lecture vi. making connections

47
September 14, 2009 Lecture VI. Making Connections 1

Upload: zonta

Post on 19-Mar-2016

40 views

Category:

Documents


0 download

DESCRIPTION

Lecture VI. Making Connections. Bio 3411 Monday September 14, 2009. T. Woolsey 3802 North Building 362-3601 [email protected]. Reading. NEUROSCIENCE: 4 th ed, Chapter 23, pp 577-609. Selected References:. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Lecture VI. Making Connections

September 14, 2009 Lecture VI. Making Connections 1

Page 2: Lecture VI. Making Connections

Lecture VI. Making Connections

Bio 3411 Monday

September 14, 2009

Page 3: Lecture VI. Making Connections

• T. Woolsey

• 3802 North Building

• 362-3601

[email protected]

3Lecture VI. Making ConnectionsSeptember 14, 2009

Page 4: Lecture VI. Making Connections

Reading

NEUROSCIENCE: 4th ed, Chapter 23, pp 577-609

4Lecture VI. Making ConnectionsSeptember 14, 2009

Page 5: Lecture VI. Making Connections

September 14, 2009 Lecture VI. Making Connections 5

Selected References:

Bentley, D., & Caudy, M. (1983). Pioneer axons lose directed growth after selective killing of guidepost cells. Nature, 304(5921), 62-65.

Foty, R. A., & Steinberg, M. S. (2004). Cadherin-mediated cell-cell adhesion and tissue segregation in relation to malignancy. Int J Dev Biol, 48(5-6), 397-409.

Hayashi, T., & Carthew, R. W. (2004). Surface mechanics mediate pattern formation in the developing retina. Nature, 431(7009), 647-652.

Moscona, A., & Moscona, H. (1952). The dissociation and aggregation of cells from organ rudiments of the early chick embryo. J Anat, 86(3), 287-301.

Myers, P. Z., & Bastiani, M. J. (1993). Cell-cell interactions during the migration of an identified commissural growth cone in the embryonic grasshopper. J Neurosci, 13(1), 115-126.

Sperry, R. W. (1963). Chemoaffinity in the Orderly Growth of Nerve Fiber Patterns and Connections. Proc Natl Acad Sci U S A, 50, 703-710.

Tessier-Lavigne, M., & Goodman, C. S. (1996). The molecular biology of axon guidance. Science, 274(5290), 1123-1133.

Townes, P. L., & Holtfreter, J. (1955). Directed movements and selective adhesion of embryonic amphibian cells. J Exp Zool, 123, 53–120.

Walter, J., Henke-Fahle, S., & Bonhoeffer, F. (1987). Avoidance of posterior tectal membranes by temporal retinal axons. Development, 101(4), 909-913.

Wilson, H. (1907). A new method by which sponges may be artificially reared. Science, 23, 161-174.

 

Page 6: Lecture VI. Making Connections

What the last Lecture was about

• Programmed cell death (apoptosis) is a physiological mechanism distinct from necrotic cell death. 

• Apoptosis occurs widely during normal development of the nervous system. 

• Isolation of specific molecules involved in promoting growth and survival – “trophism,” e.g., Nerve Growth Factor (NGF). 

• What is the “death mechanism” that NGF (and other neruotrophins) inhibit?  

• Broader implications: controlled cell death in neuroembryology vs uncontrolled cell growth of cancer.

• Gene homologies between organisms - humans and worms (nematodes) 

• Molecular models for apoptosis 

• How do trophic factors connect to this cell death pathway(s)?

September 14, 2009 Lecture VI. Making Connections 6

Page 7: Lecture VI. Making Connections

September 14, 2009 Lecture VI. Making Connections 7

Page 8: Lecture VI. Making Connections

What this Lecture is about

• General mechanisms for assembling neurons and groups of neurons 

• Diffusion vs Contact

• Attraction vs Repulsion 

• Examples of impacts of contact 

• Examples of impacts of diffusion

• Specification by growth factors

• The chemoaffinity hypothesis

September 14, 2009 Lecture VI. Making Connections 8

Page 9: Lecture VI. Making Connections

September 14, 2009 9Lecture VI. Making Connections

Fertilization

Embryonic morphogenesis

Induction of Neuroectoderm

Neurulation

Differentiation:1. Formation and placement of neuroblasts2. Axonal outgrowth3. Growth cones, selective migration4. Selective fasciculation5. Target selection6. Synaptogenesis7. Etc…(cell shape, neurotransmitter, ionic channels, receptors)

Adult neuronal plasticity(Activity-dependent?)

Segm

enta

tion

Outline of Neurodevelopment

Page 10: Lecture VI. Making Connections

Selective Adhesion Determines Specificity of Tissue and Cellular Associations

September 14, 2009 10Lecture VI. Making Connections

Page 11: Lecture VI. Making Connections

Selective Aggregation of dissociated embryonic tissues (vertebrate and invertebrate) suggests ancient (surface)

Adhesion Molecules

September 14, 2009 11Lecture VI. Making Connections

(Townes and Holtfretter, 1955)

1. Sponges (Wilson, 1907)

2. Amphibians (Townes and Holtfretter, 1955)

3. Chick (Moscona, 1952)

Epidermis+

Mesoderm

Page 12: Lecture VI. Making Connections

September 14, 2009 12Lecture VI. Making Connections

Experimental recreation of morphogenesis by mixing cells expressing low and high levels of one surface

adhesion gene (N-cadherin)

Green = high N-cadherinRed = low N-cadherin

+4 hrs +24 hrs

(Foty and Steinberg, 2004)

Page 13: Lecture VI. Making Connections

September 14, 2009 Lecture VI. Making Connections 13

Effect/Proximity

Attraction Repulsion

DistantContact

Page 14: Lecture VI. Making Connections

September 14, 2009 Lecture VI. Making Connections 14

Page 15: Lecture VI. Making Connections

September 14, 2009 Lecture VI. Making Connections 15

Page 16: Lecture VI. Making Connections

September 14, 2009 Lecture VI. Making Connections 16

(Play GFP-Actin Growth Cone Movie)Dr. Andrew Matus

Friedrich Miescher Institute, Switzerland

Page 17: Lecture VI. Making Connections

September 14, 2009 Lecture VI. Making Connections 17

Page 18: Lecture VI. Making Connections

September 14, 2009 Lecture VI. Making Connections 18

Page 19: Lecture VI. Making Connections

September 14, 2009 Lecture VI. Making Connections 19

Page 20: Lecture VI. Making Connections

September 14, 2009 Lecture VI. Making Connections 20

Page 21: Lecture VI. Making Connections

September 14, 2009 Lecture VI. Making Connections 21

Page 22: Lecture VI. Making Connections

Conserved Structural Classes of Axonal Guidance Molecules: Modular Construction and Multifunctionality

1. Laminin, fibronectin and extracellular matrix proteins.2. Cadherins and catenins. (Ca+2 dependent)3. Cell adhesion molecules (CAMs) (containing IgG domains).4. Receptor tyrosine kinases and receptor phosphatases.

September 14, 2009 22Lecture VI. Making Connections

Page 23: Lecture VI. Making Connections

September 14, 2009 Lecture VI. Making Connections 23

Page 24: Lecture VI. Making Connections

Molecules Mediating Axonal Guidance

September 14, 2009 24Lecture VI. Making Connections

Screen for Mutantsof Neuronal Specificity

Clone Mutant Genes

Observe WTNeuronal Specificity

IdentifyFactors

(Semphorins, Slit,Robo, Commissureless...)

Page 25: Lecture VI. Making Connections

September 14, 2009 Lecture VI. Making Connections 25

Drosophila robo disrupts longitudinal

tract formation

Robo acts as a receptor for a midline repulsive cue

Page 26: Lecture VI. Making Connections

September 14, 2009 Lecture VI. Making Connections 26

Page 27: Lecture VI. Making Connections

September 14, 2009 Lecture VI. Making Connections 27

Page 28: Lecture VI. Making Connections

September 14, 2009 Lecture VI. Making Connections 28

Page 29: Lecture VI. Making Connections

Retinotectal Mapping Visualized by Dye Injection in Zebrafish

September 14, 2009 29Lecture VI. Making Connections

VD

N

T

DV

N

T

(Friche,et al. 2001)

Page 30: Lecture VI. Making Connections

Zebrafish ROBO Mutant (astray)Disrupts Midline Retinotectal Axonal Projections

September 14, 2009 30Lecture VI. Making Connections

WT WT

ast WT ast WT

WT ast

Page 31: Lecture VI. Making Connections

September 14, 2009 Lecture VI. Making Connections 31

Page 32: Lecture VI. Making Connections

What this Lecture was about

• Grouping neurons and processes  

• Partner selection

• Some genetic foundations/correlates

• Systematic organization of connections

• Roles of contact and diffusion

• Deja vu

September 14, 2009 Lecture VI. Making Connections 32

Page 33: Lecture VI. Making Connections

Sequential Restrictions (Refinements) are the Bases for Development

September 14, 2009 33Lecture VI. Making Connections

pluripotent, stem cell

differentiated

genetic

environmental

Page 34: Lecture VI. Making Connections

September 14, 2009 Lecture VI. Making Connections 34

Page 35: Lecture VI. Making Connections

September 14, 2009 Lecture VI. Making Connections 35

FInis

Page 36: Lecture VI. Making Connections

September 14, 2009 Lecture VI. Making Connections 36

Human ROBO Mutation causes HGPPS(Horizontal Gaze Palsy with

Progressive Scoliosis)

HG

PP

SN

orm

al

(reduced hindbrain volume) (scoliosis)

(horizontal gaze palsy)

(Jen, et al., 2004)

Page 37: Lecture VI. Making Connections

The Axon Guidance Receptor Gene ROBO1Is a Candidate Gene for Developmental Dyslexia

Katariina Hannula-Jouppi1, Nina Kaminen-Ahola1, Mikko Taipale1,2, Ranja Eklund1, Jaana Nopola Hemmi1,3,Helena Kaariainen4,5, Juha Kere1,6*

1 Department of Medical Genetics, University of Helsinki, Finland, 2 European Molecular Biology Laboratory, Gene Expression Programme, Heidelberg, Germany,3 Department of Pediatrics, Jorvi Hospital, Espoo, Finland, 4 Department of Medical Genetics, The Family Federation of Finland, Helsinki, Finland, 5 Department of Medical Genetics, University of Turku, Turku, Finland, 6 Department of Biosciences at Novum and Clinical Research Centre, Karolinska Institutet, Stockholm, Sweden

PLOS Genetics (2005) 1: 0467

September 14, 2009 37Lecture VI. Making Connections

Page 38: Lecture VI. Making Connections

September 14, 2009 38Lecture VI. Making Connections

Physical forces of surface contacts largely determine cell shape:Drosophila cone cell morphology modeled by soap bubbles!

(1 cell)

(2 cells)

(3 cells)

(5 cells)

(6 cells)

DrosophilaRough eye (Roi) mutants

Drosophila retina

WT

(4 cells) Soap bubbles

Hayashi & Carthew, (2004)

Page 39: Lecture VI. Making Connections

September 14, 2009

Do Molecular Cues Determine the Retinotectal Spatial-topic Map?

39Lecture VI. Making Connections

A(T)D

V

T N

RetinaP(N)

M(D)

L(V)

Optic Tectum

A(T)

P(N)

dorsal ventral

temporal nasal

L(V)

M(D)Optic tectum

Page 40: Lecture VI. Making Connections

Retinotectal Map is Preserved Despite Experimental Rotation of the Eye:“Chemaffinity Hypothesis”

September 14, 2009 40Lecture VI. Making Connections

(Sperry, 1956)

D

V

T N

Retina Optic Tectum

(T)

(N)

(D) (V)Subjective “up”

Rot

ate

Eye

180

o

N

V

D

T

(T)

(N)

(D) (V)Subjective “down”

Subjective “down”

Page 41: Lecture VI. Making Connections

Early Embryonic Insect Neurons form a Repeated Segmental Scaffold: Favorable preparation for studying

axonal guidance

September 14, 2009 41Lecture VI. Making Connections

Grasshopperembryo

CommissuralTracts

Longitudinal

Tracts

Identified Neurons

Q1 pCCaCC

MP1

Q1

Q1

MP1

MP1

pCCaCC

Q1(Meyers and Bastiani, 1993)

Page 42: Lecture VI. Making Connections

Pioneer Neurons Create the Early Scaffold of the Adult Nervous System

September 14, 2009 42Lecture VI. Making Connections

pioneer neuron

guidepost cells

growth cone

selectivefasciculation

Pioneer neuron and guidepost cells may die after pathway is pioneered,

by apoptosis

Page 43: Lecture VI. Making Connections

Molecules Mediating Axonal Guidance

1. Biochemical approach: Friedrich Bonhoeffer, retinotectal culture assay.

43

Temporal Nasal

Functional Assay

Fractionate Native Factors

ObserveNeuronal Specificity

Purify and IdentifyFactor

(Ephrins...)

Temporal AxonsNasal Axons

September 14, 2009 Lecture VI. Making Connections

Page 44: Lecture VI. Making Connections

Pioneer Neurons and Guidepost Cells guide the initial path of peripheral nervetracts in embryonic grasshopper

limbs

(Bentley and Caudy, 1983)

September 14, 2009 44Lecture VI. Making Connections

PioneerNeurons

Guidepost Cells Growth Cone

CT1 Photoablated Control

Page 45: Lecture VI. Making Connections

Growth Cones are Dynamic Sensory Organelles that Guide the Growth of Embryonic Axons

September 14, 2009 45Lecture VI. Making Connections

(Forscher lab)

Sensing and Transducing:• Diffusible Cues• Contact-dependent Cues• Trophic Factors• Neurotransmitters

F-actin

Tubulin

lamellipodia

filapodia

Extracellular Cues

Intracellular SignalingPathways

CytoskeletalRearrangment

Ca+2

GTPcAMP

2ndMessengers

Page 46: Lecture VI. Making Connections

Functional Classes of Axonal Guidance Molecules

(Secreted)

(Membrane Associated)

(netrin) (sema, slit)

(fas) (eph)

Molecules may function for both:1. Selective adhesion2. Intracellular signaling

September 14, 2009 46Lecture VI. Making Connections

Page 47: Lecture VI. Making Connections

Axonal Guidance Cues

September 14, 2009 47Lecture VI. Making Connections

selectivefasciculation

diffusibleattractant

diffusiblerepellant

Contact-dependentattractant

Contact-dependentrepellant

(Timing is critical)