

denote utility of final state (or itcould denote the utility of“trajectory” (branch) todecision maker

Fahiem Bacchus, University of Toronto27

s1a

b

.9 .1 .2 .8

5 2 4 3

n t   u w or  l    d   . c o m

 w w w .j    n t   u w or  l    d   . c o m

 w w w .  j    w  j    o b   s  . n e t  

 w w w .  j    n

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 28/64

Evaluating Decision Trees

Procedure is exactly like game trees, except… key difference: the “opponent” is “nature” who

simply chooses outcomes at chance nodes with

specified probability: so we take expectationsinstead of minimizing

Back values up the tree

U(t) is defined for all terminals (part of input) U(n) =exp {U(c ) : c a child of n } if n is a chance

node

U(n) =max {U(c ) : c a child of n } if n is a choicenode

At any choice node (state), the decision makerchooses action that leads to h ig he st u tility c h ild 

Fahiem Bacchus, University of Toronto28

n t   u w or  l    d   . c o m

 w w w .j    n t   u w or  l    d   . c o m

 w w w .  j    w  j    o b   s  . n e t  

 w w w .  j    n    

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 29/64

Evaluating a Decision Tree

U(n3) = .9*5 + .1*2

U(n4) = .8*3 + .2*4

U(s2) = max{U(n3), U(n4)} decision a or b (whichever is

max)

U(n1) = .3U(s2) + .7U(s3)U(s1) = max{U(n1), U(n2)}

decision: max of a, b

Fahiem Bacchus, University of Toronto29

s2

n3a b

.9 .1

5 2

n4.8 .2

3 4

s1

n1

a b

.3 .7n2

s3

t u w or  l    d   . c o m

 w w w .j    n t   u w or  l    d   . c o m

 w w w .  j    w  j    o b   s  . n e t  

 w w w .  j    n t  

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 30/64

Decision Tree Policies

Note that we don’t just compute values,but policies for the

treeA p o lic y   assigns adecision to each

choice node in tree

Fahiem Bacchus, University of Toronto30

Some policies can’t be distinguished in terms of theirexpected values

e.g., if policy chooses a  at node s1, choice at s4 doesn’tmatter because it won’t be reached

 Two policies are im p lem enta t io na lly ind ist ing uisha b le if theydisagree only at unreachable decision nodes

reachability is determined by policy themselves

s2

n3

a b

n4

s1

n1

a b

.3 .7n2

s3 s4

a bab

t u w or  l    d   . c o m

 w w w .j    n t   u w or  l    d   . c o m

 w w w .  j    w  j    o b   s  . n e t  

 w w w .  j    n t  

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 31/64

Key Assumption: Observability

Full observability:we must know the initial stateand outcome of each action

specifically, to implement the policy,w e m ust b ea b le to re so lve the unc e rta in ty o f a ny c ha nc e no d e

tha t is fo llo w e d b y a d e c isio n no d e 

e.g., after doing a at s1, we must know which of the

outcomes (s2 or s3) was realized so we know whataction to do next (note: s2 and s3 may prescribedifferent ations)

Fahiem Bacchus, University of Toronto31

t u w or  l    d   . c o m

 w w w .j    n t   u w or  l    d   . c o m

 w w w .  j    w  j    o b   s  . n e t  

 w w w .  j    n t   u

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 32/64

Computational Issues

Savings compared to explicit policy evaluation issubstantial

Evaluate only O(( nm) d ) nodes in tree of depth d total computational cost is thus O(( nm) d )

Note that this is how many p o lic ie s  there are but evaluating a single policy explicitly requires

substantial computation: O(nm d ) total computation for explicity evaluating each

policy would be O(n d m 2d ) !!!

 Tremendous value to dynamic programmingsolution

Fahiem Bacchus, University of Toronto32

u w or  l    d   . c o m

 w w w .j    n t   u w or  l    d   . c o m

 w w w .  j    w  j    o b   s  . n e t  

 w w w .  j    n t   u

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 33/64

Computational Issues

Tree size:grows exponentially with depth

Possible solutions:

bounded lookahead with heuristics (like gametrees)

heuristic search procedures (like A*)

Fahiem Bacchus, University of Toronto33

u w or  l    d   . c o m

 w w w .j    n t   u w or  l    d   . c o m

 w w w .  j    w  j    o b   s  . n e t  

 w w w .  j    n t   u

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 34/64

Other Issues

Specification:suppose each state is anassignment to variables; then representingaction probability distributions is complex (andbranching factor could be immense)

Possible solutions:

represent distribution using Bayes nets solve problems using d e c isio n ne tw o rks (or

influence diagrams)

Fahiem Bacchus, University of Toronto34

u w or  l    d   . c o m

 w w w .j    n t   u w or  l    d   . c o m

 w w w .  j    w  j    o b   s  . n e t  

 w w w .  j    n t   u

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 35/64

Large State Spaces (Variables)

 To represent outcomes of actions or decisions,we need to specify distributions

Pr(s| d) : probability of outcome s given decision d

Pr(s| a,s’): prob. of state s given that action aperformed in state s’

But state space exponential in # of variables spelling out distributions explicitly is intractable

Bayes nets can be used to represent actions

this is just a joint distribution over variables,conditioned on action/decision and previous state

Fahiem Bacchus, University of Toronto35

u w or  l    d   . c o m

 w w w .j    n t   u w or 

 l    d   . c o m

 w w

 w .  j    w  j    o b   s  . n e t  

 w w w .  j    n t   u w

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 36/64

Decision Networks

De c isio n ne tw o rks (more commonly known asin flue nc e d ia g ra m s ) provide a way ofrepresenting sequential decision problems

basic idea: represent the variables in the problemas you would in a BN

add decision variables – variables that you

“control”

add utility variables – how good different states are

Fahiem Bacchus, University of Toronto36

w or  l    d   . c o m

 w w w .j    n t   u w or 

 l    d   . c o m

 w w

 w .  j    w  j    o b   s  . n e t  

 w w w .  j    n t   u w

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 37/64

Sample Decision Network

Fahiem Bacchus, University of Toronto37

Disease

TstResult

Chills

Fever

BloodTst Drug

U

optional

w or  l    d   . c o m

 w w w .j    n t   u w or 

 l    d   . c o m

 w w

 w .  j    w  j    o b   s  . n e t  

 w w w .  j    n t   u w

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 38/64

Decision Networks: Chance Nodes

Chance nodes

random variables, denoted by circles

as in a BN, probabilistic dependence on parents

Fahiem Bacchus, University of Toronto38

Disease

Fever

Pr(flu) = .3Pr(mal) = .1

Pr(none) = .6

Pr(f|flu) = .5Pr(f|mal) = .3

Pr(f|none) = .05

TstResult

BloodTst

Pr(pos|flu,bt) = .2Pr(neg|flu,bt) = .8

Pr(null|flu,bt) = 0Pr(pos|mal,bt) = .9Pr(neg|mal,bt) = .1Pr(null|mal,bt) = 0Pr(pos|no,bt) = .1

Pr(neg|no,bt) = .9Pr(null|no,bt) = 0Pr(pos|D,¬bt) = 0Pr(neg|D,¬bt) = 0Pr(null|D,¬bt) = 1

w or  l    d   . c o m

 w w w .j    n t   u w or 

 l    d   . c o m

 w w

 w .  j    w  j    o b   s  . n e t  

 w w w .  j    n t   u w

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 39/64

Decision Networks: Decision Nodes

Decision nodes variables decision maker sets, denoted by squares

parents reflect in fo rm a t io n a va ila b le at time

decision is to be made In example decision node: the actual values ofCh and Fev will be observed before the decision

to take test must be made agent can make d if fe re nt d e c isio ns for each

instantiation of parents

Fahiem Bacchus, University of Toronto39

Chills

FeverBloodTst BT ∊ {bt, ¬bt}

w or  l    d   . c o m

 w w w .j    n t   u w or 

 l    d   . c o m

 w w

 w .  j    w  j    o b   s  . n e t  

 w w w .  j    n t   u w

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 40/64

Decision Networks: Value Node

Value node

specifies utility of a state, denoted by a diamond

utility dependso n ly o n sta te o f p a re n ts of valuenode

generally: only one value node in a decisionnetwork

Utility depends only on disease and drug

Fahiem Bacchus, University of Toronto40

Disease

BloodTst Drug

U

optional

U(fludrug, flu) = 20U(fludrug, mal) = -300

U(fludrug, none) = -5U(maldrug, flu) = -30U(maldrug, mal) = 10U(maldrug, none) = -20U(no drug, flu) = -10

U(no drug, mal) = -285U(no drug, none) = 30

w or  l    d   . c o m

 w w w .j    n t   u w or 

 l    d   . c o m

 w w

 w .  j    w  j    o b   s  . n e t  

 w w w .  j    n t   u w

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 41/64

Decision Networks: Assumptions

Decision nodes are totally ordered decision variables D1, D2, …, Dn

decisions are made in sequence

e.g., BloodTst (yes,no) decided before Drug(fd,md,no)

Fahiem Bacchus, University of Toronto41

w or  l    d   . c o m

 w w w .j    n t   u w or 

 l    d   . c o m

 w w

 w .  j    w  j    o b   s  . n e t  

i i k i

 w w w .  j    n t   u w o

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 42/64

Decision Networks: Assumptions

No -fo rg e t t ing p ro p e rty  any information available when decision Di is made

is available when decision D j is made (for i < j)

thus all parents of Di are parents of D j Network does not show these “implicit parents”, but the

links are present, and must be considered whenspecifying the network parameters, and when

computing.

Fahiem Bacchus, University of Toronto42

Chills

Fever

BloodTst DrugDashed arcsensure theno-forgettingproperty

or  l    d   . c o m

 w w w .j    n t   u w or 

 l    d   . c o m

 w w

 w .  j    w  j    o b   s  . n e t  

P li i

 w w w .  j    n t   u w o

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 43/64

Policies

Let Par(D i  ) be the parents of decision node D i  Dom(Par(D i  )) is the set of assignments to parents

A policyδ  

is a set of mappingsδ  i , one for eachdecision node D i 

  δ  i :Dom(Par(D i  )) →Dom(D i  ) 

  δ  i associates a decision with each parent asst forD i 

For example, a policy for BT might be:   δ  BT (c ,f) = b t

  δ  BT (c ,¬f) = ¬b t    δ  BT (¬c ,f) = b t    δ  BT (¬c ,¬f) = ¬b t 

Fahiem Bacchus, University of Toronto43

Chills

FeverBloodTst

or  l    d   . c o m

 w w w .j    n t   u w or 

 l    d   . c o m

 w w

 w .  j    w  j    o b   s  . n e t  

V l f P li

 w w w .  j    n t   u w o

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 44/64

Value of a Policy

Va lue o f a p o lic y δ  is the expected utility giventhat decision nodes are executed according toδ  

Given asst x to the set X of all chance variables,let δ  (x) denote the asst to decision variablesdictated by δ  

e.g., asst to D 1 determined by it’s parents’ asst in x e.g., asst to D 2 determined by it’s parents’ asst in x

along with whatever was assigned to D 1  etc.

Value of δ  : EU(δ  ) =ΣX P(X, δ  (X)) U(X, δ  (X))

Fahiem Bacchus, University of Toronto44

or  l    d   . c o m

 w w w .j    n t   u w or  l    d   . c o m

 w w

 w .  j    w  j    o b   s  . n e t  

O ti l P li i

 w w w .  j    n t   u w o

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 45/64

Optimal Policies

An o p t im a l p o lic y is a policy δ  * such thatEU(δ*  ) ≥ EU(δ  ) for all policiesδ  

We can use the dynamic programming principleto avoid enumerating all policies

We can also use the structure of the decision

network to use variable elimination to aid in thecomputation

Fahiem Bacchus, University of Toronto45

or  l    d   . c o m

 w w w .j    n t   u w or  l    d   . c o m

 w w

 w .  j    w  j    o b   s  . n e t  

C ti th B t P li

 w w w .  j    n t   u w o 

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 46/64

Computing the Best Policy

We can work backwards as follows

First compute optimal policy for Drug (last dec’n)

for each asst to parents (C,F,BT,TR) and for eachdecision value (D = md,fd,none), c om p ute theexp ec ted va lue of choosing that value of D

set policy choice for each

value of parents to bethe value of D thathas max value

eg: δ  D (c ,f,b t ,p o s) = m d

Fahiem Bacchus, University of Toronto46

Disease

TstResultChills

FeverBloodTst Drug

U

optional

r l    d   . c o m

 w w w .j    n t   u w or  l    d   . c o m

 w w

 w .  j    w  j    o b   s  . n e t  

Computing the Best Policy

 w w w .  j    n t   u w or 

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 47/64

Computing the Best Policy

Next compute policy for BT given policyδ  D (C ,F,BT,TR) just determined for Drug

since δ  D (C ,F,BT,TR) is fixed, we can treat Drug as a

normal random variable with deterministicprobabilities

i.e., for any instantiation of parents, value of Drug is

fixed by policy δ  D 

this means we can solve for optimal policy for BT justas before

only uninstantiated vars are random vars (once wefix its parents)

Fahiem Bacchus, University of Toronto47

r l    d   . c o m

 w w w .j    n t   u w or  l    d   . c o m

 w w

 w .  j    w  j    o b   s  . n e t  

Computing the Best Policy

 w w w .  j    n t   u w or 

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 48/64

Computing the Best Policy How do we compute these expected values?

suppose we have asst <c,f ,bt ,pos> to parents of Drug  we want to compute EU of deciding to set Drug = m d  we can run variable elimination!

 Treat C ,F,BT,TR,D r as evidence this reduces factors (e.g., U restricted to b t ,md : depends onDis )

eliminate remaining variables (e.g., only Dise a se left)

left with factor:U() =ΣDis P(Dis| c,f,bt,pos,md)U(Dis)

Fahiem Bacchus, University of Toronto48

Disease

TstResult

Chills

Fever

BloodTst Drug

U

optional

r l    d   . c o m

 w w w .j    n t   u w or  l    d   . c o m

 w w

 w .  j    w  j    o b   s  . n e t  

Computing the Best Policy

 w

 w w .  j    n t   u w or 

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 49/64

Computing the Best Policy

We now know EU of doing Dr=md when c , f ,b t ,pos true

Can do same for fd ,no to

decide which is best

Fahiem Bacchus, University of Toronto49

Disease

TstResult

Chills

Fever

BloodTst Drug

U

optional

r l    d   . c o m

 w w w .j    n t   u w or  l    d   . c o m

 w w

 w .  j    w  j    o b   s  . n e t  

Computing Expected Utilities

 w

 w w .  j    n t   u w or  l   

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 50/64

Computing Expected Utilities

 The preceding illustrates a general phenomenon computing expected utilities with BNs is quite easy

utility nodes are just factors that can be dealt withusing variable elimination

EU =ΣA,B,C P(A,B,C) U(B,C)

=ΣA,B,C P(C| B) P(B| A) P(A) U(B,C) J ust eliminate variables

in the usual way

Fahiem Bacchus, University of Toronto50

U

C

B

A

l d   . c o m

 w w w .j    n t   u w or  l    d   . c o m

 w w

 w .  j    w  j    o b   s  . n e t  

Optimizing Policies: Key Points

 w

 w w .  j    n t   u w or  l   

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 51/64

Optimizing Policies: Key Points

If a decision node D has no decisions that followit, we can find its policy by instantiating each ofits parents and computing the expected utility of

each decision for each parent instantiation

Fahiem Bacchus, University of Toronto51

l d   . c o m

 w w w .j    n t   u w or  l    d   . c o m

 w w

 w .  j    w  j    o b   s  . n e t  

Optimizing Policies: Key Points

 w

 w w .  j    n t   u w or  l    d  

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 52/64

Optimizing Policies: Key Points

no-forgetting means that all other decisions areinstantiated (they must be parents)

its easy to compute the expected utility using VE

the number of computations is quite large: we runexpected utility calculations (VE) for each parent

instantiation together with each possible decision Dmight allow

policy: choose max decision for each parent

instant’n

Fahiem Bacchus, University of Toronto52

d . c o m

 w w w .j    n t   u w or  l    d   . c o m

 w w

 w .  j    w  j    o b   s  . n e t  

Optimizing Policies: Key Points

 w

 w w .  j    n t   u w or  l    d  

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 53/64

Optimizing Policies: Key Points

When a decision D node is optimized, it can betreated as a random variable

for each instantiation of its parents we now know

what value the decision should take just treat policy as a new CPT: for a given parent

instantiation x, D getsδ  (x) with probability 1(allother decisions get probability zero)

If we optimize from last decision to first, at eachpoint we can optimize a specific decision by (abunch of) simple VE calculations

it’s successor decisions (optimized) are just normalnodes in the BNs (with CPTs)

Fahiem Bacchus, University of Toronto53

d . c o m

 w w w .j    n t   u w or  l    d   . c o m

 w w

 w .  j    w  j    o b   s  . n e t  

Decision Network Notes

 w

 w w .  j    n t   u w or  l    d  

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 54/64

Decision Network Notes

Decision networks commonly used by decisionanalysts to help structure decision problems

Much work put into computationally effectivetechniques to solve these

Complexity much greater than BN inference

we need to solve a number of BN inferenceproblems

one BN problem for each setting of decision nodeparents and decision node value

Fahiem Bacchus, University of Toronto54

d . c o m

 w w w .j    n t   u w or  l    d   . c o m

 w w

 w .  j    w  j    o b   s  . n e t  

Real Estate Investment

 w

 w w .  j    n t   u w or  l    d  

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 55/64

Real Estate Investment

Fahiem Bacchus, University of Toronto55

d . c o m

 w w w .j    n t   u w or  l   

 d   . c o m

 w w

 w .  j    w  j    o b   s  . n e t  

DBN-Decision Nets for Planning

 w

 w w .  j    n t   u w or  l    d  

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 56/64

DBN Decision Nets for Planning

Fahiem Bacchus, University of Toronto56

T t

Lt

Ct

Rt

T t+1

Lt+1

Ct+1

Rt+1

Mt   Mt+1

Actt

U

T t-1

Lt-1

Ct-1

Rt-1

Mt-1

Actt-1

T t-2

Lt-2

Ct-2

Rt-2

Mt-2

Actt-2

d . c o m

 w w w .j    n t   u w or  l   

 d   . c o m

 w w

 w .  j    w  j    o b   s  . n e t  

A Detailed Decision Net Example

 w

 w w .  j    n t   u w or  l    d   .

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 57/64

A Detailed Decision Net Example

Setting: you want to buy a used car, but there’sa good chance it is a “lemon” (i.e., prone tobreakdown). Before deciding to buy it, you can

take it to a mechanic for inspection. They willgive you a report on the car, labeling it either“good” or “bad”. A good report is positivelycorrelated with the car being sound, while abad report is positively correlated with the carbeing a lemon.

Fahiem Bacchus, University of Toronto57

. c o m

 w w w .j    n t   u w or  l   

 d   . c o m

 w w

 w .  j    w  j    o b   s  . n e t  

A Detailed Decision Net Example

 w

 w w .  j    n t   u w or  l    d   .

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 58/64

A Detailed Decision Net Example

However the report costs $50. So you could riskit, and buy the car without the report.

Owning a sound car is better than having no

car, which is better than owning a lemon.

Fahiem Bacchus, University of Toronto58

 c o m

 w w w .j    n t   u w or  l    d   . c o m

 w w w .  j    w  j    o b   s  . n e t  

Car Buyer’sNetwork Rep: good bad none

 w

 w w .  j    n t   u w or  l    d   . c

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 59/64

Car Buyer s Network

Fahiem Bacchus, University of Toronto59

Lemon

Report

Inspect Buy

U

l ¬l0.5 0.5

g b n

l i 0.2 0.8 0¬l i 0.9 0.1 0l ¬i 0 0 1¬l ¬i 0 0 1

Rep: good,bad,none

 b l -600 b ¬l 1000

¬b l -300

¬b¬l -300

Utility

-50 ifinspect

c o m

 w w w .j    n t   u w or  l    d   . c o m

 w w w .  j    w  j    o b   s  . n e t  

Evaluate Last Decision: Buy (1)

 w

 w w .  j    n t   u w or  l    d   . c

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 60/64

y ( )

EU(B|I,R) = ΣL P(L|I,R,B)U(L,B) The probability of the remaining variables in the Utility function, times

the utility function. Note P(L|I,R,B) = P(L|I,R), as B is a decisionvariable that does not influence L.

I = i, R = g:

P(L|i,g): use variable elimination. Query variable L is only remainingvariable, so we only need to normalize (no summations).

P(L,i,g) = P(L)P(g|L,i)HENCE: P(L|i,g) = normalized [P(l)P(g|l,i),P(¬l)P(g|¬l,i)= [0.5*.2, 0.5*0.9] = [.18, .82]

EU(buy) = P(l|i,g)U(buy,l) + P(¬l)P(¬l|i,g) U(buy,¬l)-50= .18*-600 + .82*1000 – 50 = 662

EU(¬buy) = P(l|i, g) U(¬buy,l) + P(¬l|i, g) U(¬buy,¬l) – 50= .18*-300 + .82*-300 -50 = -350

So optimal δ   Buy (i,g) = buy

Fahiem Bacchus, University of Toronto60

c o m

 w w w .j    n t   u w or  l    d   . c o m

 w w w .  j    w  j    o b   s  . n e t  

Evaluate Last Decision: Buy (2)

 w

 w w .  j    n t   u w or  l    d   . c

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 61/64

y ( )

I = i, R = b:

P(L,i,b) = P(L)P(b|L,i)

P(L|i,b) = normalized [P(l)P(b|l,i),P(¬l)P(b|¬l,i)= [0.5*.8, 0.5*0.1] = [.89, .11]

EU(buy) = P(l|i, b) U(l,buy) + P(¬l|i, b) U(¬l,buy) - 50

= .89*-600 + .11*1000 - 50 = -474

EU(¬buy) = P(l|i, b) U(l,¬buy) + P(¬l|i, b) U(¬l,¬buy) – 50= .89*-300 + .11*-300 -50 = -350

So optimal δ   Buy (i,b) = ¬buy

Fahiem Bacchus, University of Toronto61

c o m

 w w w .j    n t   u w or  l    d   . c o m

 w w w .  j    w  j    o b   s  . n e t  

Evaluate Last Decision: Buy (3)

 w

 w w .  j    n t   u w or  l    d   . c

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 62/64

y ( )

I = ¬i, R = n

P(L,¬i,n) = P(L)P(n|L,¬i)

P(L|¬i,n) = normalized [P(l)P(n|l,¬i),P(¬l)P(n|¬l,¬i)

= [0.5*1, 0.5*1] = [.5,.5]

EU(buy) = P(l|¬i,n) U(l,buy) + P(¬l|¬i,n) U(¬l,buy)

= .5*-600 + .5*1000 = 200 (no inspection cost)

EU(¬buy) = P(l|¬i, n) U(l,¬buy) + P(¬l|¬i, n) U(¬l,¬buy)

= .5*-300 +.5*-300 = -300 So optimal δ   Buy (¬i,n) = buy

Overall optimal policy for Buy is:   δ   Buy (i,g) = buy ; δ   Buy (i,b) = ¬buy ; δ   Buy (¬i,n) = buy

 Note: we don’t bother computing policy for (i,¬n), (¬i, g), or (¬i, b), since

these occur with probability 0

Fahiem Bacchus, University of Toronto62

c o m

 w w w .j    n t   u w or  l    d   . c o m

 w w w .  j    w  j    o b   s  . n e t  

Evaluate First Decision: Inspect

 w

 w w .  j    n t   u w or  l    d   . c o

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 63/64

p

EU(I) = ΣL,R P(L,R|I) U(L,  Buy (I,R))

where P(R,L|I) = P(R|L,I)P(L|I)

EU(i) = .1*-600 + .4*-300 + .45*1000 + .05*-300 - 50

= 237.5 – 50 = 187.5

EU(¬i) = P(l|¬i, n) U(l,buy) + P(¬l|¬i, n) U(¬l,buy)

= .5*-600 + .5*1000 = 200

So optimal δ   Inspect (¬i) = buy

P(R,L |i)  

y

U( L,y

)

g,l 0.2*.5 = .1 buy -600 - 50 = -650

b,l 0.8*.5 = .4 ¬buy -300 - 50 = -350

g,¬l 0.9*.5 = .45 buy 1000 - 50 = 950

b,¬l 0.1*.5 = .05 ¬buy -300 - 50 = -350

Fahiem Bacchus, University of Toronto63

o m

 w w w .j    n t   u w or  l    d   . c o m

 w w w .  j    w  j    o b   s  . n e t  

Value of Information

 w

 w w .  j    n t   u w or  l    d   . c o

8/21/2019 Lectures 08 Decision Making

http://slidepdf.com/reader/full/lectures-08-decision-making 64/64

So optimal policy is: don’t inspect, buy the car EU = 200

Notice that the EU of inspecting the car, then buying it iff 

you get a good report, is 237.5 less the cost of theinspection (50). So inspection not worth the improvement inEU.

But suppose inspection cost $25: then it would be worth it

(EU = 237.5 – 25 = 212.5 > EU(¬i))  The exp e c ted va lue o f in fo rm a t io n associated with

inspection is 37.5 (it improves expected utility by thisamount ignoring cost of inspection). How? Gives

opportunity to change decision (¬buy if bad).

 You should be willing to pay up to $37.5 for the report

Fahiem Bacchus, University of Toronto64

o m

 w w w .j    n t   u w or  l    d   . c o m

 w w w .  j    w  j    o b   s  . n e t