lecture8 - ecee.colorado.eduecee.colorado.edu/~ecen4517/materials/lecture8.pdf · lecture8 ecen...

22
Power Electronics Lab 1 Lecture 8 ECEN 4517/5517 Experiment 4 Lecture 7: Step-up dc- dc converter and PWM chip Lecture 8: Design of analog feedback loop Part I—Controller IC: Demonstrate operating PWM controller IC (UC 3525) Part II—Power Stage: Demonstrate operating power converter (cascaded boost converters) Part III—Closed-Loop Analog Control System: Demonstrate analog feedback system that regulates the dc output voltage Measure and document loop gain and compensator design

Upload: others

Post on 14-Aug-2020

11 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: Lecture8 - ecee.colorado.eduecee.colorado.edu/~ecen4517/materials/Lecture8.pdf · Lecture8 ECEN 4517/5517 Experiment 4 Lecture 7: Step-up dc-dc converter and PWM chip Lecture 8: Design

Power Electronics Lab 1

Lecture 8ECEN 4517/5517

Experiment 4Lecture 7: Step-up dc-dc converter and PWM chipLecture 8: Design of analog feedback loop

Part I—Controller IC:Demonstrate operating

PWM controller IC (UC 3525)

Part II—Power Stage:Demonstrate operating

power converter (cascaded boost converters)

Part III—Closed-Loop Analog Control System:Demonstrate analog feedback system that regulates the dc output voltageMeasure and document loop gain and compensator design

Page 2: Lecture8 - ecee.colorado.eduecee.colorado.edu/~ecen4517/materials/Lecture8.pdf · Lecture8 ECEN 4517/5517 Experiment 4 Lecture 7: Step-up dc-dc converter and PWM chip Lecture 8: Design

Power Electronics Lab 2

Due dates

This week: Tuesday at noon (Mar. 10):Prelab assignment for Exp. 4 (one from every student)

This week in lab (Mar. 10-12):Start Exp. 4

This Friday at 5 pm (Mar. 13):Exp. 3 part 2 report due

Page 3: Lecture8 - ecee.colorado.eduecee.colorado.edu/~ecen4517/materials/Lecture8.pdf · Lecture8 ECEN 4517/5517 Experiment 4 Lecture 7: Step-up dc-dc converter and PWM chip Lecture 8: Design

Power Electronics Lab 3

Discussion: Lab 4 prelab

Page 4: Lecture8 - ecee.colorado.eduecee.colorado.edu/~ecen4517/materials/Lecture8.pdf · Lecture8 ECEN 4517/5517 Experiment 4 Lecture 7: Step-up dc-dc converter and PWM chip Lecture 8: Design

Power Electronics Lab 6

Soft Start

UC3525

• Reduce inrush current whenclosed-loop system starts up

• Connect capacitor to pin 8• Capacitor voltage limits

maximum duty cycle• Capacitor is slowly charged by

50 µA current source• After capacitor charges,

feedback loop takes overcontrol of duty cycle

You might not be able to get your closed-loop converter to turn on without soft start…

Page 5: Lecture8 - ecee.colorado.eduecee.colorado.edu/~ecen4517/materials/Lecture8.pdf · Lecture8 ECEN 4517/5517 Experiment 4 Lecture 7: Step-up dc-dc converter and PWM chip Lecture 8: Design

Power Electronics Lab

Outputs of the UC3525A

Output of PWM comparator

Flip-flop output Q

Flip-flop output Q

Output A

Output B

DTs Ts

output A output B

11 14

VC

13

output ofPWM

comparator

flip-flopoutput Q

flip-flopoutput Q

Frequency of the outputs is one half the oscillator frequency. Duty cycle cannot be greater than 50%.

Such outputs are needed in some types of switching converters such as “push-pull.”

Outputs A and B can be OR-ed to restore the PWM pulses at the oscillator frequency.

Page 6: Lecture8 - ecee.colorado.eduecee.colorado.edu/~ecen4517/materials/Lecture8.pdf · Lecture8 ECEN 4517/5517 Experiment 4 Lecture 7: Step-up dc-dc converter and PWM chip Lecture 8: Design

Power Electronics Lab 7

OR-ing the outputs

VC

+ 5 V

OUTA

OUTB

UC 3525

Gate driver

A cheap way to OR the outputs of the UC3525

The + 5 V can be obtained from the 5 V reference of the UC3525

Bypass the + 5 V so that the switching EMI of this circuit does not disrupt the internal control circuitry of the UC3525, which also uses the + 5 V.

More UC3525 tips:• You will need to ground the SHUTDOWN pin. Otherwise the UC3525 will shut

down.• RT must be greater than 2 kΩ; otherwise the UC3525 oscillator will not work• RD is usually a few hundred Ohms; RD must be substantially smaller than RT.

Page 7: Lecture8 - ecee.colorado.eduecee.colorado.edu/~ecen4517/materials/Lecture8.pdf · Lecture8 ECEN 4517/5517 Experiment 4 Lecture 7: Step-up dc-dc converter and PWM chip Lecture 8: Design

Power Electronics Lab 3

Exp. 4 Part IIIRegulation of output voltage via feedback

• Model and measure control-to-output transfer function Gvd(s)

• Design and build feedback loop

• Demonstrate closed-loop regulation of vHVDC

Page 8: Lecture8 - ecee.colorado.eduecee.colorado.edu/~ecen4517/materials/Lecture8.pdf · Lecture8 ECEN 4517/5517 Experiment 4 Lecture 7: Step-up dc-dc converter and PWM chip Lecture 8: Design

ECEN 4517 11

Negative feedback:a switching regulator system

+–

+

v

vg

Switching converterPowerinput

Load–+

Compensator

vref

Referenceinput

HvPulse-widthmodulator

vc

Transistorgate driver

Gc(s)

H(s)

ve

Errorsignal

Sensorgain

iload

Page 9: Lecture8 - ecee.colorado.eduecee.colorado.edu/~ecen4517/materials/Lecture8.pdf · Lecture8 ECEN 4517/5517 Experiment 4 Lecture 7: Step-up dc-dc converter and PWM chip Lecture 8: Design

ECEN 4517 12

Transfer functions ofsome basic CCM converters

Table 8.2. Salient features of the small-signal CCM transfer functions of some basic dc-dc converters

Converter Gg0 Gd0 0 Q z

buck DVD

1LC

R CL

boost1D'

VD'

D'LC

D'R CL

D' 2RL

buck-boost – DD '

VD D'2

D'LC

D'R CL

D' 2 RD L

where the transfer functions are written in the standard forms

Gvd(s) = Gd0

1 – sz

1 + sQ 0

+ s0

2

Gvg(s) = Gg01

1 + sQ 0

+ s0

2

Flyback: push L and C to same side of transformer, then use buck-boost equations. DC gains Gg0 and Gd0 have additional factors of n (turns ratio).

Page 10: Lecture8 - ecee.colorado.eduecee.colorado.edu/~ecen4517/materials/Lecture8.pdf · Lecture8 ECEN 4517/5517 Experiment 4 Lecture 7: Step-up dc-dc converter and PWM chip Lecture 8: Design

ECEN 4517 13

Bode plot: control-to-output transfer functionbuck-boost or flyback converter example

f

–90˚

–180˚

–270˚

Gvd

Gd0 = 187 V 45.5 dBV

Gvd Gvd

0 dBV

–20 dBV

–40 dBV

20 dBV

40 dBV

60 dBV

80 dBV

Q = 4 12 dB

fz2.6 kHz

RHP Gvd

10-1/2Q f0

101/2Q f0

0˚ 300 Hz

533 Hz

–20 dB/decade

–40 dB/decade

–270˚

fz /10260 Hz

10fz26 kHz

1 MHz10 Hz 100 Hz 1 kHz 10 kHz 100 kHz

f0400 Hz

Page 11: Lecture8 - ecee.colorado.eduecee.colorado.edu/~ecen4517/materials/Lecture8.pdf · Lecture8 ECEN 4517/5517 Experiment 4 Lecture 7: Step-up dc-dc converter and PWM chip Lecture 8: Design

Power Electronics Lab 4

Spice SimulationOpen-loop simulation of control-to-output transfer function

• Replace boost converter switches with averaged switch model

• CCM-DCM1 and other switch models are linked to course web site, insideswitch.lib file

• Apply dc voltage (to set steady-state duty cycle) plus ac variation, toterminal 5 of CCM-DCM1 model. Plot output voltage magnitude and phaseusing ac analysis within Spice.

Page 12: Lecture8 - ecee.colorado.eduecee.colorado.edu/~ecen4517/materials/Lecture8.pdf · Lecture8 ECEN 4517/5517 Experiment 4 Lecture 7: Step-up dc-dc converter and PWM chip Lecture 8: Design

ECEN 4517 14

The loop gain T(s)

+–

+

v

vg

Switching converterPowerinput

Load

–+

Compensator

vref

Referenceinput

HvPulse-widthmodulator

vc

Transistorgate driver

Gc(s)

H(s)

ve

Errorsignal

Sensorgain

iload

Loop gain T(s) = product of gains around the feedback loop

More loop gain ||T|| leads to better regulation of output voltage

T(s) = Gvd(s) H(s) Gc(s) / VM

Gvd(s) = power stage control-to-output transfer function

PWM gain = 1/VM. VM = pk-pk amplitude of PWM sawtooth

Page 13: Lecture8 - ecee.colorado.eduecee.colorado.edu/~ecen4517/materials/Lecture8.pdf · Lecture8 ECEN 4517/5517 Experiment 4 Lecture 7: Step-up dc-dc converter and PWM chip Lecture 8: Design

ECEN 4517 15

Phase Margin

A test on T(s), to determine stability of the feedback loop

The crossover frequency fc is defined as the frequency where

|| T(j2 fc) || = 1, or 0 dB

The phase margin m is determined from the phase of T(s) at fc , as follows:

m = 180˚ + (T(j2 fc))

If there is exactly one crossover frequency, and if T(s) contains no RHP poles, then

the quantities T(s)/(1+T(s)) and 1/(1+T(s)) contain no RHP poles whenever the phase margin m is positive.

Page 14: Lecture8 - ecee.colorado.eduecee.colorado.edu/~ecen4517/materials/Lecture8.pdf · Lecture8 ECEN 4517/5517 Experiment 4 Lecture 7: Step-up dc-dc converter and PWM chip Lecture 8: Design

ECEN 4517 16

Example: a loop gain leading toa stable closed-loop system

(T(j2 fc)) = – 112˚

m = 180˚ – 112˚ = + 68˚

fc

Crossoverfrequency

0 dB

–20 dB

–40 dB

20 dB

40 dB

60 dB

f

fp1fz

T

–90˚

–180˚

–270˚

m

T

T T

1 Hz 10 Hz 100 Hz 1 kHz 10 kHz 100 kHz

Page 15: Lecture8 - ecee.colorado.eduecee.colorado.edu/~ecen4517/materials/Lecture8.pdf · Lecture8 ECEN 4517/5517 Experiment 4 Lecture 7: Step-up dc-dc converter and PWM chip Lecture 8: Design

ECEN 4517 17

Transient response vs. damping factor

0

0.5

1

1.5

2

0 5 10 15

ct, radians

Q = 10

Q = 50

Q = 4

Q = 2

Q = 1

Q = 0.75

Q = 0.5

Q = 0.3

Q = 0.2

Q = 0.1

Q = 0.05

Q = 0.01

v(t)

Page 16: Lecture8 - ecee.colorado.eduecee.colorado.edu/~ecen4517/materials/Lecture8.pdf · Lecture8 ECEN 4517/5517 Experiment 4 Lecture 7: Step-up dc-dc converter and PWM chip Lecture 8: Design

ECEN 4517 18

Q vs. m

0 10 20 30 40 50 60 70 80 90

m

Q

Q = 1 0 dB

Q = 0.5 –6 dBm = 52˚

m = 76˚

–20 dB

–15 dB

–10 dB

–5 dB

0 dB

5 dB

10 dB

15 dB

20 dB

Page 17: Lecture8 - ecee.colorado.eduecee.colorado.edu/~ecen4517/materials/Lecture8.pdf · Lecture8 ECEN 4517/5517 Experiment 4 Lecture 7: Step-up dc-dc converter and PWM chip Lecture 8: Design

Fundamentals of Power Electronics Chapter 9: Controller design42

9.5.2. Lag (PI) compensation

Gc(s) = Gc∞ 1 +ωLs

Improves low-frequency loop gainand regulation

f

|| Gc ||

∠ Gc

Gc∞

fL/10

+ 45˚/decade

fL

– 90˚

10fL

– 20 dB /decade

Page 18: Lecture8 - ecee.colorado.eduecee.colorado.edu/~ecen4517/materials/Lecture8.pdf · Lecture8 ECEN 4517/5517 Experiment 4 Lecture 7: Step-up dc-dc converter and PWM chip Lecture 8: Design

Fundamentals of Power Electronics Chapter 9: Controller design43

Example: lag compensation

original(uncompensated)loop gain is

Tu(s) =Tu0

1 + sω0

compensator:Gc(s) = Gc∞ 1 +

ωLs

Design strategy:choose

Gc∞ to obtain desiredcrossover frequencyωL sufficiently low tomaintain adequatephase margin

0 dB

–20 dB

–40 dB

20 dB

40 dB

f

90˚

–90˚

–180˚

Gc∞Tu0fL

f0

Tu0

∠ Tu

|| Tu ||f0

|| T ||

fc

∠ T

10fL

10f0 ϕm

1 Hz 10 Hz 100 Hz 1 kHz 10 kHz 100 kHz

Page 19: Lecture8 - ecee.colorado.eduecee.colorado.edu/~ecen4517/materials/Lecture8.pdf · Lecture8 ECEN 4517/5517 Experiment 4 Lecture 7: Step-up dc-dc converter and PWM chip Lecture 8: Design

Fundamentals of Power Electronics Chapter 8: Converter Transfer Functions94

8.4. Measurement of ac transfer functionsand impedances

Network Analyzer

Injection source Measured inputs

vy

magnitudevz

frequencyvz

outputvz

+ –

input

vx

input+ – + –

vy

vx

vy

vx

Data

17.3 dB

– 134.7˚

Data busto computer

Page 20: Lecture8 - ecee.colorado.eduecee.colorado.edu/~ecen4517/materials/Lecture8.pdf · Lecture8 ECEN 4517/5517 Experiment 4 Lecture 7: Step-up dc-dc converter and PWM chip Lecture 8: Design

Fundamentals of Power Electronics Chapter 8: Converter Transfer Functions95

Swept sinusoidal measurements

• Injection source produces sinusoid of controllable amplitude andfrequency

• Signal inputs and perform function of narrowband trackingvoltmeter:

Component of input at injection source frequency is measuredNarrowband function is essential: switching harmonics and othernoise components are removed

• Network analyzer measures

vz

vx vy

∠vy

vx

vy

vx

and

Page 21: Lecture8 - ecee.colorado.eduecee.colorado.edu/~ecen4517/materials/Lecture8.pdf · Lecture8 ECEN 4517/5517 Experiment 4 Lecture 7: Step-up dc-dc converter and PWM chip Lecture 8: Design

Fundamentals of Power Electronics Chapter 8: Converter Transfer Functions96

Measurement of an ac transfer function

Network Analyzer

Injection source Measured inputs

vy

magnitudevz

frequencyvz

outputvz

+ –

input

vx

input+ – + –

vy

vx

vy

vx

Data

–4.7 dB

– 162.8˚

Data busto computer

Deviceunder test

G(s)

inpu

t output

VCC

DCbias

adjust

DCblocking

capacitor

• Potentiometerestablishes correctquiescent operatingpoint

• Injection sinusoidcoupled to deviceinput via dc blockingcapacitor

• Actual device inputand output voltagesare measured asand

• Dynamics of blockingcapacitor are irrelevant

vx

vy

vy(s)

vx(s)= G(s)

Page 22: Lecture8 - ecee.colorado.eduecee.colorado.edu/~ecen4517/materials/Lecture8.pdf · Lecture8 ECEN 4517/5517 Experiment 4 Lecture 7: Step-up dc-dc converter and PWM chip Lecture 8: Design

Fundamentals of Power Electronics Chapter 9: Controller design64

9.6.1. Voltage injection

• Ac injection source vz is connected between blocks 1 and 2• Dc bias is determined by biasing circuits of the system itself• Injection source does modify loading of block 2 on block 1

+–

H(s)

+–

Z2(s)

Block 1 Block 2

0

Tv(s)

Z1(s) Zs(s)

– +

+

vx(s)

vref (s)G1(s)ve(s)

ve(s) G2(s)vx(s) = v(s)

vy(s)

+

vzi(s)