lecture 7 (theory part 6 )

27
Lecture 7 (Theory Part 6 )

Upload: rafael-knight

Post on 30-Dec-2015

14 views

Category:

Documents


0 download

DESCRIPTION

Lecture 7 (Theory Part 6 ). SUSY BREAKING Gravity Mediation example. (Recap of Part 6). Soft SUSY breaking Lagrangian. (Recap of Part 6). [Shown to be soft to all orders, L. Girardello , M. Grisaru ]. All dimension 3 or less, ) all coefficients have mass dimension!. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Lecture 7 (Theory Part 6  )

Lecture 7(Theory Part 6 )

Page 2: Lecture 7 (Theory Part 6  )

SUSY BREAKINGGravity Mediation example

(Recap of Part 6)

Page 3: Lecture 7 (Theory Part 6  )

Soft SUSY breaking Lagrangian[Shown to be soft to all orders, L. Girardello, M. Grisaru]

All dimension 3 or less,) all coefficients have mass dimension!

) relationships between dimensionless couplings maintained!

(Recap of Part 6)

Page 4: Lecture 7 (Theory Part 6  )

Minimal Supersymmetric Standard Model (MSSM)

Gauge group is that of SM:

Strong Weak hypercharge

Vector superfields of the MSSM

(Recap of Part 6)

Page 5: Lecture 7 (Theory Part 6  )

MSSM Chiral Superfield Content

Left handed quark chiral superfields

Conjugate of right handed quark

superfields

(Recap of Part 6)

Two Higgs doublets

Page 6: Lecture 7 (Theory Part 6  )

MSSM

Lepton number violating

Baryon number violating

R-parity All SM particles + Higgs bosons:

All SUSY particles:

) SUSY particles appear in even numbers ) SUSY pair production

) Lightest Supersymmetric Particle (LSP) is stable!

Gives rise to a Dark Matter candidate.

Evade proton decay:

Superpotential

(Recap of Part 6)

Page 7: Lecture 7 (Theory Part 6  )

Part 6

Page 8: Lecture 7 (Theory Part 6  )

4.2 MSSM Lagragngian densitySuperpotential

With the gauge structure, superfield content and Superpotential now specified we can construct the MSSM Lagrangian.

SM-like Yukawa coupling H-f-f

Higgs-squark-quark couplings with same Yukawa coupling!

Page 9: Lecture 7 (Theory Part 6  )

4.2 MSSM Lagragngian densitySuperpotential

With the gauge structure, superfield content and Superpotential now specified we can construct the MSSM Lagrangian.

Quartic scalar couplings again from the same Yukawa coupling

Page 10: Lecture 7 (Theory Part 6  )

4.2 MSSM Lagragngian densitySuperpotential

With the gauge structure, superfield content and Superpotential now specified we can construct the MSSM Lagrangian.

Non-abelian self interactions from gauge-kinetic term

Gauge-gaugino-gaugino SUSY version of this

[See page 86 of Drees, Godbole, Roy]

Auxialliary D-term

Page 11: Lecture 7 (Theory Part 6  )

4.2 MSSM Lagragngian densitySuperpotential

With the gauge structure, superfield content and Superpotential now specified we can construct the MSSM Lagrangian.

Page 12: Lecture 7 (Theory Part 6  )

Scalar covariant derivative Usual gauge-fermion-

fermion vertex

Gaugino interactions from Kahler potential

Page 13: Lecture 7 (Theory Part 6  )

- MSSM is phenomenologically viable model currently searched for at the LHC-Predicts many new physical states:

- Very large number of parameters (105)!- These parameters arise due to our ignorance of how SUSY is broken.

Page 14: Lecture 7 (Theory Part 6  )

4.3 Electroweak Symmetry Breaking (EWSB)

Recall in the SM the Higgs potential is:

Underlying SU(2) invariance ) the direction of the vev in SU(2) space is arbitrary.

Vacuum Expectation Value (vev)

Any choice breaks SU(2) £ U(1)Y in the vacuum, choosing

All SU(2) £ U(1)Y genererators broken:

But for this choice

Showing the components’ charge under unbroken

generator Q

Page 15: Lecture 7 (Theory Part 6  )

EWSB

Recall in the SM the Higgs potential is:

In the MSSM the full scalar potential is given by:

Extract Higgs terms:

Page 16: Lecture 7 (Theory Part 6  )

EWSB

And after a lot of algebra…

VH = (m2H d

+ j¹ j2)(jH 0dj2 + jH ¡

d j2) + (m2H u

+ j¹ j2)(jH +u j2 + jH 0

u j2)

+B¹ (H +u H ¡

d ¡ H 0uH 0

d + h.c.) +18(g2 + g02)

¡jH 0

d j2 + jH ¡d j2 ¡ jH +

u j2 ¡ jH 0u j2

¢2

+12g2(H + ¤

u H 0d + H 0¤

u H ¡d )(H +

u H 0¤d + H 0

uH ¡ ¤d )

The Higgs Potential

Page 17: Lecture 7 (Theory Part 6  )

EWSB conditions

VH = (m2H d

+ j¹ j2)(jH 0dj2 + jH ¡

d j2) + (m2H u

+ j¹ j2)(jH +u j2 + jH 0

u j2)

+B¹ (H +u H ¡

d ¡ H 0uH 0

d + h.c.) +18(g2 + g02)

¡jH 0

d j2 + jH ¡d j2 ¡ jH +

u j2 ¡ jH 0u j2

¢2

+12g2(H + ¤

u H 0d + H 0¤

u H ¡d )(H +

u H 0¤d + H 0

uH ¡ ¤d )

As in the SM, underlying SU(2)W invariance means we can choose one component of one doublet to have no vev:

Choose:

B¹ term unfavorable for stable EWSB minima

Page 18: Lecture 7 (Theory Part 6  )

EWSB conditions

VH = (m2H d

+ j¹ j2)jH 0d j2 + (m2

H u+ j¹ j2)jH 0

u j2 ¡ B¹ (H 0uH 0

d + h.c.)

+18(g2 + g02)

¡jH 0

d j2 ¡ jH 0u j2

¢2

First consider:

(m2H d

+ m2H u

+ 2j¹ j2) ¸ 2B¹ cosÁ

To ensure potential is bounded from below:

Only phase in potential

Choosing phase to maximise contribution of B¹ reduces potential:

For the origin in field space, we have a Hessian of,

Page 19: Lecture 7 (Theory Part 6  )

EWSB conditions

VH = (m2H d

+ j¹ j2)jH 0d j2 + (m2

H u+ j¹ j2)jH 0

u j2 ¡ B¹ (H 0uH 0

d + h.c.)

+18(g2 + g02)

¡jH 0

d j2 ¡ jH 0u j2

¢2

For successful EWSB:(m2

H d+ m2

H u+ 2j¹ j2) ¸ 2B¹

(m2H d

+ j¹ j2)(m2H u

+ j¹ j2) · (B¹ )2

With:

Page 20: Lecture 7 (Theory Part 6  )

Recall from SUSY breaking section, gravity mediation implies:

Take minimal set of couplings:(warning: minimal flavour diagonal couplings not motivated here, just postulated)

Universal soft scalar mass:

Universal soft gaugino mass:

Universal soft trilinear mass:

Universal soft bilinear mass:

Fits into a SUSY Grand unified Theory where chiral superfields all transform together:

Idea: Single scale for universalities, determined from gauge coupling unification!

Constrained MSSM:

Page 21: Lecture 7 (Theory Part 6  )

Radiative EWSBRenormalisation group equations (RGEs) connect soft masses at MX to the EW scale.

RGEs naturally trigger EWSB:

(m2H d

+ j¹ j2)(m2H u

+ j¹ j2) · (B¹ )2

Runs negative

Page 22: Lecture 7 (Theory Part 6  )

4.3 Higgs Bosons in the MSSM

8 scalar Higgs degrees of freedom 3 longitudinal modes for 5 Physical Higgs bosons

Page 23: Lecture 7 (Theory Part 6  )

4.3 Higgs Bosons in the MSSM

8 scalar Higgs degrees of freedom 3 longitudinal modes for 5 Physical Higgs bosons

Note: no mass mixing term between neutral and charged components, nor between real and imaginary components.

Goldstone bosons

CP-even Higgs bosons

Charged Higgs boson

CP-odd Higgs boson

Page 24: Lecture 7 (Theory Part 6  )

CP-odd mass matrix

VH 2 (m2H d

+ j¹ j2)(I mH 0d)2 + (m2

H u+ j¹ j2)(I mH 0

u)2 + B¹ I m(H 0u)I m(H 0

d)

+18(g2 + g02)

¡(ReH 0

d)2 + (I mH 0d)2 ¡ (ReH 0

u)2 ¡ (I mH 0u)2¢2

Included for vevs

Eigenvalue equation

Massless Goldstone boson

CP-odd Higgs

Page 25: Lecture 7 (Theory Part 6  )

Charged Higgs mass matrix

VH = (m2H d

+ j¹ j2)jH ¡d j2 + (m2

H u+ j¹ j2)jH +

u j2 + B¹ (H +u H ¡

d + h.c.)

+18(g2 + g02)

¡H 0

d j2 + jH ¡d j2 ¡ jH +

u j2 ¡ jH 0u j2

¢2

+12g2(H + ¤

u H 0d + H 0¤

u H ¡d )(H +

u H 0¤d + H 0

uH ¡ ¤d )

Massless Goldstone boson

Charged Higgs

Page 26: Lecture 7 (Theory Part 6  )

CP-Even neutral Higgs mass matrix

VH 2 (m2H d

+ j¹ j2)(ReH 0d)2 + (m2

H u+ j¹ j2)(ReH 0

u)2 + B¹ Re(H 0u)Re(H 0

d)

+18(g2 + g02)

¡(ReH 0

d)2 ¡ (ReH 0u)2¢2

Taylor expand:

Upper bound:

Consequence of quartic coupling fixed in terms of gauge couplings ( compare with free ¸ parameter in SM)

Page 27: Lecture 7 (Theory Part 6  )

Upper bound:

Consequence of quartic coupling fixed in terms of gauge couplings (compare with free ¸ parameter in SM)

Radiative corrections significantly raise this

Including radiative corrections