lecture sm 12

Upload: zcapg17

Post on 14-Apr-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/28/2019 Lecture SM 12

    1/44

    Schning/Rodejohann 1 Standard Model of Particle Physics SS 2013

    Lecture:

    Standard Model of Particle Physics

    Heidelberg SS 2013

    Weak Interactions II

  • 7/28/2019 Lecture SM 12

    2/44

    Schning/Rodejohann 2 Standard Model of Particle Physics SS 2013

    Important Experiments

    Wu-Experiment (1957): radioactive decay of Co60

    Goldhaber-Experiment (1958): radioactive decay of Eu152

    Muon Decay: Michel spectrum

    Pion Decay: branching ratios

    Nuclear Beta Decays

    Neutrino-Nucleon Scattering (neutrino antineutrino)

  • 7/28/2019 Lecture SM 12

    3/44

    Schning/Rodejohann 3 Standard Model of Particle Physics SS 2013

    Neutron Decay

    L =G

    2(d (15)u) (v (1

    5) e)

    Lagrangian d u:

    Decay Width

    =GF

    2c1

    2 5

    153

    with

    c1

    = cos C

    = 782 keV

    Note: the dand u mass eigenstates are not weak eigenstates the neutron decay is not a simple d u decay (quarks are not free)

  • 7/28/2019 Lecture SM 12

    4/44Schning/Rodejohann 4 Standard Model of Particle Physics SS 2013

    Test of Lorentz Structure?

    +

    vectorcoupling

    0*helicity -1 +1

    n p e-

    +

    n p e-

    Fermi transition Gamov Teller transition

    -1

    Momentum

    Spin

    axialvectorcouplingMomentum

    Spin

    0*helicity - +1-1- -

    ?

    What is the relative contribution of V and A couplings in nuclear decays?

    L =G

    2(n (15)p) ( v (1

    5) e)

    Use a more general Lagrangian:

    =cA

    cVwith

    The strength of the axial-coupling is related to the neutron lifetime!

    =cA

    cV

  • 7/28/2019 Lecture SM 12

    5/44Schning/Rodejohann 5 Standard Model of Particle Physics SS 2013

    Measurement of the Neutron Lifetime

    Techniques:

    (ultra) cold neutron traps

    in-beam decays

    electron detectors

    proton detectors

    electron-proton coincidence method

    n pe e

  • 7/28/2019 Lecture SM 12

    6/44

  • 7/28/2019 Lecture SM 12

    7/44Schning/Rodejohann 7 Standard Model of Particle Physics SS 2013

    Neutron Trap II

  • 7/28/2019 Lecture SM 12

    8/44Schning/Rodejohann 8 Standard Model of Particle Physics SS 2013

    Results Neutron Lifetime

    Significant tensions between

    experiments!

    Best value (PDG 2010): n = 885.7 s

    derived from this value: =cA

    cV

    = 1.26940.0028

  • 7/28/2019 Lecture SM 12

    9/44Schning/Rodejohann 9 Standard Model of Particle Physics SS 2013

    Prediction for cA/c

    v

    Valence quark wave function of the neutron :

    Detailed calculation of vector/axial-vector contributions gives:

    cA/c

    v= 5/3

    Mismatch between experimentand prediction due to:

    Relativistic corrections

    Neglected sea quarks in the neutron

    QCD corrections

    e-

    e

    W-

    -p

    n

    QCD correctionsmodify axial-coupling

    spin flip

  • 7/28/2019 Lecture SM 12

    10/44Schning/Rodejohann 10 Standard Model of Particle Physics SS 2013

    Prediction for cA/c

    v

    Valence quark wave function of the neutron :

    Detailed calculation of vector/axial-vector contributions gives:

    cA/c

    v= 5/3

    Mismatch between experimentand prediction due to:

    Relativistic corrections

    Neglected sea quarks in the neutron

    QCD corrections

    e-

    e

    W-

    -u

    d

    gluon

    QCD correctionsmodify axial-coupling

    spin flip

  • 7/28/2019 Lecture SM 12

    11/44Schning/Rodejohann 11 Standard Model of Particle Physics SS 2013

    Overview Weak Decay Processes

    leptonic decay

    semileptonic decays

    semileptonic decays (S=1)hadronic weak decays (S=1)

    heavy quark decays (C=1, B=1, T=1)

    Weak decays of quarks and leptons (fermions)

    W-Boson decays:

    n pe e

    e e

    p e

    e p

    Q qW

    W l lW q q

    Charged currents can mediateinteractions between differentlepton and quark generations(mixing)

  • 7/28/2019 Lecture SM 12

    12/44Schning/Rodejohann 12 Standard Model of Particle Physics SS 2013

    K-Meson Decays

    GF2ms

    5

    Lifetime ~ 10-8

    sms 150 MeV

    K+ 0 0 +K+ 0 l+

  • 7/28/2019 Lecture SM 12

    13/44

  • 7/28/2019 Lecture SM 12

    14/44

    Schning/Rodejohann 14 Standard Model of Particle Physics SS 2013

    Weak Decays of B-mesons

    GF

    2

    mb

    5

    Lifetime ~ 1.5 psmb 4.5 GeV

    B0 D+ B0 D0 0 B0 D+ l

    l

  • 7/28/2019 Lecture SM 12

    15/44

    Schning/Rodejohann 15 Standard Model of Particle Physics SS 2013

    Decay of the Top quark

    GF2 mt

    5

    Lifetime ~ 10-25 s

    mt172GeV

  • 7/28/2019 Lecture SM 12

    16/44

    Schning/Rodejohann 16 Standard Model of Particle Physics SS 2013

    Summary Weak Interaction

    left handedfermions: (

    ee

    )L

    ( )L (

    )L (

    u

    d )L (c

    s)L (t

    b )L(I3=+ 1 /2I3=1 /2 )

    right handedfermions:

    e , ReR

    , RR

    , RR

    uRdR

    cRsR

    tRbR

    I3=0

    W-bosons couple only on fermions with weak isospin!

  • 7/28/2019 Lecture SM 12

    17/44

    Schning/Rodejohann 17 Standard Model of Particle Physics SS 2013

    Weak Scattering Experiments

    Question:What is the difference between:

    A) scattering experiments in classical mechanics

    B) weak scattering experiments?

  • 7/28/2019 Lecture SM 12

    18/44

    Schning/Rodejohann 18 Standard Model of Particle Physics SS 2013

    Weak Scattering Experiments

    Video of a classical scattering experiment

    Question:What is the difference between:

    A) scattering experiments in classical mechanics

    B) weak scattering experiments?

    Answer:

    Despite the fact that em

    =1/127 is much smaller

    than weak

    ~1/30electromagnetic interactions

    (A) is much more dangerous than (B)weak interactions

    http://home/schoning/heidelberg/lehre/SM13/Material/Stupid.mp4http://home/schoning/heidelberg/lehre/SM13/Material/Stupid.mp4
  • 7/28/2019 Lecture SM 12

    19/44

    Schning/Rodejohann 19 Standard Model of Particle Physics SS 2013

    Strength of Weak InteractionQuestion:

    Why is the weak interaction so weak if

    weak~1/30 ismuch stronger than

    em=1/127 ?

  • 7/28/2019 Lecture SM 12

    20/44

    Schning/Rodejohann 20 Standard Model of Particle Physics SS 2013

    Strength of Weak InteractionQuestion:

    Why is the weak interaction so weak if

    weak~1/30 ismuch stronger than

    em=1/127 ?

    Answer:

    1. Coupling

    elm. IA weak IA

    e ( 0.3) g ( 0.65) (e , g=4 )

  • 7/28/2019 Lecture SM 12

    21/44

    Schning/Rodejohann 21 Standard Model of Particle Physics SS 2013

    Strength of Weak InteractionQuestion:

    Why is the weak interaction so weak if

    weak~1/30 ismuch stronger than

    em=1/127 ?

    Answer:

    1. Coupling

    2. Propagator

    elm. IA weak IA

    Q2=1 eV2

    Q2=1 MeV2

    Q2=1 TeV2

    e ( 0.3) g ( 0.65) (e , g=4 )

    i g

    q2

    i g + qq /mW2

    q2mW

    2

    i g

    mW2

    =8GF

    2

    lowenergy

    Ratio(elm./weak)

    0.641022

    0.641010

    0.64102 (

    1

    q2

    )/(1

    mW2

    )

    mW

    ~ 80 GeV

  • 7/28/2019 Lecture SM 12

    22/44

    Schning/Rodejohann 22 Standard Model of Particle Physics SS 2013

    Strength of Weak Interaction

    At high mass scales E~100 GeV the weak interaction is

    stronger than the electromagnetic interaction

    Neutrino-nucleon scattering experiments require neutrino beams

    of about E

    ~100 GeV to test weak interactions at reasonable

    rates ~O(1pb) because of the propagator effect

    (

    e e) G

    F

    2s

    e

    e

    neutrino-electron scattering

  • 7/28/2019 Lecture SM 12

    23/44

    Schning/Rodejohann 23 Standard Model of Particle Physics SS 2013

    Production of (Myon) Neutrino Beams

    Production reactions:

    CHARM Detector

  • 7/28/2019 Lecture SM 12

    24/44

    Schning/Rodejohann 24 Standard Model of Particle Physics SS 2013

    CHARM Detector

    CHARM Detector

  • 7/28/2019 Lecture SM 12

    25/44

    Schning/Rodejohann 25 Standard Model of Particle Physics SS 2013

    CHARM Detector

    Why marble?

    20

    40Ca(CO

    3) is an iso-scalar target (same amount ofdand u quarks)

    CHARMII Detector

  • 7/28/2019 Lecture SM 12

    26/44

    Schning/Rodejohann 26 Standard Model of Particle Physics SS 2013

    CHARMII Detector

    CHARMII Detector

  • 7/28/2019 Lecture SM 12

    27/44

    Schning/Rodejohann 27 Standard Model of Particle Physics SS 2013

    CHARMII Detector

    Detection of Myon Neutrinos in CC

  • 7/28/2019 Lecture SM 12

    28/44

    Schning/Rodejohann 28 Standard Model of Particle Physics SS 2013

    Detection of Myon Neutrinos in CC

    N

    X

    long track identified as muon(minimum ionising particle)

    length of track is a measureof the muon energy

  • 7/28/2019 Lecture SM 12

    29/44

    Schning/Rodejohann 29 Standard Model of Particle Physics SS 2013

    (Anti-) Neutrino-Nucleon Scattering

    dd

    ( d

    u) =GF

    2

    42s

    neutrino-nucleon scattering

    d

    d

    ( u +

    d) =GF

    2

    42

    t

    antineutrino-nucleon scattering

    u

    +

    d

    -

    d

    u

    W

    W

    Neutrino-Nucleon:

    Anti-Neutrino-Nucleon:

    t

    (A i ) N i N l S i

  • 7/28/2019 Lecture SM 12

    30/44

    Schning/Rodejohann 30 Standard Model of Particle Physics SS 2013

    (Anti-) Neutrino-Nucleon Scattering

    dd

    ( d

    u) =GF

    2

    42s

    neutrino-nucleon scattering

    d

    d

    ( u +

    d) =GF

    2

    42

    t

    antineutrino-nucleon scattering

    u

    +

    d

    -

    d

    u

    W

    J=0

    W

    Neutrino-Nucleon:

    Anti-Neutrino-Nucleon:

    (A ti ) N t i N l S tt i

  • 7/28/2019 Lecture SM 12

    31/44

    Schning/Rodejohann 31 Standard Model of Particle Physics SS 2013

    (Anti-) Neutrino-Nucleon Scattering

    dd

    ( d

    u) =GF

    2

    42s

    neutrino-nucleon scattering

    d

    d

    ( u +

    d) =GF

    2

    42

    t

    antineutrino-nucleon scattering

    u

    +

    d

    -

    d

    u

    W

    J=0

    W

    J=1

    Neutrino-Nucleon:

    Anti-Neutrino-Nucleon:

    (A ti ) N t i N l S tt i

  • 7/28/2019 Lecture SM 12

    32/44

    Schning/Rodejohann 32 Standard Model of Particle Physics SS 2013

    (Anti-) Neutrino-Nucleon Scattering

    dd

    ( d

    u) =GF

    2

    42s

    neutrino-nucleon scattering

    d

    d

    ( u +

    d) =GF

    2

    42

    t

    antineutrino-nucleon scattering

    u

    +

    d

    -

    d

    u

    W

    t/s = (1cos)2 = (1y)2

    J=0

    W

    J=1

    Neutrino-Nucleon:

    Anti-Neutrino-Nucleon:

    dd

    (N

    X) 1

    2

    GF2

    42x S

    dd

    (N+

    X) 1

    2

    GF2

    42x

    t

    sS

    isoscalar target

    Lorentz Invariant Kinematics of the

  • 7/28/2019 Lecture SM 12

    33/44

    Schning/Rodejohann 33 Standard Model of Particle Physics SS 2013

    Deep Inelastic Scattering Process

    The virtuality of the exchanged

    photon is given by:

    Q2 = q2 = ( p p ')2

    q

    p

    p '

    positron

    nucleon

    W-boson

    1sin

    4 / 2

    N

    x P

    Relative energy loss (inelasticity):

    y = E

    = q Pp P

    x = q2

    2 q P= Q

    2

    S y

    relative fraction of parton momentum:

    S = 2 p Pwith cms energy:

    neutrino

    Measurement of the Differential

  • 7/28/2019 Lecture SM 12

    34/44

    Schning/Rodejohann 34 Standard Model of Particle Physics SS 2013

    N and anti-N Cross Section

    CDHS

    Neutrino-Nucleon:

    Anti-Neutrino-Nucleon:

    ddy

    ( N

    X) 1

    2

    GF2

    x S

    d

    dy(

    N + X)

    1

    2

    GF2

    x S (1y)2

    isoscalar target

    small deviations from above equations due to x-dependence!

    Measurement of the Total N and

  • 7/28/2019 Lecture SM 12

    35/44

    Schning/Rodejohann 35 Standard Model of Particle Physics SS 2013

    anti-N Cross Section

    From simple quarkcounting:(isoscalar target)

    (N)

    (N)= 3

    Parton dynamicsmore complex

    Sea Quarks!

    measured value ~2is significantly smaller!

    Example: Proton Parton Densities

  • 7/28/2019 Lecture SM 12

    36/44

    Schning/Rodejohann 36 Standard Model of Particle Physics SS 2013

    Example: Proton Parton Densities

    Significant component from sea quarks!

    multiply by 20!

    (Anti ) Neutrino Nucleon Scattering

  • 7/28/2019 Lecture SM 12

    37/44

    Schning/Rodejohann 37 Standard Model of Particle Physics SS 2013

    (Anti-) Neutrino-Nucleon Scattering

    d

    u

    u +

    d

    u

    +

    d

    -

    d

    u

    W

    W

    u d

    d +

    u

    +

    -

    d

    uW

    W

    _

    _

    d

    u

    _

    _

    Unfolding the Valence Quark

  • 7/28/2019 Lecture SM 12

    38/44

    Schning/Rodejohann 38 Standard Model of Particle Physics SS 2013

    Distributions

    dv + dsea + (usea) 2dv + dsea + (usea)

    2uv

    + usea

    + (dsea

    ) uv

    + usea

    + (dsea

    )

    _ _

    _ _

    Structure Functions

  • 7/28/2019 Lecture SM 12

    39/44

    Schning/Rodejohann 39 Standard Model of Particle Physics SS 2013

    S uc u e u c o sRelations:

    Measurement:

    Extraction of parton densities:

    F2

    Results xF3

    Results

  • 7/28/2019 Lecture SM 12

    40/44

    Schning/Rodejohann 40 Standard Model of Particle Physics SS 2013

    F2

    Results xF3

    Results

    Comparison N versus lepton-N

  • 7/28/2019 Lecture SM 12

    41/44

    Schning/Rodejohann 41 Standard Model of Particle Physics SS 2013

    Scattering

    Structure function results

    obtained in weak interactions

    agree well with result obtained

    in electromagnetic interactions!

    Due to different couplings:

    Ratio of d /u

  • 7/28/2019 Lecture SM 12

    42/44

    Schning/Rodejohann 42 Standard Model of Particle Physics SS 2013

    Ratio of dv/u

    v

    Result: dV/u

    V 0ifx 1

  • 7/28/2019 Lecture SM 12

    43/44

    Schning/Rodejohann 43 Standard Model of Particle Physics SS 2013

  • 7/28/2019 Lecture SM 12

    44/44

    Schning/Rodejohann 44 Standard Model of Particle Physics SS 2013