lecture of ch. 6, 7, 8

Upload: naefmubarak

Post on 22-Feb-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    1/62

    Ch. 6. Cuttings transport (hole cleaning) Introduction

    1. Vertical wells high c

    2. Medium inclined wells avalanches

    3. Highl inclined wells !ed " dunes

    1. Practical transport mechanisms, including string rotation

    2. Theoretical transport mechanisms, without string rotation

    3. Practical problems

    4. Practical solutions

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    2/62

    6. Cuttings transport6.1. Vertical wells

    #ettling o$ cuttings

    qcuttings

    = /4 * dbit

    2* ROP (m3/s)

    ccuttings,0

    = qcuttings

    / (qpump

    + qcuttings

    ) qcuttings/ qpumps

    Settling, vslip, will lead to increased concentration

    vtransport= vann- vslip

    vslip == 0

    vann= 0.15 m/s

    c = 0.02

    vslip= 0.0 m!s

    vann= 0.15 m/s

    c = "

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    3/62

    0= am

    ( )shp!sph!mudp "#g =

    #g = #shear

    ( ) sph!mudp "gmm = 3363

    4psph! d!#

    ==

    224 psph! d!" ==

    =dvx

    dr

    / 2 / 2

    2 / 2 2

    p!iph!$ p!iph!$

    slip cnt!%& sph!

    v l tv !

    v v ! t !

    = = = =

    02

    slip' '

    slip

    p

    vv dv

    v! d! ! d

    = = =

    ( )2

    3

    24

    6

    = p

    p

    slip

    pmudp

    d

    d

    vdg

    ( )

    6

    2

    mudpp

    slip

    gdv

    =

    6. Cuttings transport6.1. Vertical wells

    #ettling o$ cuttings

    slip' vv2=>

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    4/62

    c or

    6. Cuttings transport6.1. Vertical wells

    #ettling o$ cuttings % &$$ect o$ particle concentration

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    5/62

    ccuttings= ccuttings,0! $transport

    vtransport= vann- vslip

    Rtransport= vtransport/ vann= 1 - vslip/ vann

    %hec& vslip '

    vslip, 0.00 = .00 2(2 00 .1100)*.+1!(0.1 ..) = 0.1+ m!s

    - eect o c and vslip= 0.10 m!s

    /ample o determining necessar '

    c0.04 and $P = 10 m!hour (30 t !h)

    vann= "

    ecessar pump low rate = v5 = !4 .(12. 26 2) .0.024 2

    =

    6. Cuttings transport 6.1. Vertical wells

    #ettling o$ cuttings % &$$ect o$ particle concentration

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    6/62

    0

    =am

    #7rag = #g

    = Vp(p- mud)g

    CDrag

    Ap0.5

    mudv

    slip2

    = vslipdpmud/eff

    6. Cuttings transport 6.1. Vertical wells

    #ettling o$ cuttings % &$$ect o$ particle concentration

    CDrag

    =

    4 .10-7(2400 1400) .10

    / (2.5 . 10-4.0.5 .1400 .0.12) = 1.6

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    7/62

    = spherisit= area o sphere o same volume ! area o cuttings

    = 5sphere! 5cuttings

    d1

    d3

    d2

    dsphere

    1.1

    1.0

    0.+2

    0.+0

    0.0

    0.48

    0.42

    0.0*

    0.04

    d1= 4

    d2= 10

    d3= 10

    6. Cuttings transport 6.1. Vertical wells

    #ettling o$ cuttings % &$$ect o$ particle concentration

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    8/62

    6. Cuttings transport

    6.2. Medium inclined wells % 3' 6' 'inclination

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    9/62

    "M

    6. Cuttings transport

    6.3. Highl inclined wells

    1. *eal transport mechanism

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    10/62

    "M

    6. Cuttings transport 6.3. Highl inclined wells

    1. *eal transport mechanism

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    11/62

    ' '.+ 1v (m,s)

    1.'

    '.+

    '.'

    -ransport e$$icienc

    18. large holes 1+0 rpm ideal 000 lpm

    12.2 med holes 120 rpm min 3 000 lpm

    +. small holes 120 rpm ideal 2 000 lpm

    6. Cuttings transport 6.3. Highl inclined wells

    1. *eal transport mechanism

    6 C tti t t

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    12/62

    ma.i$

    holecl

    eaning

    isprior

    it

    ma.i$&C/

    ispriorit

    "M

    6. Cuttings transport 6.3. Highl inclined wells

    1. *eal transport mechanism

    6 C tti t t

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    13/62

    2

    2

    8

    '

    p

    (!ag(!agv

    d)*

    =

    2

    2

    8'

    p

    +i&t+i&t vd

    )*

    =

    ( )( )

    sincossin2/2

    2

    2

    += $pc%hsivd

    *

    ( )&luidsp

    g

    dg*

    =6

    3 = angle o repose= inclinaiton (devation rom vertical)

    a. General

    b. Drag

    6. Cuttings transport 6.3. Highl inclined wells

    2. Model0 Mechanistic approach

    6 Cuttings transport

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    14/62

    2

    2

    8'

    p

    i&ti&t vd

    )*

    =

    ( )( )

    sincossin2/2

    2

    2

    += $pc%hsivd

    *

    2

    Re282.5

    =d!

    dv

    v

    d) '

    p'

    p

    i&t

    , sin 0

    nt li&t + c%hsiv* * * , = >

    [ ], sin ( ) cos sin( ) 02

    p

    nt !%lling ( + c%hsiv

    d* * * * , = + + >

    c. Lift

    d. Cohesive

    e. Conclusion

    6. Cuttings transport 6.3. Highl inclined wells

    2. Model0 Mechanistic approach

    6 Cuttings transport

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    15/62

    6. Cuttings transport 6.3. Highl inclined wells

    2. Model0 &mpirical approach

    6 Cuttings transport

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    16/62

    Volume

    #weep

    Volume

    "M

    6. Cuttings transport 6.3. Highl inclined wells

    3. ractical pro!lems. #weeps

    6 Cuttings transport

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    17/62

    "M

    6. Cuttings transport 6.3. Highl inclined wells

    3. ractical pro!lems. #teera!el motors

    6 Cuttings transport

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    18/62

    Comparison of pick-

    up weig! an" s#ack-

    off weig! ("rag

    resis!ance)

    $erformfre%ue

    n!

    wiper!rips

    9 MI9 *M

    HKL

    MD

    6. Cuttings transport 6.3. Highl inclined wells

    . ractical solutions

    6. Cuttings transport

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    19/62

    -he $aster we drill the higher the 4ualit0: 7rill ast: ;igh cuttings transport eicienc

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    20/62

    Ch. 7. &C/

    Introduction

    & accl!ati%nannula! &!icti%n cuttings su!g s-ab !%tati%n

    mud

    p p p p p

    .)( g/

    + + + + = +

    /%7

    7e

    p

    th

    7. &C/1 Mud /ensit

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    21/62

    actors

    1. /ensit control

    =

    #

    m

    2

    '2

    '

    =

    add

    add

    #

    #

    l0g/2.4=

    #m

    @arite'

    Salt'

    1.3*

    1.1*

    5 tan& o 0 m3contains mud o ?A 1. &g!l, should be reduced

    to 1.40 with mud rom a tan& o sea water, 1.02 &g!l.

    2.'535.0

    '0.060

    40.'025.'

    50.'40.'60 =

    =

    =add#

    1. Mud /ensit2. nnualr $riction3. Cuttings. *otation o$ drill string+.#urge " #wa!6.-%variation

    7. &C/

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    22/62

    1. /ensit control

    8arite " salt

    7. &C/

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    23/62

    w

    8.5 - 2.6 *'0-3 + 2.5 *'0-5p

    o .0 - 3.0 *'0-3 + 4.4 *'0-5p

    mud (in #B)

    7uring normal operations the two eects, p and T, will neutraliCe each other since both increase with depth.

    Ahen ma one eect dominate, causing an adDustment"

    1. /ensit control

    7. &C/

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    24/62

    2. nnular $riction

    %uttings increases annular densit b 0.03 &g!l.

    Eiscosit and low rate is the same. 7oes SPP react"

    &!icti%n

    %ut

    pump

    in

    hg

    v

    g

    ph

    g

    v

    g

    p +

    ++=+

    ++

    22

    22

    7. &C/

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    25/62

    %cu!!ings

    hmROPdbit

    /00026.0)60*60/('2*32.044 22

    ==

    ccu!!ings,o

    %cu!!ings

    / (%pump

    %cu!!ings

    ) %cu!!ings / %pump

    R! !ranspor! / ann (ann6s#ip)/ ann '6s#ip/ ann 0.5

    cuttings= 19 ccuttings,average ' 5 * 0.' 0.5

    s#ip

    "p

    2*g (p-

    mu") / 6

    eff* f

    cu!!ings 0.5 m/s

    ccu!!ings,aerage

    ccu!!ings from !e orion!a# sec!ion

    / R! 0.'2 0.05 0.025

    mu",aerage 1mu" ('- ccu!!ings, aerage ) 1cu!!ingsFccu!!ings,aerage

    '200 ('-0.'2) 2500 * 0.04 ' 356 kg/#

    '.'2

    '.''.'2

    '.'

    s#ip

    0 s#ip

    0.5

    .ann

    )'m/s

    0.000

    0.020

    0.012

    0.00022 m3!s

    3. &$$ect o$ cuttings. &ampli$ied

    7. &C/

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    26/62

    3

    2

    '0 &&

    v!

    ! ! ! !

    =

    r= 9(dv!dr - dvr!dr)

    . *otation o$ drill pipe. &empli$ied

    #

    4

    #ieldobse

    rvation

    Theoret

    ical

    7. &C/

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    27/62

    a!a&l%-

    displacdv%lum%&!atpip pip

    annulus

    v "

    "

    surge

    248

    h$d!d

    v

    d'

    dp =

    ue !o c#inging, surgean" & is no! s!raig! forwar"

    '. na#!ic approac for #aminar f#ow regime, inc#u"ing c#inging

    2. !an"ar" "rau#ic fric!ion mo"e#s

    3. "ance" approac, inc#u"ing e#as!ici! of f#ui" an" s!ee# pipe

    arc - eiss7ack

    rooks ('80, $9 '0 863)

    +. #urge and swa!

    7. &C/

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    28/62

    #tep 1. 9nderstand the underling phsical sstem. #tart with the simplestsstem ! reducing the compleit: appl simpli$ing assumptions

    #tep 2. #;etch the sstem and draw an envelope with ingoing and eiting $orces#tep 3. #olution

    #tep . Improve the model

    Gnitial understanding o surge!swab pressure'

    :5ssume stead9state low

    :Heometr deined b #igure

    #tep 10

    #impli$ications0:%oncentric inner pipe:Smooth clinders deine annular wall and pipe wall

    :%losed end pipe ! loat valve. pinside 7P= pann:5ssume clinging actor =0. (the clinging volume ehibits 10 9 40 I o the downward lowing volume,

    depending on the relative slot siCe):Stead9state process. o luid acceleration:nl ewtonian and Power law luids:Gnelastic luid and drill string

    +. #urge and swa!

    7. &C/

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    29/62

    #tep 1. -he phsics % simpli$icaitons (continued)

    Commen!s on elastic materials

    o! pipe e#as!ici! an" f#ui" iscous force are par!icipa!ingin "e!ermining pipe "isp#acemen! "uring !ripping, as we## as

    forma!ion an" cemen! e#as!ici!. +e a## inf#uence !e

    pressure surge.

    +e figure comparers a surge si!ua!ion were iner!ia

    effec!s are presen!. nega!ie 7o!!om pressure surge is

    of!en o7sere" a! !e surface wen !e "ownwar"

    moemen! of !e "ri## s!ring is 7roug! !o res!, a wa!erammer affec!

    +. #urge and swa!

    7. &C/

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    30/62

    #orces involved'

    dp Acrosssection = Ashear

    #tep 2. #;etch and draw and envelope o$incoming and eiting $orces $orces)

    #orces in and out across the

    envelope'

    dp r2 = 2rdl

    dp r = 2dl

    Gntegrating aiall

    p/(2L r =

    +. #urge and swa!

    7. &C/

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    31/62

    #tep 3. #olution

    +. #urge and swa!

    #or laminar low it is oten possible to ma&e a purel anltical solution. #or more cople precesses it ma become necessar with': #inite elements: ther numerical methods: /mpirical solutions

    @ac& to our simpler process. @eore integrating over the envelope the variables need to be dierentiated'

    to d, r to drGntegrate now rom r = $0, where t = 0

    to r = r (an r)

    p ! (2

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    32/62

    +. #urge and swa! #tep 3. #olution

    7. &C/

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    33/62

    +. #urge and swa! #tep 3. #olution (continued)

    7. &C/

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    34/62

    &4uivalent Clinging Constant0

    %ontribution o pipe velocit towards pressure drop. The clinging constant ma beepressed as'

    Jc= cling! tot

    To ind clingit now remains to integrate rom r = $7Sto r = rcling

    r = $clingwhen v = 0

    The be determined

    +. #urge and swa!

    #tep 3. #olution(continued)

    S. S.

    7. &C/

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    35/62

    Acceleration of drill string

    Gelling of mud in drill string and annulus

    Hoisting of drill string with gelled mud inside

    Starting mud pump with gelled mud in drill string and annulus

    ,

    ,

    pip &&

    accll!ai%n pip

    ann &&

    "p ma a

    " = =

    4 -gl

    pip

    p

    O

    =

    pip

    -

    1(

    +hg

    =

    4

    :se ge# s!reng! measure" af!er '0 min or e%uia#en!.Can 7e 7roken 7 ro!a!ing /reciproca!ing !e "ri## s!ring

    reaks on# oer a cer!ain #imi!e" "is!ance "ue !o

    compressi7i#i! of wa!er / "eforma!ion.

    #tep . (more realistic assumptions)

    +. #urge and swa!

    7. &C/

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    36/62

    #urrounding

    temperaturein ocean and$ormation

    Conduction

    Convection

    -emperature variation

    /ata and model

    7. &C/

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    37/62

    ( )'2/#n2

    RR

    2/0q

    =

    ( )%%- 22"hq = 364.4==0

    hd3u

    !

    2

    !

    02cu

    /2c

    tpp

    =

    ( )

    !

    titi

    !

    !!

    titi5!!

    t

    titi!!

    p

    p

    +

    +

    =+

    ),,(),',(2

    ),,(),,'(2

    ),,()',,(2

    1. &stimate umerical solution

    iteration counter = &

    E = 2rrC

    -emperature variation

    Model

    Ch. . !ellbore stabilit" 1. Introduction2 Mechanical sta!ilit t t

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    38/62

    Ceneer! ('6, ;C$+), an

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    39/62

    2. Mechanical sta!ilitA pure

    Stress related instabilit'

    %reep' Aellbores that stas open or a long time

    (wee&s), tend to close in

    Tensile ailure at high ?A' #ractures are generated, and detected at the

    surace as lost circulation.%ompression ailure at low ?A' %avings, brea&outs,

    eventuall leading to total wellbore collapse

    icture

    Beometr0

    Cause0

    Counter%

    measure0

    98/ 8/ re%eisting wea;nesses

    Increase M? ptimiDe traEector Improve $luid loss

    Monitor &C/ /ecrease M? *educe hdraulic , mechanical attac; Monitor &C/

    = #!5

    = l!l

    $re-e>is!ing weakness in !e forma!ion, enancing !esi#e / copmpressiona# fai#ures

    ?au#!s crossing !e we##7ore / na!ura## s!resse"

    @n!er-7e""e" forma!ions (7e!ween #i!o#og canges, 7e""ing ang#e c#ose !o we##7ore ang#e) Aa!ura## weak forma!ions (coa# 7e"s, cong#omera!es, #oose san"s, e!c)

    Surveillence

    at the surface

    @. ?ell!ore sta!ilit 2. Mechanical sta!ilitA com!ined with chemical

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    40/62

    +ere are !ree mecancica# s!resses

    '.@n-si!u er!ica# (oer7ur"en) an" resu#!ing orion!a# s!resses

    2.$ore pressure3.?orces ac!ing a! in!ergranu#ar con!ac! or a! cemen!a!ion poin!sB coesie force

    sing#e se! of c#a p#a!e#e!s connec!e" !o a pore

    =ecanica# forces inc#u"e ',3,ppore cemen!a!ion

    @. ?ell!ore sta!ilita. -ransport mechanism

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    41/62

    +ere are !ree cemica# forces in genera#

    :an "er aa# forces

    :9#ec!ros!a!ic repu#sie forces (orne):?orces (repu#sie / a!!ac!ie) resu#!ing from "ra!ion / so#a!ion of c#a surfaces from

    ions presen! in in!er#aer spacing (a"sor7e" or free)

    a!!er !wo forces are usua## #umpe" !oge!er !o form !e "ra!ion or swe##ing pressure

    a. %ransport mechanisms

    +e four mos! usefu# e%ua!ionsD

    '.?#ow of wa!er "rien 7 "rau#ic pressureD "E/"! k/f."p/"r

    2.$ressure "iffusion aea" of !e wa!er fron!D "p/"! k/(f.Feff) G "

    2p/"r2 '/r ."p/"rH. Feff F '/#* (fm grain(F))

    3. iffusion (?ickIs #aw)D "c/"! G "2c/"r2 '/r ."c/"r. iffusion of ions moes in !e opposi!e "irec!ion of wa!er f#ow

    Type of ow dp/dl D(chem.pot)/dl

    Water Convection (direct

    transmission)

    Osmosis

    Solution /

    ions

    Advection (indirect

    transmission)

    Difusion (Fick)

    @n a""i!ion comes !e Capi##ar pressureD

    4.

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    42/62

    :ri##ing a! ig "rau#ic oer7a#ance:ri##ing f#ui" ion c J pore f#ui" ion c

    iffusion of ions wi## !ake p#ace. ssume no coup#e" f#ow

    :Kow wi## !e 3 processes (wa!er con!en!, prore p an" swe##ing p) #ook #ike af!er some !imeL

    $ressure pene!ra!ion an" ion "iffusion in sa#e, o7!aine" 7 app#ing e>pan"e" so#u!ion of !e !ree !ranspor! e%ua!ions an" ma!eria# cons!an!s

    for !pica# sa#e (ksa#e '0-2' m2). Moering e%ua!ions pre"ic!s !e "ee#opmen! of !ree fron!s aroun" a we##7ore in a sa#e s. !ime

    a. -ransport mechanism

    mm

    cm

    dm

    = mudvap%!

    s-llp

    p

    #

    R2p

    ,#n

    @. ?ell!ore sta!ilit 3. Chemical activit

    ! # lli $ h l

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    43/62

    efD @ni7i!ion

    re"uc!ion of

    swe##ing pressure

    NC# minimies swe##ing "ue !o sma## "egree of "ra!ion of

    N. u! i! is more comp#e>D ! ig c, swe##ing increases again

    N

    rep#aces #ess ini7i!ie ions. #so anions in!ro"uce" in !e in!erp#a!a#spacing. oes no! occur in !e fie#" (Nneer occur a! suc ig c a#one)

    +is effec! !akes p#ace s#ow# ("iffusion is s#ow). pswe##can neer reac ero.

    Koweer, swe##ing (e>pansion) can 7e ero "ue !o cemen!a!ion 7on"s

    u! a#so c#a !pe "epen"en!D N"oes no! ini7i! @##i!es, an" ma increase

    swe##ing of Nao#ini!es

    we##ing is comp#e> an" osmo!ic swe##ing is a !oo

    simp#is!ic mo"e#

    we##ing pressure in Aa-=on!mori##oni!e as a

    func!ion of in!erp#a!e#e! "is!ance. !a7#e s!a!es are

    in"ica!e" 7 arrows. ensi! "is!ri7u!ion of wa!er-

    o>gens are a func!ion of !e "is!ance. ?rom !e

    see! surface. Resu#!s are snown for !e s!ag7#e

    s!a!es of 4 "ifferen! spacings

    we##ing !es!s of sa#e con!aining 65 O mon!mori##oni!e. +e swe##ing

    in"e> "oes no! go !o ero, i.e. !ere is a#was resi"ua# swe##ing

    p%!-at!vap%!p# , !. #welling o$ shale

    @. ?ell!ore sta!ilit

    Implications o$ chemical activit and countermeasures

    1. ?ell!ore sta!ilit2. Cuttings sta!ilit

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    44/62

    @ni7i!ors canno! preen! pore pressure increase in"uce" sa#e pro7#ems 7ecause ini7i!or "iffusion fron! #ags 7ein".

    ome!ing more !an ini7i!ion is nee"e". +e answer isD $reen! wa!er f#ow !o supress pressure pene!ra!ion. +is is ow

    !o aciee i!D

    '. pp# ra"ia# suppor! !roug proper = (prere%uisi!e)

    2. =ain!ain suppor! 7 re"ucing fi#!ar!e inasion (see #a!er)

    3. :se ini7i!ie mu" (see #a!er)

    : Swelling pressure

    : H"draulic pressure

    we##ing pressure canno! 7e re"uce" "own !o ero. n effec!ie !esi#e force is remaining. en ne! !ensi#e forces oercome sa#eIs

    !ensise s!reng! (#ow in sa#e), ie#"ing a! wakes! si!es wi## !rigger su7se%uen! fu##-sca#e fai#ure. $ressure f#uc!ua!ions (from &) wi##

    cange "rau#ic suppor!, an" ma "e#ier !e Pfina# 7#owQ !o a#!rea" weakene" sa#e.

    +is !ime-#ag in !ranspor! is regar"e" as !e main reson 7ein" ini7i!ors sor!comings as sa#e-s!a7i#iers. en arriing , ini7i!ors

    arrie !oge!er wi! wa!er !e ma #ea" !o er sma## !o #ow p swe##(as oppose" !o #arge pswe##if no ini7i!or was presen!).

    a!er we wi## ceck !ree "ifferen! mu" !pes !o see ow !is can 7e aciece" prac!ica##

    . Implications o$ chemical activit and countermeasures 2. Cuttings sta!ilit3. 8it !alling. #urveillence o$ sta!ilt

    1. ?ell!ore sta!ilit

    @. ?ell!ore sta!ilit . Implications o$ chemical activit and countermeasures

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    45/62

    Cu!!ings e>pose" !o !e same mecnisms as !e we##7ore, e>cep! !a!

    :Meome!r an" s!ress con"i!ion are "ifferen!:+iming is "ifferen!. 9>posure is !pica## on# ' our

    @n-si!u s!resses are su""en# re#iee" an" rep#ace" p"rwen cu!!ings are genera!e"

    r p"r ppore- pswe##

    an" wi## 7e in !ension if p"r ppore pswe## an" "isin!egra!e if pcoesionis oercome

    +e fo##owing wi## !ake p#aceD

    '.p"rwi## #ea" !o s#ow inasion an" e%ua#ie ppore, 7u! norma## no! in on# '

    2. 7igger pro7#em is p"rrecuc!ion as cu!!ings are !ranspor!e" up !e we##7ore, com7ine" wi! s#ow

    pswe##increase, pro7a7# !e mos! "e!rimen!a# effec!

    Countermeasures&

    '.9ncapsu#a!ion

    2.u! off wa!er 7 enancing iscosi! of fi#!ra!e

    3.:se ini7i!ie mu" (see #a!er)

    2. Cuttings sta!ilit

    @. ?ell!ore sta!ilit . Implications o$ chemical activit and countermeasures

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    46/62

    !ress re#ease on cu!!ings ma !rigger "ra!ion. pswe##ac!s #ike an Pun#oa"ing springQ in nee" of wa!er.

    Cu!!ings are in con!ac! wi! !e 7i! s!ee#.

    '.rawing wa!er inwar" ma acuum !emsees on!o !e 7i! an" !o eac o!er.

    2.isin!egra!e" par!ic#es / swe##e" par!ic#es ae an enourmous surface area. +e sma## "is!ance !o !e s!ee# surface /

    o!er ca# par!ic#es awokes an "er aa# forces, o#"ing !e par!ic#es on!o !e 7i! surface (c#ogging / s!icking). +e

    c#ogging is c#ose# re#a!e" !o p#as!ici!.

    CountermeasureD

    '.Neep !e cu!!ings ou!si"e !e p#as!ic / swe##ing one

    2.@ncrease "ispersii! in !e f#ui" (pK J 8)

    3.=ake !e sufaces oi#-we! (see #a!er)

    3. 8it !alling

    S"mptoms(a#was #ook for "eia!ion from norma#)

    @. ?ell!ore sta!ilit . Implications o$ chemical activit and countermeasures

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    47/62

    S"mptoms of Mobile fm

    :e##7ore erosion wen "ri##ing !roug !e sa#! forma!ion an" / or !oug sa#e a7oe or 7e#ow !e

    sa#! forma!ionS 9>cessie !or%ue an" pack

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    48/62

    "p + g w -

    %"pe 0& 1on2invading !)M , /)M +balanced Aw-

    %"pe #& KCl , 3H3A

    Re"uces pswe## in smec!i!ic c#a - oung reac!ie gum7o !pe sa#e.

    NC# e>i7i! !e iges! inii!ie effec! of a## sa#!s.

    Ca!ions e>cange p#ace wi! Aaions. u! ae some sor!comingsD

    '.Ao fi#!ra!e preen!ion

    2.

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    49/62

    Canges are sown re#a!ie !o !e

    proper!ies in !e na!ie sa#e an" !o non-

    in7i7i!ie =. +e figure sows !a!

    pore pressure wi## 7e enance" in a##

    !ree inasion ones, 7u! !e wa!er

    con!en! an" swe##ing pressure is re"uce"

    Koweer, 7o! ingre"ienses (NC#

    $K$) fa## sor! wen o#"er, #ess

    reac!ie sa#es are "ri##e".

    %"pe #& KCl , 3H3A +continued-

    $o#mers, #ike $K$, wi! func!iona#

    groups of posi!ie po#ari! a7sor7s on!o

    c#a surfaces a! mu#!ip#e si!es!e

    are more "ifficu#! !o e>cange/remoe.

    Moo" ini7i!ors wen #ow-mo#ecu#ar (

    '0 000)B pene!ra!e pores of !e sa#es.

    Kig mo#ecu#ar po#mers, #ike $K$,

    #a!ces on !o !e ou!er surface of sa#e

    in a we7-#ike pa!!ern an" com7a!

    "isi!egra!ion of sa#e. $ore 7#ocking is

    minima#. @"ea# a""i!ie for cu!!ings

    s!a7i#ia!ion.

    CaC#2, Car2are ig# so#u7#eig "ensi!. +eir a"- an" "isan!ages areD

    @. ?ell!ore sta!ilit @.+. Inhi!itive muds

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    50/62

    Resu#!ing mu" !pe 7eaior is sown ere. e see !a! !e wa!er

    con!en! an" !e pore pressure are e>pec!e" !o 7e re"uce". u!

    swe##ing pressure is e#ewa!e" in !e fi!ra!e- an" !e @ -one "ue !o

    unfaora7#e e>cange of ca!ions (Aa).

    $o#-g#cero# an" g#co#s are

    saccari"es of #ow mo#ecu#ar sie (

    '0 000). +e iscosif !e fi#!ra!e /

    7ui#" an in!erna# fi#!er an" re!ar"

    fi#!ra!e inasion.

    %"pe & /smotic !)M4 CaCl5 meth"l2glucose

    2 2

    :Kig osmo!ic pressure (7u! "ue !o #ow mem7rane efficienc (' '0 O) !e osmo!ic pressure is

    #mi!e" !o '/'0 '/'00), can 7e app#ie" !o par!ia## offse! !e "rau#ic oer7a#ance:Kig fi#!ra!e iscosi!-eak mem7raneion "iffusion in!o sa#e, agains! !e 7ack-f#owing

    wa!erAae>cange Npswe##wi## again increase

    @. ?ell!ore sta!ilit @.+. Inhi!itive muds

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    51/62

    w

    cla$-p

    ,

    das

    1.''.'

    '. Co##ec! c#a from upper ;ura. r an" crus

    2. =easure s. w3. =ake a p#o!

    4. C#o##ec! presere" c#a. =easureorigina# 2.'35. ?in" origina# wfrom p#o!

    %"pe & /smotic !)M +continued-

    =

    p%!-at!vap%!

    mudvap%!

    s-llp

    p

    #

    R2p

    ,

    ,#nKere is a me!o" of ow !o "e!ermine w, pore. e wi## use i! !o "e!ermine pswe##.

    2.'3

    @. ?ell!ore sta!ilit @.+. Inhi!itive muds

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    52/62

    8hal -ith%ut -tting agnt 8hal -ith -tting agnt

    '. ase oi#D !e con!inuous pase

    2. 9mu#sifierD emu#sif wa!er in oi#

    3. e!!ing agen!D makes !e we##7ore oi# we!

    4. a!erD forms iscosifing "rop#e!s

    %"pe 0& 1on invading !)M , /)M

    !ater activit"&

    wis more impor!an! !an

    se#ec!ing 7e!ween !ure 7e!ween !wo unmi>a7#e #i%ui"s (oi# an" wa!er)

    !ettabilit"& o#i"s can 7e wa!er or oi# we!

    ( 0 40 w I)20

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    53/62

    %"pe 0& 1on invading !)M , /)M +continued-

    )alanced water activit"&

    wi## #ea" !o no cange in !e sa#e

    Lower water activit"&wi## #ea" !o osmo!ic f#ow of wa!er from !e sa#e pores !o !e mu"

    (in"us!r s!an"ar" of "ri##ing !rou7#e free sa#e (2000)

    !ep 'D Reiew re#ean! offse! we##s!ep 2D na#e forma!ion proper!ies

    !ep 3D e##7ore s!a7i#i! mo"e#

    @. ?ell!ore sta!ilit

    6. /rilling limit

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    54/62

    !ep 3D e##7ore s!a7i#i! mo"e#

    !ep 4D Ko#e c#eaning, wa7, 9C

    !ep 5D ummar

    200'D :se 7es!-in-c#ass !ecno#og !o e#imina!e / minimie A$+ make a perfec! o#e

    Step #& *ind /ffset wells +e7amplified b" trouble well -

    T?7 (t) Gncl. (0)

    1+,830 3 7rill to 1+830M' una!le to slideGpoor M?/ signal. @uilding angle N 0.4O ! 100M 8allooning 1@73' Q

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    55/62

    Step & *ormation properties , data collection

    @"en!ifica!ion of opera!iona#

    pro7#ems s. fm

    ources an" !ransfer of e>perience "uringcase 7ui#"ingD Rea#-!ime "a!a (#ef!) an"

    ocumen!s (#ower rig!). n e>per! is

    nee"e" !o crea!e" e>perience cases for #a!er

    re-use "uring p#anning of simi#ar we##s

    @. ?ell!ore sta!ilit 6. /rilling limit

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    56/62

    Step & *ormation properties ,data collection

    $o!en!ia# errors wic

    can #ea" !o fai#ures

    $o!en!ia# fai#ures

    ?ai#ure "efini!ionD n een! causing A$+

    @. ?ell!ore sta!ilit 6. /rilling limit

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    57/62

    Step 0& !ellborestabilit"

    owno#e pressure

    response as surface

    rea"ings "uring

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    58/62

    Step 8. 6CD

    Aee" !ree mo"e#sD

    :9C:wa7 & urge:Cu!!ings !ranspor!

    Kere is a one-page o#e-c#eaning

    summar for an 9R-we## (ear 2000)

    ?#ui" #oss in

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    59/62

    Step 9. Summar"

    :se #a!es! aai#a7#e !ecni%ues a!

    a## !ime. Neep ourse#f up"a!e"D

    :ccura!e simu#a!ors / mo"e#s,

    inc#u"ing mos! rea#is!ic

    assup!ions:@n!egra!e a## mo"e#s an"

    assump!ions if possi7#e

    "as per '000 f!) agains! a !ecnica# #imi! of '.' "as wi!ou! an o#e pro7#ems. +e we##

    was "ri##e" a#mos! !wice as fas! as !e ' goa# (3. "as per '000 f!).

    +e mos! impor!an! person "uring p#anning

    is !e e## engineers. u! impor!an!

    suppor!ers "uring p#anning are

    Meo#ogis!s,

    $e!ropsicis!s,

    Rock mecanicc

    =u" engineers

    Some final integrated issues&

    i## 9C cross !e pressure win"owL Cange we##pa! or s!reng!en fm, cange reo#og, cange mu" !pe (=)

    eepage #osses !o me"ium #osses e>pec!e"L = as a 7e!!er frac!ure ea#ing a7i#i! "ue !o swe##ing of c#a

    Kig +&L "" #u7rici!

    eep we##L ue !o compressi7i#i! "owno#e = V surfaceW

    ong open o#e !imeL Kiger = is necessar !o main!ain s!a7i#i! ("ue !o s#ow# c#im7ing ppore)

    Aear 7 we##L @ncrease frac!ure propaga!ion resis!anceC= nee"e"L aoi" increase" reo#ogWW

    @. ?ell!ore sta!ilit 6. /rilling limit

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    60/62

    Step 9. Summar"

    #ummar

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    61/62

    #ummar

  • 7/24/2019 Lecture of Ch. 6, 7, 8

    62/62

    A@