lecture 4: tensor product ansatz - part ii graduate lectures€¦ · lecture 4: tensor product...

48
Lecture 4: Tensor Product Ansatz - part II Dr Gunnar Möller Cavendish Laboratory, University of Cambridge Cavendish Laboratory January 2014 Graduate Lectures slide credits: Philippe Corboz (ETH / Amsterdam)

Upload: buicong

Post on 03-May-2018

217 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Lecture 4: Tensor Product Ansatz - part II Graduate Lectures€¦ · Lecture 4: Tensor Product Ansatz - part II Dr Gunnar Möller Cavendish Laboratory, University of Cambridge Cavendish

Lecture 4: Tensor Product Ansatz - part II

Dr Gunnar MöllerCavendish Laboratory, University of Cambridge

Cavendish Laboratory

January 2014

Graduate Lectures

slide credits: Philippe Corboz (ETH / Amsterdam)

Page 2: Lecture 4: Tensor Product Ansatz - part II Graduate Lectures€¦ · Lecture 4: Tensor Product Ansatz - part II Dr Gunnar Möller Cavendish Laboratory, University of Cambridge Cavendish

Summary: Tensor network algorithms

StructureVariational

ansatz

iterative optimization of individual tensors

(energy minimization)imaginary time

evolution

Contraction of the tensor network

exact / approximate

Find the best (ground) state

|��

Compute observables��|O|�⇥

MPSPEPS

2D MERA

1D MERA

TODAY

Page 3: Lecture 4: Tensor Product Ansatz - part II Graduate Lectures€¦ · Lecture 4: Tensor Product Ansatz - part II Dr Gunnar Möller Cavendish Laboratory, University of Cambridge Cavendish

Outline, part II

‣ Optimization of tensor networks✦ Variational optimization

✦ Imaginary-time evolution

‣ Contraction of tensor networks ✦ Basics

✦ Approximate contraction of PEPS/iPEPS

‣ Outlook & Summary

Page 4: Lecture 4: Tensor Product Ansatz - part II Graduate Lectures€¦ · Lecture 4: Tensor Product Ansatz - part II Dr Gunnar Möller Cavendish Laboratory, University of Cambridge Cavendish

1. Select one of the PEPS tensors T

Variational optimization for PEPS

E =h |H| ih | i

tensor T reshaped as a vector

environment including all Hamiltonian terms environment from norm term

3. Take the next tensor (leave others fixed)

4. Repeat 2-3 iteratively until convergence is reached

2. Optimize tensor T (leaving all the others fixed) by minimizing the energy:

F x = E G x

solve generalized eigenvalue problem

minimize

Verstraete, Murg, Cirac, Adv. in Phys. 57, 143 (2008)

Page 5: Lecture 4: Tensor Product Ansatz - part II Graduate Lectures€¦ · Lecture 4: Tensor Product Ansatz - part II Dr Gunnar Möller Cavendish Laboratory, University of Cambridge Cavendish

Variational Optimization for MPSs

min[h |H| i � �h | i]minimize Energy E, enforcing normalization with a Lagrange multiplier λ

- λHh |

| ih |

minimize with respect to tensor T: @

@T lr�

⇤ ( % ) = 0

| i

Page 6: Lecture 4: Tensor Product Ansatz - part II Graduate Lectures€¦ · Lecture 4: Tensor Product Ansatz - part II Dr Gunnar Möller Cavendish Laboratory, University of Cambridge Cavendish

- λHh |

| ih |

@

@T lr�

⇤ ( % ) = 0

Variational Optimization for MPS’s

| iT T

T* removed

= 0

T* removed

read as matrix equation in linearized composite index

a b�

�0a0 b0

a0 b0

� = �0

µ = (a b�)

Fµ0µTµ = �Gµ0µTµ

F, G: remainders of tensor networks with both T and T* cut out

☛ solve for smallest eigenvalue λ0 and -vector T = new optimized tensor

(Gµ0µ / ���0)where

in pictures:

Page 7: Lecture 4: Tensor Product Ansatz - part II Graduate Lectures€¦ · Lecture 4: Tensor Product Ansatz - part II Dr Gunnar Möller Cavendish Laboratory, University of Cambridge Cavendish

Optimization via imaginary time evolution

• Get the ground state via imaginary time evolution (Trotter-Suzuki)

exp(�⌧ ˆHb)

• At each step: apply a two-site operator to a bond and truncate bond back to D

Keep D largest singular values

Ups

psV

SVD sU V †

Time Evolving Block Decimation (TEBD) algorithm

Note: Here I simplified. MPS needs to be in canonical form

⌧ = �/n

exp(�� ˆH) = exp(��X

b

ˆHb) =

exp(�⌧

X

b

ˆHb)

!n

⇡ Y

b

exp(�⌧ ˆHb)

!n

...

...

Page 8: Lecture 4: Tensor Product Ansatz - part II Graduate Lectures€¦ · Lecture 4: Tensor Product Ansatz - part II Dr Gunnar Möller Cavendish Laboratory, University of Cambridge Cavendish

Optimization via imaginary time evolution

• Get the ground state via imaginary time evolution (Trotter-Suzuki)

• However, SVD update is not optimal (because of loops in PEPS)!

simple update (SVD)

★ “local” update like in TEBD

★ Cheap, but not optimal(e.g. overestimates magnetization in S=1/2 Heisenberg model)

full update

★ Take the full wave function into account for truncation

★ optimal, but computationally more expensive

Cluster update Wang, Verstraete, arXiv:1110.4362 (2011)

• 2D: same idea: apply a two-site operator to a bond and truncate bond back to D at each step

exp(�⌧ ˆHb)

⌧ = �/n

exp(�� ˆH) = exp(��X

b

ˆHb) =

exp(�⌧

X

b

ˆHb)

!n

⇡ Y

b

exp(�⌧ ˆHb)

!n

Page 9: Lecture 4: Tensor Product Ansatz - part II Graduate Lectures€¦ · Lecture 4: Tensor Product Ansatz - part II Dr Gunnar Möller Cavendish Laboratory, University of Cambridge Cavendish

Contracting tensor networks

Page 10: Lecture 4: Tensor Product Ansatz - part II Graduate Lectures€¦ · Lecture 4: Tensor Product Ansatz - part II Dr Gunnar Möller Cavendish Laboratory, University of Cambridge Cavendish

Contracting a tensor network

contract tensors pairwise

Page 11: Lecture 4: Tensor Product Ansatz - part II Graduate Lectures€¦ · Lecture 4: Tensor Product Ansatz - part II Dr Gunnar Möller Cavendish Laboratory, University of Cambridge Cavendish

Pairwise contractions...

Page 12: Lecture 4: Tensor Product Ansatz - part II Graduate Lectures€¦ · Lecture 4: Tensor Product Ansatz - part II Dr Gunnar Möller Cavendish Laboratory, University of Cambridge Cavendish

Pairwise contractions...

Page 13: Lecture 4: Tensor Product Ansatz - part II Graduate Lectures€¦ · Lecture 4: Tensor Product Ansatz - part II Dr Gunnar Möller Cavendish Laboratory, University of Cambridge Cavendish

Pairwise contractions...

Page 14: Lecture 4: Tensor Product Ansatz - part II Graduate Lectures€¦ · Lecture 4: Tensor Product Ansatz - part II Dr Gunnar Möller Cavendish Laboratory, University of Cambridge Cavendish

Pairwise contractions...

Page 15: Lecture 4: Tensor Product Ansatz - part II Graduate Lectures€¦ · Lecture 4: Tensor Product Ansatz - part II Dr Gunnar Möller Cavendish Laboratory, University of Cambridge Cavendish

Pairwise contractions...

Page 16: Lecture 4: Tensor Product Ansatz - part II Graduate Lectures€¦ · Lecture 4: Tensor Product Ansatz - part II Dr Gunnar Möller Cavendish Laboratory, University of Cambridge Cavendish

Pairwise contractions...

done!

the order of contraction matters for the computational cost!!!

Page 17: Lecture 4: Tensor Product Ansatz - part II Graduate Lectures€¦ · Lecture 4: Tensor Product Ansatz - part II Dr Gunnar Möller Cavendish Laboratory, University of Cambridge Cavendish

Contracting a tensor network

★ Reshape tensors into matrices and multiply them with optimized routines (BLAS)

i

j

u

vA B w =

u

v

wT

= wT(uv)

dimension D

★ Computational cost: multiply the dimensions of all legs (connected legs only once)

cost D5

B w(uv) A(ij)

dimension D2

Page 18: Lecture 4: Tensor Product Ansatz - part II Graduate Lectures€¦ · Lecture 4: Tensor Product Ansatz - part II Dr Gunnar Möller Cavendish Laboratory, University of Cambridge Cavendish

Contracting an MPS��

|�⇥

= BAD!

��|�

= Good!

Page 19: Lecture 4: Tensor Product Ansatz - part II Graduate Lectures€¦ · Lecture 4: Tensor Product Ansatz - part II Dr Gunnar Möller Cavendish Laboratory, University of Cambridge Cavendish

Relation to Transfer Matrixh

| i

hvl|

d=D2 vector D2 x D2 matrix

⇥hv0l|

=

=

Norm

Correlation functions for two sites

hvl|

�zi

. . .

�zj

| {z }Tn

each rung acts as a transfer matrix T !

Page 20: Lecture 4: Tensor Product Ansatz - part II Graduate Lectures€¦ · Lecture 4: Tensor Product Ansatz - part II Dr Gunnar Möller Cavendish Laboratory, University of Cambridge Cavendish

MERA: Properties

��|

Let’s compute ��|O|�⇥ O : two-site operator

|��

O two-site operator

Page 21: Lecture 4: Tensor Product Ansatz - part II Graduate Lectures€¦ · Lecture 4: Tensor Product Ansatz - part II Dr Gunnar Möller Cavendish Laboratory, University of Cambridge Cavendish

Causal cone

MERA: Contraction��

|O|�

Isometries are isometric

= I

u

u†

= I

w

w†

Disentanglers are unitary

Page 22: Lecture 4: Tensor Product Ansatz - part II Graduate Lectures€¦ · Lecture 4: Tensor Product Ansatz - part II Dr Gunnar Möller Cavendish Laboratory, University of Cambridge Cavendish

MERA: Contraction��

|O|�

Causal cone

Efficient computation of expectation values of observables!

Isometries are isometric

= I

u

u†

= I

w

w†

Disentanglers are unitary

Page 23: Lecture 4: Tensor Product Ansatz - part II Graduate Lectures€¦ · Lecture 4: Tensor Product Ansatz - part II Dr Gunnar Möller Cavendish Laboratory, University of Cambridge Cavendish

Contracting the PEPS

Ψ

Ψ†

��|�

reduced tensors

D2

Page 24: Lecture 4: Tensor Product Ansatz - part II Graduate Lectures€¦ · Lecture 4: Tensor Product Ansatz - part II Dr Gunnar Möller Cavendish Laboratory, University of Cambridge Cavendish

Contracting the PEPS

Problem: how do we contract this??

no matter how we contract, we will get intermediate

tensors with O(L) legs

number of coefficients DL

Exponentially increasing with L!

NOT EFFICIENT

dimension D2

Page 25: Lecture 4: Tensor Product Ansatz - part II Graduate Lectures€¦ · Lecture 4: Tensor Product Ansatz - part II Dr Gunnar Möller Cavendish Laboratory, University of Cambridge Cavendish

Contracting the PEPS

★ Exact contraction of an PEPS is exponentially hard!

need approximate contraction scheme

MPS-based approach

Corner transfer matrix method

TRG Tensor Renormalization Group

Murg,Verstraete,Cirac, PRA75 ’07Jordan,et al. PRL79 (2008)

Nishino, Okunishi, JPSJ65 (1996)Orus, Vidal, PRB 80 (2009)

Gu, Levin, Wen, B78, (2008)Levin, Nave, PRL99 (2007)Xie et al. PRL 103, (2009)

★Accuracy of the approximate contraction is controlled by “boundary dimension” �

★Convergence in needs to be carefully checked�

★Overall cost: with O(D10...12) � ⇠ D2

Page 26: Lecture 4: Tensor Product Ansatz - part II Graduate Lectures€¦ · Lecture 4: Tensor Product Ansatz - part II Dr Gunnar Möller Cavendish Laboratory, University of Cambridge Cavendish

Contracting the PEPS

★Convergence in needs to be carefully checked�

★Overall cost: with O(D10...12) � ⇠ D2

0 0.02 0.04 0.06 0.08 0.1−0.6695

−0.669

−0.6685

1/χ

E s

D=4D=5D=6

Example: 2D Heisenberg model

★Accuracy of the approximate contraction is controlled by “boundary dimension” �

Page 27: Lecture 4: Tensor Product Ansatz - part II Graduate Lectures€¦ · Lecture 4: Tensor Product Ansatz - part II Dr Gunnar Möller Cavendish Laboratory, University of Cambridge Cavendish

Contracting the PEPS

★ Exact contraction of an PEPS is exponentially hard!

need approximate contraction scheme

MPS-based approach

Corner transfer matrix method

TRG Tensor Renormalization Group

Murg,Verstraete,Cirac, PRA75 ’07Jordan,et al. PRL79 (2008)

Nishino, Okunishi, JPSJ65 (1996)Orus, Vidal, PRB 80 (2009)

Gu, Levin, Wen, B78, (2008)Levin, Nave, PRL99 (2007)Xie et al. PRL 103, (2009)

★Convergence in needs to be carefully checked�

★Overall cost: with O(D10...12) � ⇠ D2

★Accuracy of the approximate contraction is controlled by “boundary dimension” �

Page 28: Lecture 4: Tensor Product Ansatz - part II Graduate Lectures€¦ · Lecture 4: Tensor Product Ansatz - part II Dr Gunnar Möller Cavendish Laboratory, University of Cambridge Cavendish

this is an MPO (matrix product operator)

this is an MPS

Contracting the PEPS using an MPSdimension D2

Verstraete, Murg, Cirac, Adv. in Phys. 57, 143 (2008)

Page 29: Lecture 4: Tensor Product Ansatz - part II Graduate Lectures€¦ · Lecture 4: Tensor Product Ansatz - part II Dr Gunnar Möller Cavendish Laboratory, University of Cambridge Cavendish

Contracting the PEPS using an MPS

this is an MPS with bond dimension D2 xD2

dimension D2xD2

truncate the bonds to �

there are different techniques for the efficient MPO-MPS multiplication (SVD, variational optimization, zip-up algorithm...)Schollwöck, Annals of Physics 326, 96 (2011)Stoudenmire, White, New J. of Phys. 12, 055026 (2010).

Verstraete, Murg, Cirac, Adv. in Phys. 57, 143 (2008)

Page 30: Lecture 4: Tensor Product Ansatz - part II Graduate Lectures€¦ · Lecture 4: Tensor Product Ansatz - part II Dr Gunnar Möller Cavendish Laboratory, University of Cambridge Cavendish

Contracting the PEPS using an MPS

dimension �

proceed...

★ We can do this from several directions★ Similar procedure when computing an expectation value

Verstraete, Murg, Cirac, Adv. in Phys. 57, 143 (2008)

Page 31: Lecture 4: Tensor Product Ansatz - part II Graduate Lectures€¦ · Lecture 4: Tensor Product Ansatz - part II Dr Gunnar Möller Cavendish Laboratory, University of Cambridge Cavendish

Compute expectation values

Figure taken from Corboz, Orús, Bauer, Vidal, PRB 81, 165104 (2010)

environment

compute environment approximately

Connect two-body operator

Contract this network!

Page 32: Lecture 4: Tensor Product Ansatz - part II Graduate Lectures€¦ · Lecture 4: Tensor Product Ansatz - part II Dr Gunnar Möller Cavendish Laboratory, University of Cambridge Cavendish

Contracting the iPEPS using the corner transfer matrix

A A A AA A

A A A AA A

A A A AA A

A A A A AA

A A A A AA

A A A A AA

iPEPSinfinite projected entangled-pair state

open boundaries, but “infinitely” far away

Page 33: Lecture 4: Tensor Product Ansatz - part II Graduate Lectures€¦ · Lecture 4: Tensor Product Ansatz - part II Dr Gunnar Möller Cavendish Laboratory, University of Cambridge Cavendish

figure taken from Orus, Vidal, PRB 80 (2009)

Contracting the iPEPS using the corner transfer matrix Nishino, Okunishi, JPSJ65 (1996)Orus, Vidal, PRB 80 (2009)

★ Let the system grow in all directions.

★ Repeat until convergence is reached

★ The boundary tensors form the environment

★ Can be generalized to arbitrary unit cell sizes

Corboz, et al., PRB 84 (2011)

dimension �

Page 34: Lecture 4: Tensor Product Ansatz - part II Graduate Lectures€¦ · Lecture 4: Tensor Product Ansatz - part II Dr Gunnar Möller Cavendish Laboratory, University of Cambridge Cavendish

Contracting the PEPS/iPEPS using TRG Gu, Levin, Wen, B78, (2008)Levin, Nave, PRL99 (2007)Xie et al. PRL 103, (2009)

★ Contract PEPS with periodic boundary conditions★ Finite or infinite systems★ Related schemes: SRG, HOTRG, HOSRG, ...

Tensor Renormalization Group

SVD dimension �sublattice A:

SVDsublattice B:

Page 35: Lecture 4: Tensor Product Ansatz - part II Graduate Lectures€¦ · Lecture 4: Tensor Product Ansatz - part II Dr Gunnar Möller Cavendish Laboratory, University of Cambridge Cavendish

Contracting the PEPS

★ Exact contraction of an PEPS is exponentially hard!

need approximate contraction scheme

MPS-based approach

Corner transfer matrix method

TRG Tensor Renormalization Group

Murg,Verstraete,Cirac, PRA75 ’07Jordan,et al. PRL79 (2008)

Nishino, Okunishi, JPSJ65 (1996)Orus, Vidal, PRB 80 (2009)

Gu, Levin, Wen, B78, (2008)Levin, Nave, PRL99 (2007)Xie et al. PRL 103, (2009)

★Convergence in needs to be carefully checked�

★Overall cost: with O(D10...12) � ⇠ D2

�★Accuracy of the approximate contraction is controlled by

“boundary dimension” �

Page 36: Lecture 4: Tensor Product Ansatz - part II Graduate Lectures€¦ · Lecture 4: Tensor Product Ansatz - part II Dr Gunnar Möller Cavendish Laboratory, University of Cambridge Cavendish

H| i

Expressing the Hamiltonian as a MPO

Page 37: Lecture 4: Tensor Product Ansatz - part II Graduate Lectures€¦ · Lecture 4: Tensor Product Ansatz - part II Dr Gunnar Möller Cavendish Laboratory, University of Cambridge Cavendish

Summary: Tensor network algorithmsMPS

StructureVariational

ansatz

iterative optimization of individual tensors

(energy minimization)imaginary time

evolution

Contraction of the tensor network

exact / approximate

Find the best (ground) state

|��

Compute observables��|O|�⇥

PEPS2D MERA

1D MERA

✓✓✓

Page 38: Lecture 4: Tensor Product Ansatz - part II Graduate Lectures€¦ · Lecture 4: Tensor Product Ansatz - part II Dr Gunnar Möller Cavendish Laboratory, University of Cambridge Cavendish

0 0.05 0.1

0.3

0.32

0.34

0.36

0.38

0.4

0.42

1/L

stag

gere

d m

agne

tizat

ion

QMC from Ms2

QMC from C(L/2,L/2)QMC extrap.

0 0.2 0.4 0.61/D

iPEPSQMC extrap.linear fitsquadratic fits

Heisenberg model: Comparison QMC vs iPEPS

Energy: QMC (extrap.):

iPEPS (D=10): rel. error < 10-4

strong finite D effects

how to extrapolate?

0 0.05 0.1

0.3

0.32

0.34

0.36

0.38

0.4

0.42

1/L

stag

gere

d m

agne

tizat

ion

QMC from Ms2

QMC from C(L/2,L/2)QMC extrap.

0 0.2 0.4 0.61/D

iPEPSQMC extrap.linear fitsquadratic fits

strong finite size effects

accurate extrapolation

m = 0.30743(1)

m ⇡ 0.295� 0.314rel. error ~ 2%

-0.66939J

-0.669437(5)J

QMC study: Sandvik & Evertz, PRB82, 024407 (2010): system sizes up to 256x256

A. Sandvik, PRB56, 11678 (1997)

A Benchmark: Heisenberg model

Page 39: Lecture 4: Tensor Product Ansatz - part II Graduate Lectures€¦ · Lecture 4: Tensor Product Ansatz - part II Dr Gunnar Möller Cavendish Laboratory, University of Cambridge Cavendish

H = J�

�i,j⇥A

SiSj +�

�i,j⇥B

SiSj

. . .

. . .. . .

. . .

J0

Wenzel, Janke, PRB 79 (2009)

1

Phase diagram

Distinguish between ordered / disordered phase?

2nd

orde

r ph

ase

tran

sitio

n

0.3969Dimer phase

S S

S

SS

S S

SS

S

m=0

Néel phase

m>0

Page 40: Lecture 4: Tensor Product Ansatz - part II Graduate Lectures€¦ · Lecture 4: Tensor Product Ansatz - part II Dr Gunnar Möller Cavendish Laboratory, University of Cambridge Cavendish

0 0.1 0.2 0.3 0.4 0.50

0.1

0.2

0.3

1/D

m

J=0.39

0 0.1 0.2 0.3 0.4 0.50

0.1

0.2

0.3

1/Dm

J=0.3969

0 0.1 0.2 0.3 0.4 0.50

0.1

0.2

0.3

1/D

m

J=0.4

m=0 m~0 m>0

Distinguish between ordered / disordered phase?

★ Extrapolations in D are important to distinguish between ordered phase and a disordered one!

★A better understanding how to accurately extrapolate in D would be very useful

Page 41: Lecture 4: Tensor Product Ansatz - part II Graduate Lectures€¦ · Lecture 4: Tensor Product Ansatz - part II Dr Gunnar Möller Cavendish Laboratory, University of Cambridge Cavendish

Fermionic tensor networks

Page 42: Lecture 4: Tensor Product Ansatz - part II Graduate Lectures€¦ · Lecture 4: Tensor Product Ansatz - part II Dr Gunnar Möller Cavendish Laboratory, University of Cambridge Cavendish

Breakthrough in 2009: Fermions with 2D tensor networks

How to take fermionic statistics into account?

P. Corboz, G. Evenbly, F. Verstraete, G. Vidal, Phys. Rev. A 81, 010303(R) (2010)C. V. Kraus, N. Schuch, F. Verstraete, J. I. Cirac, Phys. Rev. A 81, 052338 (2010)C. Pineda, T. Barthel, and J. Eisert, Phys. Rev. A 81, 050303(R) (2010)P. Corboz and G. Vidal, Phys. Rev. B 80, 165129 (2009)T. Barthel, C. Pineda, and J. Eisert, Phys. Rev. A 80, 042333 (2009)Q.-Q. Shi, S.-H. Li, J.-H. Zhao, and H.-Q. Zhou, arXiv:0907.5520 P. Corboz, R. Orus, B.Bauer, G. Vidal, PRB 81, 165104 (2010)I. Pizorn, F. Verstraete, Phys. Rev. B 81, 245110 (2010)Z.-C. Gu, F. Verstraete, X.-G. Wen. arXiv:1004.2563

Different formulations:

fermionic operators anticommute

cicj = �cj ci

Page 43: Lecture 4: Tensor Product Ansatz - part II Graduate Lectures€¦ · Lecture 4: Tensor Product Ansatz - part II Dr Gunnar Möller Cavendish Laboratory, University of Cambridge Cavendish

Bosons vs Fermions

�B(x1, x2) = �B(x2, x1)

symmetric!

�F (x1, x2) = ��F (x2, x1)

antisymmetric!

+ --Crossings in a tensor network

ignore crossings take care!

--=+

operators anticommutebibj = bj bi

operators commute

cicj = �cj ci

3x3 PEPS

Ψ

؆��|�

Page 44: Lecture 4: Tensor Product Ansatz - part II Graduate Lectures€¦ · Lecture 4: Tensor Product Ansatz - part II Dr Gunnar Möller Cavendish Laboratory, University of Cambridge Cavendish

The swap tensor

RULE:

# Fermions

+

even even

+

evenodd

--oddodd

+

oddeven Parity

(even parity), even number of fermionsParity of a state: P

(odd parity), odd number of fermions

P = +1

P = �1{Replace crossing by swap tensor

i1 i2

j2 j1

B

S(P (i1), P (i2)) =��1+1

if P (i1) = P (i2) = �1otherwise

Bi1i2j2j1

= �i1,j1�i2,j2S(P (i1), P (i2))

Use parity preserving tensors: Ti1i2...iM = 0 if P (i1)P (i2) . . . P (iM ) �= 1

Page 45: Lecture 4: Tensor Product Ansatz - part II Graduate Lectures€¦ · Lecture 4: Tensor Product Ansatz - part II Dr Gunnar Möller Cavendish Laboratory, University of Cambridge Cavendish

ExampleBosonic tensor network Fermionic tensor network

Simple rules!Same computational cost!

Page 46: Lecture 4: Tensor Product Ansatz - part II Graduate Lectures€¦ · Lecture 4: Tensor Product Ansatz - part II Dr Gunnar Möller Cavendish Laboratory, University of Cambridge Cavendish

Outlook

Page 47: Lecture 4: Tensor Product Ansatz - part II Graduate Lectures€¦ · Lecture 4: Tensor Product Ansatz - part II Dr Gunnar Möller Cavendish Laboratory, University of Cambridge Cavendish

Improvements of tensor networks methods

Tensor networks

Monte Carlo sampling

Fixed-node Monte CarloNew tensor networkscombine w. variational WF

Symmetries

Parallelization

Better optimization algorithms

Page 48: Lecture 4: Tensor Product Ansatz - part II Graduate Lectures€¦ · Lecture 4: Tensor Product Ansatz - part II Dr Gunnar Möller Cavendish Laboratory, University of Cambridge Cavendish

‣ Variational ansatz where the accuracy can be systematically controlled

‣ Simulate bosonic, (frustrated) spin and fermionic systems

Conclusion:Tensor network algorithms

✓ 1D: State-of-the-art (MPS, DMRG)

✓ 2D:A lot of progress in recent years!★ iPEPS can outperform state-of-the-art variational methods!

★ cMPS (not discussed) evolving as state of the art for fractional QHE

Tensor networks yield promising routes tosolve challenging open problems in 2D