lecture -- energy in electrostatic fields · electrostatic energy density slide 21 observe what we...

12
9/21/2019 1 Electromagnetics: Electromagnetic Field Theory Energy in Electrostatic Fields Outline Energy in terms of potential Energy in terms of the field Power and energy in conductors Slide 2 1 2

Upload: others

Post on 12-May-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lecture -- Energy in Electrostatic Fields · Electrostatic Energy Density Slide 21 Observe what we have been integrating to get total energy. 2 v 1 2 WEdv v 1 2 WDEdv These expressions

9/21/2019

1

Electromagnetics:

Electromagnetic Field Theory

Energy in Electrostatic Fields

Outline

• Energy in terms of potential

• Energy in terms of the field

•Power and energy in conductors

Slide 2

1

2

Page 2: Lecture -- Energy in Electrostatic Fields · Electrostatic Energy Density Slide 21 Observe what we have been integrating to get total energy. 2 v 1 2 WEdv v 1 2 WDEdv These expressions

9/21/2019

2

Energy in Termsof Potential

Slide 3

Recall Potential Difference

Slide 4

Recall the relation between potential difference, work, and charge.

Ad

B

E

AB B A

WV V V

Q

Therefore, the work it takes to move charge Q from A to B is

ABW QV

3

4

Page 3: Lecture -- Energy in Electrostatic Fields · Electrostatic Energy Density Slide 21 Observe what we have been integrating to get total energy. 2 v 1 2 WEdv v 1 2 WDEdv These expressions

9/21/2019

3

Energy in an Ensemble of Charges

Slide 5

1Q

2Q

3Q

An ensemble of charges contains energy because the charges are putting a force on each other and so they have the potential to do work.

We will calculate how much energy the ensemble contains by calculating how much energy it took to assemble it.

Point Charge #1

Slide 6

1Q

No other charges are present, so placing Q1 at P1 takes no work.

1 0W

1P

5

6

Page 4: Lecture -- Energy in Electrostatic Fields · Electrostatic Energy Density Slide 21 Observe what we have been integrating to get total energy. 2 v 1 2 WEdv v 1 2 WDEdv These expressions

9/21/2019

4

Point Charge #2

Slide 7

1Q

Placing Q2 at P2 takes work because charge Q1 is present.

2 2 21W Q V

2Q

2P

Point Charge #3

Slide 8

1Q

Placing Q3 at P3 takes work because charges Q1 and Q2 are present.

3 3 31 3 32W QV QV

2Q

3P 3Q

7

8

Page 5: Lecture -- Energy in Electrostatic Fields · Electrostatic Energy Density Slide 21 Observe what we have been integrating to get total energy. 2 v 1 2 WEdv v 1 2 WDEdv These expressions

9/21/2019

5

Total Work So Far

Slide 9

1Q

The total work placing all three charges is

1 2 3W W W W

2Q

3Q

2 21 3 31 320 Q V Q V V

Assembly in Reverse Order

Slide 10

1Q

If we had placed the charges in the reverse order,

3 2 1W W W W

2Q

3Q

2 23 1 12 130 Q V Q V V

9

10

Page 6: Lecture -- Energy in Electrostatic Fields · Electrostatic Energy Density Slide 21 Observe what we have been integrating to get total energy. 2 v 1 2 WEdv v 1 2 WDEdv These expressions

9/21/2019

6

Add Both Approaches

Slide 11

Equation obtained by placing Q1, then Q2, and then Q3.

2 23 1 12 130W Q V Q V V

2 21 3 31 320W Q V Q V V

Equation obtained by placing Q3, then Q2, and then Q1.

2 21 3 31 32

2 23 1 12 13

2 0

0

W Q V Q V V

Q V Q V V

Add the two equations above.

1 12 13 2 21 23 3 31 322W Q V V Q V V Q V V

1V 2V 3V

1 1 2 2 3 32 W QV Q V QV

Total potentials 

Final Expression

Slide 12

1 1 2 2 3 32 W QV Q V QV

1 1 2 2 3 3

1 1 1

2 2 2W QV Q V QV Solve for W.

It is straightforward to generalize this for any number of charges.

1

1 joules

2

N

i ii

W QV

11

12

Page 7: Lecture -- Energy in Electrostatic Fields · Electrostatic Energy Density Slide 21 Observe what we have been integrating to get total energy. 2 v 1 2 WEdv v 1 2 WDEdv These expressions

9/21/2019

7

Energy in Charge Distributions

Slide 13

Point Charge

Q

Charge

CQ

Total Charge

Total1

N

ii

Q Q

Total Energy

1

1

2

N

i ii

W QV

Line Charge

C m

Line Charge Density

TotalQ d L

Total Charge

1

2L

W Vd

Total Energy

Sheet Charge

2s C m

s

Surface Charge Density

Total s s

S

Q ds S Total Charge

s

s

1

2W Vds

Total Energy

Volume Charge

3v C m

v

Volume Charge Density

Total v v

v

Q dv V Total Charge

v

v

1

2W Vdv

Total Energy

Energy in Termsof the Field

Slide 14

13

14

Page 8: Lecture -- Energy in Electrostatic Fields · Electrostatic Energy Density Slide 21 Observe what we have been integrating to get total energy. 2 v 1 2 WEdv v 1 2 WDEdv These expressions

9/21/2019

8

Derivation (1 of 5)

Slide 15

The energy in a volume charge is

v

v

1

2W Vdv

Recall from Maxwell’s equations that                   .v D

v

1

2W D Vdv

Recall the product rule for divergence fA f A A f

VD V D D V

D V VD D V

Derivation (2 of 5)

Slide 16

Apply the product rule for our equation for work.

v

1

2W D Vdv

v

1

2VD D V dv

v v

1 1

2 2VD dv D V dv

15

16

Page 9: Lecture -- Energy in Electrostatic Fields · Electrostatic Energy Density Slide 21 Observe what we have been integrating to get total energy. 2 v 1 2 WEdv v 1 2 WDEdv These expressions

9/21/2019

9

Derivation (3 of 5)

Slide 17

Recall the divergence theorem 

v v

1 1

2 2W VD dv D V dv

S V

F ds F dv

Apply this to our equation for work.

1

2 S

VD ds

v

1 1

2 2S

W VD ds D V dv

Derivation (4 of 5)

Slide 18

Look more closely at the surface integral.

v

1 1

2 2S

W VD ds D V dv

1V

r

2

1D

r

2ds r

22

1 1 1Overall r

r rr

We are free to choose whatever surface S we wish.

As we enlarge the surface out to infinity, the surface integral becomes negligible relative to the volume integral.

v

1 1

2 2S

W VD ds D V dv

17

18

Page 10: Lecture -- Energy in Electrostatic Fields · Electrostatic Energy Density Slide 21 Observe what we have been integrating to get total energy. 2 v 1 2 WEdv v 1 2 WDEdv These expressions

9/21/2019

10

Derivation (5 of 5)

Slide 19

Our equation for work is now

v

1

2W D V dv

Associate the negative sign with ∇𝑉. 

v

1

2W D V dv

This is the electric field intensity 𝐸.

v

1

2W D E dv

This is the general equation for energy stored in the electrostatic field.

It is valid for anisotropic and inhomogeneous media.

Electrostatic Energy in LHI Media

Slide 20

The more common expression for energy in the electrostatic field is for the special case of linear, homogeneous, and isotropic (LHI) media.

In isotropic media we have 𝐷 𝜀𝐸. 

v

1

2W D E dv

v

1

2E E dv

2

v

1

2W E dv

Simpler equation that is only valid in LHI media.

19

20

Page 11: Lecture -- Energy in Electrostatic Fields · Electrostatic Energy Density Slide 21 Observe what we have been integrating to get total energy. 2 v 1 2 WEdv v 1 2 WDEdv These expressions

9/21/2019

11

Electrostatic Energy Density

Slide 21

Observe what we have been integrating to get total energy.

2

v

1

2W E dv

v

1

2W D E dv

These expressions must be energy density w.

We can now think of calculating total energy by integrating the energy density w.

v

W wdv 2

1 General case

21

LHI media 2

D Ew

E

Power & Energyin Conductors

Slide 22

21

22

Page 12: Lecture -- Energy in Electrostatic Fields · Electrostatic Energy Density Slide 21 Observe what we have been integrating to get total energy. 2 v 1 2 WEdv v 1 2 WDEdv These expressions

9/21/2019

12

Joule’s Law

Slide 23

Joule’s law states that

v

P E J dv

This is equivalent to P = VI in circuit theory.

From this, we can extract the energy density in a conductor.

w E J

Applying Ohm’s law for electromagnetics 𝐽 𝜎𝐸 gives

w E J

E E

2E

2

v

P E dv

Most common form.

23