lecture ii: synthetic spin-orbit coupling for …iststm/lecture/xiongjunliu/2.pdflecture ii:...

24
Lecture II: Synthetic Spin-Orbit Coupling for Ultracold Atoms and Majorana fermions International Center for Quantum Materials, Peking University Xiong-Jun Liu (刘雄军) International Center for Quantum Materials International School for Topological Science and Topological Matters, Yukawa Institute for Theoretical Physics, Feb 14, 2017

Upload: others

Post on 18-May-2020

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lecture II: Synthetic Spin-Orbit Coupling for …iststm/lecture/XiongJunLiu/2.pdfLecture II: Synthetic Spin-Orbit Coupling for Ultracold Atoms and Majorana fermions International Center

Lecture II: Synthetic Spin-Orbit Coupling for Ultracold Atoms and Majorana fermions

International Center for Quantum Materials, Peking University

Xiong-Jun Liu (刘雄军)

International Center for Quantum Materials

International School for Topological Science and Topological Matters, Yukawa Institute for Theoretical Physics, Feb 14, 2017

Page 2: Lecture II: Synthetic Spin-Orbit Coupling for …iststm/lecture/XiongJunLiu/2.pdfLecture II: Synthetic Spin-Orbit Coupling for Ultracold Atoms and Majorana fermions International Center

Outline

• Optical Raman lattice schemes for 1D/2D SOCs

• Topological physics for optical Raman lattices

• From 1D to 2D synthetic SOC

• Experiment realization of 2D SOC and topological bands

• Summary

Page 3: Lecture II: Synthetic Spin-Orbit Coupling for …iststm/lecture/XiongJunLiu/2.pdfLecture II: Synthetic Spin-Orbit Coupling for Ultracold Atoms and Majorana fermions International Center

Scheme: XJL, M. F. Borunda, X. Liu, and J. Sinova, PRL, 102, 046402 (2009); arXiv: 0808.4137. And some previous related works.

1D Spin-orbit coupling for cold atoms

Experiments 87Rb boson: I. Spielman group, 2011 Shuai Chen, Jianwei Pan group, 2012 P. Engels’ group, Washington State U. Y. P. Chen, Puedue U 40K fermion: J. Zhang group, 2012 6Li fermion: M. Zwierlein group, 2012. 161Dy fermion: Lev, 2016; 173Yb fermion: G.-B. Jo, 2016; ….

Momentum shift Spin flip transition

Illustration of 1D SO coupling:

However, this is only a 1D SO coupling!

Δ

|𝐹,𝑚𝐹′

|𝐹,𝑚𝐹

|𝑒

Ω1~𝑒𝑖𝑘0𝑥 Ω2~𝑒

−𝑖𝑘0𝑥

|𝑔↓ |𝑔↑

1D spin-orbit coupling plus Zeeman coupling

𝐻0 =𝑝𝑥2

2𝑚+

𝑝𝑦2

2𝑚+

𝑝𝑧2

2𝑚+𝑘0𝑚𝑝𝑥𝜎𝑧 +

Ω𝑅

2𝜎𝑥

2𝑘0

Page 4: Lecture II: Synthetic Spin-Orbit Coupling for …iststm/lecture/XiongJunLiu/2.pdfLecture II: Synthetic Spin-Orbit Coupling for Ultracold Atoms and Majorana fermions International Center

Some proposals of 2D/3D SO Couplings

1. Multi-Raman Couplings

Difficulty: • More lasers, large heating

rate; • Phase lock of the atom-laser

coupling.

2. Gradient magnetic field pulse

Difficulty: Fast switch of the magnetic fields Possible solution: atom chip

Phys. Rev. Lett. 108, 235301 (2013) Phys. Rev. Lett. 111, 125301 (2013)

Phys. Rev. A 85, 043605 (2012)

Page 5: Lecture II: Synthetic Spin-Orbit Coupling for …iststm/lecture/XiongJunLiu/2.pdfLecture II: Synthetic Spin-Orbit Coupling for Ultracold Atoms and Majorana fermions International Center

RF spectrum measurement of a 2D SOC band structure: J. Zhang group: L. Huang, et.al., Nature Phys. 12, 540 (2016).

3. An illustration of 2D SOC with a tripod system

Our study: we have considered to realize 2D SOC and topological band for a degenerate gas in an optical lattice.

Page 6: Lecture II: Synthetic Spin-Orbit Coupling for …iststm/lecture/XiongJunLiu/2.pdfLecture II: Synthetic Spin-Orbit Coupling for Ultracold Atoms and Majorana fermions International Center

Optical Raman lattice: 1D spin-orbit coupling

Key features:

• 𝑀 𝑥 : anti-symmetric with respect to each lattice-site. • 𝑀 𝑥 has half periodicity relative to the lattice.

: Raman potential

Ω1, 𝑥

1D model for spin-1/2 atoms

𝐌1

Ω1

|𝑔↓ |𝑔↑

|9

2,+

9

2>

|9

2,+

7

2>

|𝐹,+9

2>

2S1/2

Ω1

Δ

Ω2

Ω2, 𝑦

XJL, Z.-X. Liu, M. Cheng, PRL, 110, 076401 (2013)

Generated 1D lattice and Raman coupling potential:

|𝐹, +7

2>

Δ

2P3/2

candidate: 40K

𝑀 𝑥 ∝ Ω2∗Ω1

𝑉latt 𝑥 ∝ |Ω1|2

Page 7: Lecture II: Synthetic Spin-Orbit Coupling for …iststm/lecture/XiongJunLiu/2.pdfLecture II: Synthetic Spin-Orbit Coupling for Ultracold Atoms and Majorana fermions International Center

𝑘 0 −𝜋 𝜋

𝐸+ 𝑘

𝐸− 𝑘

𝐸↑,↓ 𝑘

𝑘 0 −𝜋 𝜋

𝐸↑ 𝑘

𝑘 0 −𝜋 𝜋

(I)

𝐸↓ 𝑘

(II)

: Raman potential

𝐻 =𝑝𝑥2

2𝑚+ 𝑉0 cos

2 𝑘0𝑥 + 𝑀0 cos 𝑘0𝑥 𝜎𝑥 +𝛿

2𝜎𝑧 The realized Hamiltonian:

Tight-binding model with spin-orbit coupled hopping (Γ𝑧 =𝛿

2):

Band structure due to the Raman-lattice configuration

Effects of the Raman coupling:

(I) 𝜋

𝑎 momentum transfer; (II) SO Coupling.

XJL, Z.-X. Liu, M. Cheng, PRL, 110, 076401 (2013).

Page 8: Lecture II: Synthetic Spin-Orbit Coupling for …iststm/lecture/XiongJunLiu/2.pdfLecture II: Synthetic Spin-Orbit Coupling for Ultracold Atoms and Majorana fermions International Center

: Raman field

Symmetry protected topological state: AIII class and Z invariant (chiral symmetry)

Discussions

1) Fractional charge, 1/4-spin states; topological classification: 𝑍 → 𝑍4 (with interaction);

XJL, Z.-X. Liu, M. Cheng, PRL, 110, 076401 (2013).

2) BDI class topological superconductivity/superfludity with s-wave pairing;

He, Wu, Choy, XJL, Tanaka, Law, Nat. Comm. 5, 3232 (2014).

3) Topological superradiant phase by putting in the cavity; Pan, XJL, Zhang, Yi, and Guo, PRL 115, 045303 (2015).

4) Hidden nonsymmorphic symmetry and band degeneracy;

H. Chen, XJL, and X. C. Xie, PRA 93, 053610 (2016).

𝐸+ 𝑘

𝐸− 𝑘

𝑘 0 −𝜋 𝜋

Topology: classified by integer winding numbers: 𝑍

Page 9: Lecture II: Synthetic Spin-Orbit Coupling for …iststm/lecture/XiongJunLiu/2.pdfLecture II: Synthetic Spin-Orbit Coupling for Ultracold Atoms and Majorana fermions International Center

Light ω1

Light ω2

The phase of the lasers go through the loop:

2D SOC: Experimental scheme candidate: 87Rb bosons

Proposal: XJL etal @PKU. Experiment: S. Chen & J.-W. Pan etal @USTC

1) Raman coupling (I) 2) Raman coupling (II)

Page 10: Lecture II: Synthetic Spin-Orbit Coupling for …iststm/lecture/XiongJunLiu/2.pdfLecture II: Synthetic Spin-Orbit Coupling for Ultracold Atoms and Majorana fermions International Center

Optical lattice potential:

1. Generation of 2D blue-detuned square lattice

Polarization: in the x-z plane, No interference between x and z direction

which is spin-independent:

Page 11: Lecture II: Synthetic Spin-Orbit Coupling for …iststm/lecture/XiongJunLiu/2.pdfLecture II: Synthetic Spin-Orbit Coupling for Ultracold Atoms and Majorana fermions International Center

E1x and E2z generate one Raman coupling

E1z and E2x generate another Raman coupling

2. Generation of two Raman coupling potentials:

Page 12: Lecture II: Synthetic Spin-Orbit Coupling for …iststm/lecture/XiongJunLiu/2.pdfLecture II: Synthetic Spin-Orbit Coupling for Ultracold Atoms and Majorana fermions International Center

The effective Hamiltonian can be write as ( : two-photon detuning):

The Raman coupling potentials:

1D coupling

The realized effective Hamiltonian

Spin-flipped hopping along x direction

Spin-conserved hopping by optical lattice

Spin-flipped hopping along y direction

2D coupling

A controllable crossover between 2D-1D SO coupling:

Page 13: Lecture II: Synthetic Spin-Orbit Coupling for …iststm/lecture/XiongJunLiu/2.pdfLecture II: Synthetic Spin-Orbit Coupling for Ultracold Atoms and Majorana fermions International Center

Topological physics of s-band ( )

The tight-binding Hamiltonian (after a gauge transformation to remove ):

the relative (𝜋, 𝜋) momentum transfer between spin-up and spin-down Bloch states.

Spin-flip hopping:

The staggered factor implies

XJL, K. T. Law, and T. K. Ng, PRL, 112, 086401 (2014); PRL, 113, 059901 (2014)

Page 14: Lecture II: Synthetic Spin-Orbit Coupling for …iststm/lecture/XiongJunLiu/2.pdfLecture II: Synthetic Spin-Orbit Coupling for Ultracold Atoms and Majorana fermions International Center

(𝜋, 𝜋)

(0, 𝜋)

(0,0)

(𝜋, 0)

• 2D spin texture (magnetic skyrmion) in k-space:

XJL, K. T. Law, and T. K. Ng, PRL, 112, 086401 (2014); PRL, 113, 059901 (2014)

• Chern number (Qi, Wu, Zhang, PRB 2006):

This is the minimal single-band SO coupled QAH model.

I. Non-interacting: Quantum anomalous Hall effect (s-band model)

𝒏 (𝑘) =𝒔

𝒔 𝒏

Mapping: 𝑘 ↦ 𝒏

Page 15: Lecture II: Synthetic Spin-Orbit Coupling for …iststm/lecture/XiongJunLiu/2.pdfLecture II: Synthetic Spin-Orbit Coupling for Ultracold Atoms and Majorana fermions International Center

h/2e

γ: Majorana zero mode

h/2e

II. Interacting regime: Chiral topological superfluids

Attractive Hubbard model:

XJL, K. T. Law, and T. K. Ng, PRL, 2014.

• One Majorana zero bound state γ 𝐸 = 0 exists in each vortex core. Majorana bound modes obey non-Abelian statistics (Reed & Green, PRB, ’00; Ivanov, PRL, ’01; Alicea et al., Nat. Phys., ’11)

Phase diagram:

Chiral TSF (𝐶1𝑆𝐹 = +1) Anti-chiral TSF (𝐶1

𝑆𝐹 = −1)

γ: Majorana zero mode

𝐻 = 𝐶† 𝑘 ℋs(𝑘)𝑘

𝐶(𝑘) − 𝑈𝑛𝑖↑𝑛𝑖↓𝑖

Tuning 𝜇,𝑚𝑧

Page 16: Lecture II: Synthetic Spin-Orbit Coupling for …iststm/lecture/XiongJunLiu/2.pdfLecture II: Synthetic Spin-Orbit Coupling for Ultracold Atoms and Majorana fermions International Center

Phase fluctuation:

Effective action: 𝑆𝑒𝑓𝑓 = 𝑆0 ∆0 + 𝑆𝑓𝑙𝑢𝑐(Δ0, 𝛻𝜃)

To second-order expansion: 𝑆𝑓𝑙𝑢𝑐 Δ0, 𝛻𝜃 = 𝐓𝐫 1

𝑛[𝒢0 Δ0 Σ 𝛻𝜃 ]𝑛 ≈

1

2𝑛

𝑑2𝑟𝜌𝑠(𝛻𝜃)2

SF stiffness

BKT temperature:

Berezinsky-Kosterlitz-Thouless transition:

XJL, K. T. Law, and T. K. Ng, PRL, 112, 086401 (2014).

Page 17: Lecture II: Synthetic Spin-Orbit Coupling for …iststm/lecture/XiongJunLiu/2.pdfLecture II: Synthetic Spin-Orbit Coupling for Ultracold Atoms and Majorana fermions International Center

2D Lattice and Raman Laser Wavelength: 767nm Frequency difference δω=2π× 35MHz, Bias field: ~50 Gauss, 2-level system

Detection: TOF + Stern Gelach, Spin and momentum-resolved absorption image

87Rb condensate with 1.5×105 atoms in optical dipole trap

Lattice and Raman coupling lasers are from the same fiber to make sure the spatial modes are exactly the same.

Experimental results

PKU+USTC: Z. Wu et al., Science, 354, 83-88 (2016).

Page 18: Lecture II: Synthetic Spin-Orbit Coupling for …iststm/lecture/XiongJunLiu/2.pdfLecture II: Synthetic Spin-Orbit Coupling for Ultracold Atoms and Majorana fermions International Center

Observe the 2D optical lattice

Kapiza-Dirac diffraction

Creation of the square Lattice

Page 19: Lecture II: Synthetic Spin-Orbit Coupling for …iststm/lecture/XiongJunLiu/2.pdfLecture II: Synthetic Spin-Orbit Coupling for Ultracold Atoms and Majorana fermions International Center

• Adiabatically ramp up the lattice and Raman coupling

• Probe: TOF + Stern Gerlach

Lattice depth: Raman coupling:

W=red-yellow

|0>

|-1>

The crossover between 2D and 1D SO coupling is observed.

2D-1D SOC crossover W=red-yellow

Page 20: Lecture II: Synthetic Spin-Orbit Coupling for …iststm/lecture/XiongJunLiu/2.pdfLecture II: Synthetic Spin-Orbit Coupling for Ultracold Atoms and Majorana fermions International Center

How to measure the band topology?

𝑀𝑥

𝑀𝑦

XJL, K. T. Law, and T. K. Ng, and P. A. Lee, PRL, 111, 120402 (2013). XJL, Liu, Law, W. V. Liu, and Ng, New J. Phys. 18, 035004 (2016).

(𝜋, 𝜋)

𝑘𝑦

𝑘𝑥

𝚲2

𝚲1 𝚲3

𝚲4

(0,0)

(0, 𝜋)

(𝜋, 0)

Four parity eigenstates:

𝜎𝑧|𝑢± 𝚲i = 𝜉(±)|𝑢± 𝚲i

eigenvalues: 𝜉(±) = ±1

Inversion symmetric quantum anomalous Hall insulators:

The topology is determined by:

trivial 𝜉(−) 𝚲i

𝑖

= +1 −1

topological

At inversion symmetric momenta:

Therefore, the topological phase can be detected by only measuring the spin polarization of Bloch states at four symmetric momenta.

𝜎𝑧ℋ(𝚲i)𝜎𝑧−1 = ℋ(𝚲i)

𝑃𝐻(𝑥, 𝑧) 𝑃−1 = 𝐻 𝑥, 𝑧 , 𝑃 = 𝜎𝑧⨂𝑅2𝐷.

𝜎𝑧: “parity operator”

Page 21: Lecture II: Synthetic Spin-Orbit Coupling for …iststm/lecture/XiongJunLiu/2.pdfLecture II: Synthetic Spin-Orbit Coupling for Ultracold Atoms and Majorana fermions International Center

mz=-0.1Er mz=0Er mz=0.1E

r

Spin polarization σz in the lowest band

both lower band and upper band are populated, the visibility of spin-polarization is decreased when T increases.

T=100nK

lower band

upper band

To fill the energy band with thermal atoms (for Bosons) with low temperature to see the feature of spin texture

mz=-0.1Er mz=0Er mz=0.1E

r

Spin texture with hot atoms

Page 22: Lecture II: Synthetic Spin-Orbit Coupling for …iststm/lecture/XiongJunLiu/2.pdfLecture II: Synthetic Spin-Orbit Coupling for Ultracold Atoms and Majorana fermions International Center

Spin texture and band topology

Experiment

Theory

Spin texture measurement in FBZ

Polarization at four symmetric momenta of the FBZ.

𝐶ℎ1 =𝜈

2 𝑠𝑔𝑛[𝜉(−) 𝚲i ]

𝑖

Γ

𝑀 𝑋1

𝑋2

Z. Wu et al., Science, 354, 83-88 (2016).

Page 23: Lecture II: Synthetic Spin-Orbit Coupling for …iststm/lecture/XiongJunLiu/2.pdfLecture II: Synthetic Spin-Orbit Coupling for Ultracold Atoms and Majorana fermions International Center

• Proposed a minimal optical Raman lattice scheme to realize 2D SOC and topological bands.

• Successfully realize in experiment 2D SO coupling with 87Rb quantum degenerate atom gas. The SO coupling effects and topological bands are measured.

Summary

References: XJL, Z.-X. Liu, M. Cheng, PRL, 110, 076401 (2013). XJL, K. T. Law, and T. K. Ng, and P. A. Lee, PRL, 111, 120402 (2013). XJL, K. T. Law, and T. K. Ng, PRL, 112, 086401 (2014); PRL, 113, 059901 (2014). XJL, Liu, Law, W. V. Liu, and Ng, New J. Phys. 18, 035004 (2016). Wu, Zhang, Sun, Xu, Wang, Deng, S. Chen*, XJL* & J.-W. Pan*, Science, 354, 83-88 (2016).

• Generalized to higher dimensional systems

• Many-body and few body physics, quenching dynamics, high orbital bands, other lattice configurations.

Next issues in theory and experiment:

• Realization of 2D SOC with fermions. Topological superfluids. Majorana zero modes.

Page 24: Lecture II: Synthetic Spin-Orbit Coupling for …iststm/lecture/XiongJunLiu/2.pdfLecture II: Synthetic Spin-Orbit Coupling for Ultracold Atoms and Majorana fermions International Center

Acknowledgement

Postdoctors

Youjin Deng

Cheung Chan Hua Chen (with Prof. Xie) Long Zhang

Yu-Qin Chen Ying-Ping He Xiang-Ru Kong Sen Niu Ting-Fung Jeffrey Poon Bao-Zong Wang (PKU/USTC) Yan-Qi Wang

Students

USTC groups:

Jian-Wei Pan

Wei Sun

Si-cong Ji

Zhan Wu

Xiao-Tian Xu

Shuai Chen

Other collaborators

Group@PKU

Thank you for your attention!

Tai Kai Ng (HKUST) K. T. Law (HKUST) Patrick A. Lee (MIT)

Zheng-Xin Liu (Renmin Univ) Meng Cheng (Yale) W. Vincent Liu (Pittsburgh)