lecture_23 _12-10-2005

Upload: pkpnitian152297088

Post on 14-Apr-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/30/2019 Lecture_23 _12-10-2005

    1/6

    Lecture Notes of Dr. Ramamurti: FEM for Vibrations Lecture 2312 th Oct 2005

    CAE, e-Engineering Solutions, Chennai Center 23- 1

    Eigen Value problem

    A typical example for Eigen value problem is a turbine, which consists of number of blades

    with lacing rods. The schematic view is given below.

    In our case let us consider a system, which consist of 4 rods (to simplify the problem

    connected with each other at right angles. The pictorial representation is shown below,

    Four different modes of deformation would posses the following combinations

    1) Tensile / Tensile / Tensile/ Tensile2) Compressive / Compressive/ Compressive / Compressive3) Tensile / Tensile / Compressive / Compressive4) Compressive / Compressive / Tensile / Tensile

    Component (before deformation)

    Component deformation (mode 1 & mode2)

    Tensile deformation

    Compressive

    deformation

  • 7/30/2019 Lecture_23 _12-10-2005

    2/6

    Lecture Notes of Dr. Ramamurti: FEM for Vibrations Lecture 2312 th Oct 2005

    CAE, e-Engineering Solutions, Chennai Center 23- 2

    Mode 3 Mode 4

    Analogy

    4 rods forming a square capable of withstanding tension / compression loads.

    Each node has 2 dof, u in horizontal and v in vertical direction.

    f1h= 21212

    vvuu

    l

    AE

    Tensile deformation

    Compressive

    deformation

    u2 u1v1

    1

    43

    2

    u4

    v4

    u3 v4

    v2

  • 7/30/2019 Lecture_23 _12-10-2005

    3/6

    Lecture Notes of Dr. Ramamurti: FEM for Vibrations Lecture 2312 th Oct 2005

    CAE, e-Engineering Solutions, Chennai Center 23- 3

    f1v= 41412

    vvuul

    AE

    Net radial force = 4242122 vvuuulAE

    Net tangential force = 42142 22

    vvvuul

    AE

    =

    y

    x

    F

    F

    v

    u

    v

    u

    vu

    v

    u

    l

    AE

    4

    1

    4

    4

    3

    3

    2

    2

    1

    1

    00110211

    11001120

    11001102

    2

    =m2[I]{}

    For mode I: for ei, when =0 e0=1

    1(displacement vector in sector 1)= 4421

    1

    v

    u

    taking the first two rows

    =

    1

    12

    1

    1

    10

    01

    )1012()1010(

    )1010(1012

    2 v

    um

    v

    u

    l

    AE

    =

    1

    12

    2

    1

    00

    04

    2 v

    um

    v

    u

    l

    AE

    1

    2

    142

    umul

    AE

  • 7/30/2019 Lecture_23 _12-10-2005

    4/6

    Lecture Notes of Dr. Ramamurti: FEM for Vibrations Lecture 2312 th Oct 2005

    CAE, e-Engineering Solutions, Chennai Center 23- 4

    lm

    AE22

    For mode 2 when =900

    ei=cos90+isin90=i

    2=i13=i

    21=-14=i31=-i1Substituting in basic equation

    =

    1

    12

    110

    01

    )2()(

    )(2

    2 v

    um

    iiii

    iiii

    l

    AE

    lm

    AE

    vmvl

    AE

    umu

    l

    AE

    ivuif

    vmviul

    AE

    umivul

    AE

    2

    42

    4

    2

    )22(2

    )22(2

    2

    1

    2

    1

    1

    2

    1

    11

    1

    2

    11

    1

    2

    11

    For mode 3 when 1=1800

    3=(cos180+isin180)=-1

    lm

    AE

    vmvl

    AE

    v

    um

    v

    u

    l

    AE

    A

    2

    42

    10

    01

    10121010

    1010112

    2

    ;

    2

    1

    2

    1

    1

    12

    1

    1

    12413

  • 7/30/2019 Lecture_23 _12-10-2005

    5/6

    Lecture Notes of Dr. Ramamurti: FEM for Vibrations Lecture 2312 th Oct 2005

    CAE, e-Engineering Solutions, Chennai Center 23- 5

    4.1 Simultaneous iterative Scheme for conventional problems

    [k]{}=m2{} - Non standard Eigen value problem

    [A]{}={} - Standard Eigen value problem

    For distributed elasticity the natural frequencies are lower one or closely placed, otherwise

    the spacing is quite wide.

    For most engineering problem the first 30 Eigen pairs will be below 100cps

    Steps involved in SIM (simultaneous Iterative Method)

    Choleskey factorization of [k](nxb)[k]=[L][L]T

    Iteration I: -

    [m]2{}=[k]{} 1

    [L][L]T{}=2[m]{} 2

    Let [L]T{} ={q}

    Then {}=[L]-T{q}

    Substitute in 2

    [L]{q}=2[m][L]-T{q}

    Pre multiply by [L]-1on both sides

    [L]-1[L]{q}=2[L]-1 [M][L]-T{q}

    If (1/2=)

    {q}=[A]{q} where [A]= [L]-1

    [M][L]-T

    Where is the Eigen value and {q} is the Eigen vector

    Iteration logic: complete problem in real domain

    Iteration II: Assume {q1}

  • 7/30/2019 Lecture_23 _12-10-2005

    6/6

    Lecture Notes of Dr. Ramamurti: FEM for Vibrations Lecture 2312 th Oct 2005

    CAE, e-Engineering Solutions, Chennai Center 23- 6

    q1 =

    1000

    01000010

    0001

    ,bn

    [q][q]T=[I]

    Pre multiply by [A]

    [L]-1[m][L]-T{q}

    This equation consist of three parts

    1. Forward substitution2. Straight forward multiplication3. Back substitution

    Let [A]{q}={}(n,m)

    IInd iteration

    Orthonormalization by [r](m,m)

    Let [D]=[L][L]T;Let [r]=[L]-T

    Then {q2}={2}(n,m){r}(m,m)

    {q2}={2}[L]-T

    mnT

    mmmnLq

    ,2,,2

    Iteration logic: Complex numbers

    Assume {q}n

    For computing [A] involves [L]-1[m][L]-T, consider the developed program.