lecture 8 - soft-body physics

27
Lecture VIII: Soft-Body Physics

Upload: others

Post on 25-May-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lecture 8 - Soft-Body Physics

LectureVIII:Soft-BodyPhysics

Page 2: Lecture 8 - Soft-Body Physics

SoftBodies

• Realisticobjectsarenotpurelyrigid.• Goodapproximationfor“hard”ones.• …approximationbreakswhenobjectsbreak,ordeform.

• Generalization:soft(deformable)bodies• Deformedbyforce:carbody,punchedorshotat.• Pronetostress:pieceofcloth,flag,papersheet.• Notsolid:snow,mud,lava,liquid.

2

http://www.games73.com/media.games73.com/files/2012/05/Crysis-3-soft-physics-demo-thumb-610x239.jpg

http://i.huffpost.com/gen/1480563/images/o-DISNEY-facebook.jpg

Grinspun etal. “DiscreteShells”

Page 3: Lecture 8 - Soft-Body Physics

Elasticity

• Forcesmaycauseobjectdeformation.

• Elasticity:thetendencyofabodytoreturntoitsoriginalshapeaftertheforcescausingthedeformationcease.

• Rubbersarehighlyelastic.• Metalrodsaremuchless.

3

http://www.ibmbigdatahub.com/sites/default/files/elasticity_blog.jpghttp://www.mommypotamus.com/wp-content/uploads/2013/01/homemade-play-dough-recipe-with-natural-dye-6-300x300.jpg

Page 4: Lecture 8 - Soft-Body Physics

ContinuumMechanics

• Adeformableobjectisdefinedbyrestshape andmaterialparameters.

• Deformationmap:𝑓(�⃗�) ofeverymaterialpoint�⃗�.• 𝑓:ℝ( → ℝ(.𝑑:dimension(mostly𝑑 = 2,3).• Relativedisplacementfield:𝑓(�⃗�) =�⃗�+𝑢(�⃗�).

4

𝑥

𝑥 + Δ𝑥

Δ𝑥

𝑓(𝑥)

𝑢(𝑥)

𝑢(𝑥 + Δ𝑥)

Δ𝑝

𝑓(𝑥 + Δ𝑥)

Δ𝑓

Page 5: Lecture 8 - Soft-Body Physics

LocalDeformation• Taylorseries:

𝑓 �⃗� + Δ�⃗� ≈ 𝑓 �⃗� + 𝐽6Δ�⃗�• 1st-orderlinear approximation.

• As𝑓 �⃗� = �⃗� + 𝑢 �⃗� ,weget:

�⃗� + Δ�⃗� + 𝑢 �⃗� + Δ�⃗� ≈ �⃗� + 𝑢 �⃗� + 𝐽6Δ�⃗� ⟹𝑢 �⃗� + Δ�⃗� ≈ 𝑢 �⃗� + 𝐽6 − 𝐼(×( Δ�⃗�

• TheJacobians:𝐽6 =;6;<

, 𝐽= =;=;<

= 𝐽6 − 𝐼(×(.

5

Page 6: Lecture 8 - Soft-Body Physics

StretchandCompression

• Howmuchanobjectlocallystretchesorcompressesineachdirection.

• Newlength:Δ𝑓 > = 𝑓 �⃗� + Δ�⃗� − 𝑓 �⃗� > ≈ 𝐽6Δ�⃗�

>

= Δ�⃗�?∗ 𝐽6?𝐽6 ∗ Δ�⃗�• 𝐽6?𝐽6 (×(

isthe(right)Cauchy-Greentensor.

• Stretch:relativechangeinlength:

Δ𝑓 >

Δ𝑝 > ≈Δ�⃗�? ∗ 𝐽6?𝐽6 ∗ Δ�⃗�

Δ�⃗�? ∗ Δ�⃗�6

http://www.yankodesign.com/images/design_news/2011/06/09/elastic_exerciser.jpg

Page 7: Lecture 8 - Soft-Body Physics

Rigid-BodyDeformation

• Transformation:𝑓 �⃗� = 𝑅�⃗� + 𝑇

• 𝑅:rotation(constant)• 𝑇:translation.

• 𝐽6 = 𝑅,andthen𝐽6?𝐽6 = 𝐼.• Nostretch!

7

http://www.stressebook.com/wp-content/uploads/2015/03/Rigid-Body-Modes-600x300.png

Page 8: Lecture 8 - Soft-Body Physics

Strain

• Thefractionaldeformation𝜖 = ∆𝐿 𝐿⁄• Dimensionless (aratio).• Howmuchadeformationdiffers frombeingrigid:

• Negative:compression• Zero:rigid• Positive:stretch

• Inourpreviousnotation: G6GH

= ∆IJII

= 1 + 𝜖

8

𝐹𝑡

𝑡 + ∆𝑡

𝐿

𝐿 + ∆𝐿

Page 9: Lecture 8 - Soft-Body Physics

TheGreen-LagrangeStrainTensor

• Measuresthedeviationfromrigidity:

𝐄O×O =12 𝐽6?𝐽6 − 𝐼

• Indeformationfieldterms(𝐽6 = 𝐽= − 𝐼(×():

𝐄 =12 𝐽=?𝐽= + 𝐽= + 𝐽=?

• ForStrain𝜖 = ∆𝐿 𝐿⁄ in(unitlength)direction𝑛Q:𝑛Q?𝐄𝑛Q = 𝜖 +

12 𝜖

>

9

Page 10: Lecture 8 - Soft-Body Physics

InfinitesimalStrainTensor

• Forsmallshapechanges:

𝛆 =12 𝐽=?𝐽= + 𝐽= + 𝐽=? ≈

12 𝐽= + 𝐽=?

=12 𝐽6 + 𝐽6? − 𝐼

• Notrotationinvariantanymore.• Approximate.• Butlinear.

10

Page 11: Lecture 8 - Soft-Body Physics

Poisson’sratio

• Straininonedirectioncausescompressioninanother.

• Poisson’sratio: theratiooftransversal toaxialstrain:

𝜈 = −𝑑 𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑎𝑙𝑠𝑡𝑟𝑎𝑖𝑛

𝑑 𝑎𝑥𝑖𝑎𝑙𝑠𝑡𝑟𝑎𝑖𝑛

• Equals0.5inperfectlyincompressiblematerial.

• Iftheforceisappliedalong𝑥:

𝜈 = −𝑑𝜖[𝑑𝜖<

= −𝑑𝜖\𝑑𝜖<

11

Page 12: Lecture 8 - Soft-Body Physics

Poisson’sratio

• Exampleofacubeofsize𝐿.

• Averagestrainineachdirection:𝜈 ≈ ∆I^

∆I• Approximate,becausetrueforsmallelementsanddeformation.

12

𝐹

Δ𝐿

𝐿

∆𝐿′

Page 13: Lecture 8 - Soft-Body Physics

Stress

• Magnitude ofappliedforceperareaofapplication.• largevalueó forceislargeorsurfaceareaissmall

• Pressuremeasure𝜎.• Unit:Pascal:𝑃𝑎 = 𝑁/𝑚>

• Example:gravitystressonplane:σ = 𝑚𝑔/ 𝜋𝑟>

13

𝑟

𝑊

𝑚

Page 14: Lecture 8 - Soft-Body Physics

TheLinearStressTensor• Measuringstressforeach(unit)direction𝑛 inaninfinitesimalvolumeelement:

𝜎i =𝜎<< 𝜎[< 𝜎\<𝜎<[ 𝜎[[ 𝜎\[𝜎<\ 𝜎[\ 𝜎\\

𝑛 = 𝑇𝑛

• Notethat𝑇𝑛 isnotnecessarilyparallel to𝑛!• 𝑇𝑛 = 𝜎i + 𝜏

• 𝜎i:outward/inwardnormalstress.• 𝜏:shearstress.

14

Page 15: Lecture 8 - Soft-Body Physics

BodyMaterial

• Theamountofstresstoproduceastrainisapropertyofthematerial.

• Isotropicmaterials:sameinalldirections.• Modulus:aratioofstress tostrain.

• Usuallyinalineardirection,alongaplanarregionorthroughoutavolumeregion.

• Young’smodulus,Shearmodulus,Bulkmodulus• Describingthematerialreactiontostress.

15

http://openalea.gforge.inria.fr/doc/vplants/mechanics/doc/_build/html/_images/system_geometry7.png

Page 16: Lecture 8 - Soft-Body Physics

Young’sModulus

• Definedastheratiooflinearstresstolinearstrain:

𝑌 =𝑙𝑖𝑛𝑒𝑎𝑟𝑠𝑡𝑟𝑒𝑠𝑠𝑙𝑖𝑛𝑒𝑎𝑟𝑠𝑡𝑟𝑎𝑖𝑛 =

𝐹/𝐴∆𝐿/𝐿

• Example:

16

𝐿 + ∆𝐿

𝐹𝐴

Page 17: Lecture 8 - Soft-Body Physics

Shearmodulus

• Theratioofplanarstresstoplanarstrain:

𝑆 =𝑝𝑙𝑎𝑛𝑎𝑟𝑠𝑡𝑟𝑒𝑠𝑠𝑝𝑙𝑎𝑛𝑎𝑟𝑠𝑡𝑟𝑎𝑖𝑛 =

𝐹/𝐴∆𝐿/𝐿

• Example:

17

𝐿

𝐴 𝐹

∆𝐿

Page 18: Lecture 8 - Soft-Body Physics

Bulkmodulus

• Theratioofvolumestresstovolumestrain(inverseofcompressibility):

𝐵 =𝑣𝑜𝑙𝑢𝑚𝑒𝑠𝑡𝑟𝑒𝑠𝑠𝑣𝑜𝑙𝑢𝑚𝑒𝑠𝑡𝑟𝑎𝑖𝑛 =

∆𝑃∆𝑉/𝑉

• Example

18

𝐴

𝑃 = 𝐹/𝐴

𝑉𝐹 𝐴

𝑃 + ∆𝑃

𝑉 +∆𝑉

𝐹 + ∆𝐹

Page 19: Lecture 8 - Soft-Body Physics

LinearElasticity

• Stress andstrain arerelatedbyHooke’slaw• Remember𝐹 = −𝑘∆𝑥?

• Reshapetensorstovectorform:• 𝜎r = 𝜎<<, 𝜎<[,⋯ , 𝜎\\ ,andsimilarlyfor𝜖.̅• Thenthestiffnesstensor𝐂v<v holds:

𝜎r = 𝐂𝜖̅

19

https://people.eecs.berkeley.edu/~sequin/CS184/TOPICS/SpringMass/Spring_mass_2D.GIF

Brownetal.“ResamplingAdaptiveClothSimulationsontoFixed-TopologyMeshes”

Page 20: Lecture 8 - Soft-Body Physics

Hyperelastic Materials

• Seektoreturntotheir“restshape”.• Haveapotentialdeformationenergy

• Recall:springenergy:𝐸x =y>𝑘 𝑥 − 𝑥z >

• Underlyingassumption:deformationenergyisnotpath-dependent!

20

Page 21: Lecture 8 - Soft-Body Physics

LinearElasticityEnergy

• OnePossibilityis:𝐸 = y> ∫ 𝜎r, 𝜖̅ 𝑑𝑉? .

• PossibilitiesdependonthetypeofStress\Straintensorstouse.

• ThisoneispopularforlinearelasticitywithFEM.

• Weget:

𝐸 =12| 𝜖�̅�𝜖�̅�𝑉?

21

Page 22: Lecture 8 - Soft-Body Physics

DynamicElasticMaterials• Foreverypoint𝑞,ThePDEisgivenby

𝜌 ∗𝑑>𝑢𝑑𝑡> = 𝛻 � 𝜎 + �⃗�

• 𝜌:thedensity ofthematerial.• 𝑎:accelerationofpoint𝑞.• 𝛻 � 𝜎 = 𝜕 𝜕𝑥⁄ , 𝜕 𝜕𝑦⁄ , 𝜕 𝜕𝑧⁄ ∗ 𝜎 isthedivergenceofthestresstensor(modelinginternalforces).

• 𝐹:externalbodyforces(perdensity)• GeneralizedNewton’s2nd law!

• Remember𝐹 = 𝑚𝑎?• Similar,inelasticitylanguage.

22

http://www.cims.nyu.edu/cmcl/ComplexFluids/Images/OB-Pump.png

Page 23: Lecture 8 - Soft-Body Physics

FluidMotion

• Describesobjectwithnofixedtopology• Airflow• Viscuous fluids• Smoke,etc.

• Keydescriptor:flowvelocity𝑢 = 𝑢(𝑥, 𝑡)

• Describingthevelocityofa“fluidparcel”passingatposition𝑥 intime𝑡.

• Eulerian description• Howcome?

23http://cfd.solvcon.net/old/research/cylinder2.gif

Page 24: Lecture 8 - Soft-Body Physics

FlowVelocity

• Vectorfielddescribingmotion

• Steadyfield:(=(�= 0

• Incompressible:𝛻 � 𝑢 = 0.• Irrotational (novortices):𝛻×𝑢 = 0

24

Turbulentwithavortex Incompressible,irrotational flow

Steadyfield

Page 25: Lecture 8 - Soft-Body Physics

MaterialDerivative

• Thechangeinthevelocityofthefluidparcelpassingatposition𝑥 intime𝑡.

𝐷𝑢𝑑𝑡 = 𝑢� + 𝑢 � 𝛻𝑢

• 𝑢�:unsteadyacceleration.• Howmuchvelocitychangesin𝑥 overtime.

• 𝑢 � 𝛻𝑢:convective acceleration.• Howmuchvelocitychangesduetomovementalongtrajectory.

25http://www.continuummechanics.org/images/continuity/converging_nozzle.png

Page 26: Lecture 8 - Soft-Body Physics

Viscosity

• Resistancetodeformationbyshearstress.• Expressedbycoefficient𝜈:

𝐹𝐴 = 𝜈

𝜕𝑢𝜕𝑦

• Higher𝜈:morepressurerequiredforshearing!• Viscid fluids.

26

Page 27: Lecture 8 - Soft-Body Physics

Navier-StokesEquations• Representingtheconservationofmassandmomentumforanincompressible fluid(𝛻 � 𝑢 = 0):

𝜌 𝑢� + 𝑢 � 𝛻𝑢 = 𝛻 � 𝜈𝛻𝑢 − 𝛻𝑝 + 𝑓

• 𝑝:pressurefield• 𝜈:kinematicviscosity.• 𝑓:bodyforceperdensity(usuallyjustgravityρ𝑔).

27

Inertia(pervolume) Divergenceofstress

Unsteadyacceleration

Convectiveacceleration

PressuregradientViscosity Externalbodyforces