lecture 3 structure factors and electron density1. prior protein model for molecular replacement...

36
Lecture 3 Structure Factors and electron density

Upload: others

Post on 18-Aug-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lecture 3 Structure Factors and electron density1. Prior protein model for molecular replacement phasing x,y,z coordinates of model 2. Heavy‐atom experimental data (isomorphous replacement)

Lecture 3 Structure Factors and electron density

Page 2: Lecture 3 Structure Factors and electron density1. Prior protein model for molecular replacement phasing x,y,z coordinates of model 2. Heavy‐atom experimental data (isomorphous replacement)

Review ‐ identify miller planes

Green planes ‐

Blue planes ‐

Magenta planes

Green arrow

Magenta arrow

Brown arrow

Page 3: Lecture 3 Structure Factors and electron density1. Prior protein model for molecular replacement phasing x,y,z coordinates of model 2. Heavy‐atom experimental data (isomorphous replacement)

slide 3

1.  Arrows on the figure correspond to dhkl2.  Arrows also are used to represent the reciprocal scattering vector s.  The direction of s is identical to dhkl with length 1/dhkl.  

k b

a

‐b

‐a

1,1,0

1,0,0

1,0,0

Page 4: Lecture 3 Structure Factors and electron density1. Prior protein model for molecular replacement phasing x,y,z coordinates of model 2. Heavy‐atom experimental data (isomorphous replacement)

What defines + or ‐miller planes?(using the 1, 1, 0 plane, +/‐ definitions define the scattering vector direction)

Page 5: Lecture 3 Structure Factors and electron density1. Prior protein model for molecular replacement phasing x,y,z coordinates of model 2. Heavy‐atom experimental data (isomorphous replacement)

b

a

‐b

‐a

1,‐1,0 1,1,0

‐1,1,0

Relationship between miller planes and the reciprocal axis

‐1,‐1,0

Reciprocal LatticeCrystal lattice

1,1,0

‐1,‐1,0

Where is the x‐ray beam for this experiment?Where is the c‐axis in this figure?Index remaining spots in the diffraction image on the right

Page 6: Lecture 3 Structure Factors and electron density1. Prior protein model for molecular replacement phasing x,y,z coordinates of model 2. Heavy‐atom experimental data (isomorphous replacement)

File of structure factor amplitudesexperimental data

(Fobs)

6slide

PDB file          atm res.  Chn res#               x                   y                  z              occ.         B

Fcalc (calculated from the atoms in the pdf file)Each Fcalc is a summation of all atoms in pdb.

Structure Factor Equation

Crystallographic R‐Factor

Page 7: Lecture 3 Structure Factors and electron density1. Prior protein model for molecular replacement phasing x,y,z coordinates of model 2. Heavy‐atom experimental data (isomorphous replacement)

slide 7

A.  Diffraction Data (Fobs, but no phases α)

B.  Determine Phases (Fobs collected, but no phases)Molecular Replacement (MR, requires coordinate file of related structure)Heavy‐atom methods (SIR, MIR)Anomalous dispersion (SAD, MAD) 

C. Calculate an electron density map, based on phases above . Build a protein model (atom type, x, y, z, B) into the map.[electron density provides a bootstrap method for building partial models ] 

D.  Refine protein model.Optimize the positions of the atoms ( x, y, z, and B) in the unit cell.This is performed by mimimizing the difference between Fobs and Fcalc.  The valuesof Fcalc are derived from the atom positions of the protein model in the unit cell.

The Structure Factor equation and the Electron Density equation play important roles in allof the steps of structure determination by X‐ray crystallography.

Steps in X‐ray structure determination

Page 8: Lecture 3 Structure Factors and electron density1. Prior protein model for molecular replacement phasing x,y,z coordinates of model 2. Heavy‐atom experimental data (isomorphous replacement)

Electron density equation (Density , ρ (e‐/Ǻ3) at position x,y,z in the unit cell) 

|F(hkl)| structure factor amplitude (scalar) measured in the diffraction experiment.

α (phase) in radians.  The “phase” of a hkl reflection.  Lost during the diffraction experiment

Thus, F(hkl) is a vector with amplitude |F(hkl)| and phase α(hkl).

h k l are the miller indices!!!

x y z fractional coordinates of the unit cell.  Sampling from 0‐1 in each direction. 

electron density (ρ(xyz)) is calculated by summing all structure factors at each xyz (sampling grid) position in the unit cell.  Thus, ALL reflections contribute to the electron  density at each place in the cell. 

F hkl, αFT

Page 9: Lecture 3 Structure Factors and electron density1. Prior protein model for molecular replacement phasing x,y,z coordinates of model 2. Heavy‐atom experimental data (isomorphous replacement)

h        F        α

The electron density in the unit cells of a crystal is a periodic wave function.  It may be decomposed into its component waves .

Each component wave is described by a structure factor amplitude (|F|)and Phase (α).

In an x‐ray diffraction experiment, |F| ismeasured, but α is lost.

To derive the lost phases and ultimatelyelectron density, must identifyatom positions (black dots), which can be used to calculate the structure factors.(e.g. |F| and α)

108°

144°

144°

162°

234°

Structure factors

Highly schematic figure!!

Page 10: Lecture 3 Structure Factors and electron density1. Prior protein model for molecular replacement phasing x,y,z coordinates of model 2. Heavy‐atom experimental data (isomorphous replacement)

The Isotropic Atomic Scattering Factor

B=8π2<u>2

1. X‐ray scattering is proportional to the # of electrons in the atom. 

a.  Hg is called a “heavy atom”. Lots of electrons!

2. Scattering falls off with resolution (e.g. resolution dependent).

3. Scattering falls off with increasing movement of the atom.  The B‐factor  (refined for each atom , found in pdb files) models the movement of atoms in crystals by the equation:  

atomic number# electrons

Where u is the mean atomic displacement of an atom. Thus, a B‐factor of 10 corresponds to a mean atomic displacement of 0.36Å 

Page 11: Lecture 3 Structure Factors and electron density1. Prior protein model for molecular replacement phasing x,y,z coordinates of model 2. Heavy‐atom experimental data (isomorphous replacement)

Isotropic scattering factors in electrons found in International tables Vol. 4. (Table 2.2)

The Isotropic Atomic Scattering Factor

Scattering factor (f) plot for oxygen vs. resolution at B=0Å2 and B=10Å2

B=0 Å2 resolution fall off only 

B=10 Å2 motion and resolution fall off only 

Page 12: Lecture 3 Structure Factors and electron density1. Prior protein model for molecular replacement phasing x,y,z coordinates of model 2. Heavy‐atom experimental data (isomorphous replacement)

STRUCTURE FACTOR    summation of scattering vectors of individual atoms in unit cell

h k  l   1 2  0   F is the summation of scattering  vectors for each atom in the unitcell. 

The magnitude of  f is dependent on the scattering atom.

The orientation of the vector is dependent on the x, y, z position of the atom in the unit cell.

F

Page 13: Lecture 3 Structure Factors and electron density1. Prior protein model for molecular replacement phasing x,y,z coordinates of model 2. Heavy‐atom experimental data (isomorphous replacement)

f1, f2, and f3 are the  scattering contribution of 3 different atoms in the unit cell of a crystal.  

All atoms contribute to the measured intensity.

The phase (α) requires knowledge of the positions of atoms in the unitcell.

F (hkl) corresponds to a waves scattered from all atoms in the crystal unit cell for a given set of miller planes h, k , l. 

STRUCTURE FACTOR EQUATION

Summation over all atoms (j) in the unit cell for each h, k, l 

Page 14: Lecture 3 Structure Factors and electron density1. Prior protein model for molecular replacement phasing x,y,z coordinates of model 2. Heavy‐atom experimental data (isomorphous replacement)

STRUCTURE FACTOR EQUATION (algebraic calculation)

It easy to break the structure factor equation down into scattering components along real (A, where A=f1cos α ) and imaginary axes (B, where B = B=f1sinα ). 

The  summation of all A and B components (for each atom, see equations below)  results in the structure factor amplitue |F|, which is equal to the SQRT (A2+B2) with resultant phase (α) = Atan2(B,A), or tan‐1 B/A. Normally the phase is converted from radians to degrees.  

A

B

Page 15: Lecture 3 Structure Factors and electron density1. Prior protein model for molecular replacement phasing x,y,z coordinates of model 2. Heavy‐atom experimental data (isomorphous replacement)

STRUCTURE FACTOR Diagrams – Graphical representation of structure factors.

A=1, B=0 A=0.71, B=0.71

A=|F(hkl)|cosα

B=|F(hkl)|sinα

α=tan‐1  (B/A)

|Fhkl| = SQRT(A2 + B2)

I = A2 + B2

If |F| = 1

ABα

Page 16: Lecture 3 Structure Factors and electron density1. Prior protein model for molecular replacement phasing x,y,z coordinates of model 2. Heavy‐atom experimental data (isomorphous replacement)

hkl = 200F=12α = 0°

hkl = 200F=12α = 72°

Note relation of e‐ density wave (green) relative to miller planes (grey)Phase diagram (left) and e‐ density and miller planes (right) 

Page 17: Lecture 3 Structure Factors and electron density1. Prior protein model for molecular replacement phasing x,y,z coordinates of model 2. Heavy‐atom experimental data (isomorphous replacement)

Friedels law  F(hkl) = F*(hkl) Thus,  F(hkl) and F(‐h‐k‐l) have equal amplitudes but opposite phases (no anomalous scattering) 

hkl planes 0.650.40.20.1

h reflection

‐h reflection

a 36°

72°

144°

234°

‐36°

‐72°

F(h)

F(‐h)

f 2*pi h x1 2*pi*(h*x1) f*cos(2*pi*(hx)) A f*sin (2*pi*(hx)) B F=SQRT(A+B) phase6.00 6.28 1 0.10 0.63 4.85 4.85 3.53 3.53 6.00 366.00 6.28 ‐1 0.10 ‐0.63 4.85 4.85 ‐3.53 ‐3.53 6.00 ‐36

Assume atoms are carbons ( 6 electrons)

Page 18: Lecture 3 Structure Factors and electron density1. Prior protein model for molecular replacement phasing x,y,z coordinates of model 2. Heavy‐atom experimental data (isomorphous replacement)

How do we get phases?

Page 19: Lecture 3 Structure Factors and electron density1. Prior protein model for molecular replacement phasing x,y,z coordinates of model 2. Heavy‐atom experimental data (isomorphous replacement)

Experimental Data   h, k , l, I and sigma I (Native Dataset used for refinement and deposited with the final coordinates in the pdb file.)

Experimental Data for Phasing (generally not deposited).

1. Prior protein model for molecular replacement phasing  x,y,z coordinates of model

2. Heavy‐atom experimental data (isomorphous replacement) h, k , l, I, sig.IIntensity differences between native and HA dataused to find x,y,z positions of heavy‐atoms.heavy atom phases used as initial estimates of protein phases

3. Anomalous diffraction data h, k, l,  I+, sig.I+ , ‐I, sig.‐IIntensity differences between I+ and I‐ (Friedel pairs)used to find x,y,z positions of anomalous scattering atoms.anomalous scatter phases used as initial estimates of protein phases.

Page 20: Lecture 3 Structure Factors and electron density1. Prior protein model for molecular replacement phasing x,y,z coordinates of model 2. Heavy‐atom experimental data (isomorphous replacement)

Possible problem:  No appropriate model structure or structural model too different

Possible problem:  heavy atoms (e.g. Hg) don’t bind OR don’t bind specifically.  Heavy‐atoms change the unit cell – non‐isomorphous, which prevents finding the positions.

Generally, requires labeling of the protein (SeMet).  Great if molecule can be produced in e. coli.  Need anomolous scatter e.g Fe proteinPositive….100% incorporation of SeMet

Page 21: Lecture 3 Structure Factors and electron density1. Prior protein model for molecular replacement phasing x,y,z coordinates of model 2. Heavy‐atom experimental data (isomorphous replacement)

Collect an X‐ray diffraction data set.Calculate structure factor amplitudes for Known protein structure (Pmodel)

However, don’t know where this model is in the unit cell…  

Molecular Replacement1. Finds the correct rotation of Pmodel relative to Pcrystal (Pc).  2. Finds the correct translation of Pmodel in Pcrystal.3. This is effective when Pmodel is structurally similar to Pcrystal.  The breakdownoccurs somewhere around ~35% or less sequence identity.

model

Mod

c

c

c

c

c

c

c

c

#1 #2

Page 22: Lecture 3 Structure Factors and electron density1. Prior protein model for molecular replacement phasing x,y,z coordinates of model 2. Heavy‐atom experimental data (isomorphous replacement)
Page 23: Lecture 3 Structure Factors and electron density1. Prior protein model for molecular replacement phasing x,y,z coordinates of model 2. Heavy‐atom experimental data (isomorphous replacement)

Fph Fp FhFPH = FP + FH

For SIR or MIR Phasing Method

Dataset ofNativecrystal

Dataset of  NativeCrystals derivatizedWith heavy‐atom

Hg, or U, or Pb, or Pt(look at scattering 

factor table)

Measure the intensity (amplitude) differences between Heavy‐atom dataset  (Fph) and Native dataset (Fp).

Subtraction of Fph – Fp is an estimate of the contribution of the heavy‐atom to the diffractionpattern.    

Find the phase of the heavy atom (Fh).  Need to find the xyz position of the atom: Patterson Map.

Estimate  ofHeavy‐atom contribution

Page 24: Lecture 3 Structure Factors and electron density1. Prior protein model for molecular replacement phasing x,y,z coordinates of model 2. Heavy‐atom experimental data (isomorphous replacement)

1. If you define the location of the heavy atom, you can calculate the vector FH.  With FH you can define the phase of the protein (αP). 

FPH = FP + FH

Remember these are each VECTORS….we only have amplitudes

Page 25: Lecture 3 Structure Factors and electron density1. Prior protein model for molecular replacement phasing x,y,z coordinates of model 2. Heavy‐atom experimental data (isomorphous replacement)

|Fp| 

|Fph| 

In SIR, we have 2 circles corresponding to Fp and Fph which are native and derivative (heavy atom) data sets.  The following diagram would be constructed for each hkl reflection in the dataset.  

We want to know the phase (α) of Fp.  BecauseFp and Fph are vector summations of atoms (see earlier slides) we can write the following vector equation.  

α

|Fp| 

|Fph| 

Fh

Fp + Fh = FphThis says if we know the vector for Fh, weCan solve for Fp

Page 26: Lecture 3 Structure Factors and electron density1. Prior protein model for molecular replacement phasing x,y,z coordinates of model 2. Heavy‐atom experimental data (isomorphous replacement)

positional From FH, get αP

Phaser……………….automate all steps + refinement

Page 27: Lecture 3 Structure Factors and electron density1. Prior protein model for molecular replacement phasing x,y,z coordinates of model 2. Heavy‐atom experimental data (isomorphous replacement)

Initial Phase estimates Build initial model / refine

More information in the model than in the starting map.

Calc. new map.

Page 28: Lecture 3 Structure Factors and electron density1. Prior protein model for molecular replacement phasing x,y,z coordinates of model 2. Heavy‐atom experimental data (isomorphous replacement)

Crystallographer observes incorrect fits between improved map and model.

Refinement program cannot “fix” all problems .  Manual intervention through molecular graphics

Correct model, refine model, recalculate electron density map. R‐factor should be lower, improved map quality, protein geometry improved.

Page 29: Lecture 3 Structure Factors and electron density1. Prior protein model for molecular replacement phasing x,y,z coordinates of model 2. Heavy‐atom experimental data (isomorphous replacement)

Anomalous Scattering http://skuld.bmsc.washington.edu/scatter/

Page 30: Lecture 3 Structure Factors and electron density1. Prior protein model for molecular replacement phasing x,y,z coordinates of model 2. Heavy‐atom experimental data (isomorphous replacement)

Anomalous scattering factors are determined experimentally by monitoring Fluorescence asA function of energy (wavelength).  Performed at a synchrotron beamlines.  Requires a Tunable x‐ray source.  

Page 31: Lecture 3 Structure Factors and electron density1. Prior protein model for molecular replacement phasing x,y,z coordinates of model 2. Heavy‐atom experimental data (isomorphous replacement)

Selenium, atomic # = 34, Sulfur mimick

Edge keV Å K 12.6578 0.9795 L-I 1.6539 7.4965 L-II 1.4762 8.3989 L-III 1.4358 8.6352

Page 32: Lecture 3 Structure Factors and electron density1. Prior protein model for molecular replacement phasing x,y,z coordinates of model 2. Heavy‐atom experimental data (isomorphous replacement)

12595.00      ‐4.793897      0.5074802    12600.00      ‐4.879107      0.5071128    12605.00      ‐4.972221      0.5067459    12610.00      ‐5.074862      0.5063793    12615.00      ‐5.189123      0.5060131    12620.00      ‐5.317906      0.5056473    12625.00      ‐5.465356      0.5052819    12630.00      ‐5.637684      0.5049169    12635.00      ‐5.844824      0.5045523    12640.00      ‐6.104173      0.5041881    12645.00      ‐6.450631      0.5038243    12650.00      ‐6.972532      0.5034610    12655.00      ‐8.055866      0.5030980    12660.00      ‐8.319967       3.846461    peak    12665.00      ‐7.052211       3.843189    12670.00      ‐6.486044       3.839924    12675.00      ‐6.116062       3.836665    12680.00      ‐5.840367       3.833412    

Energy Kev f’                   f’’

12900.00      ‐3.196559       3.696152  remote 

Energy Kev f’                   f’’

Page 33: Lecture 3 Structure Factors and electron density1. Prior protein model for molecular replacement phasing x,y,z coordinates of model 2. Heavy‐atom experimental data (isomorphous replacement)

f”, varies strongly near the absorption edge, becoming most positive at energies > E.

f” is the component of scattered radiation 90°out of phase with the normally scattered component fo

fo

f” f”

fo

f”fo

f”

fo

f”

fo

E

Se2

2

"vvgf B

when >BElse, 0

Peak

High energy remote

Low energy remote

Scattering factor f” is maximal at the peak, which corresponds to maximal Fph+  and Fph‐intensities observed in the diffraction data of Friedel pairs.  SAD data is collected at energies/λ just above the peak.

Page 34: Lecture 3 Structure Factors and electron density1. Prior protein model for molecular replacement phasing x,y,z coordinates of model 2. Heavy‐atom experimental data (isomorphous replacement)

Friedels law  F(hkl) = F*(hkl) Thus,  F(hkl) and F(‐h‐k‐l) have equal amplitudes but opposite phases (no anomalous scattering) 

hkl planes 0.650.40.20.1

h reflection

‐h reflection

a 36°

72°

144°

234°

‐36°

‐72°

F(h)

F(‐h)

f 2*pi h x1 2*pi*(h*x1) f*cos(2*pi*(hx)) A f*sin (2*pi*(hx)) B F=SQRT(A+B) phase6.00 6.28 1 0.10 0.63 4.85 4.85 3.53 3.53 6.00 366.00 6.28 ‐1 0.10 ‐0.63 4.85 4.85 ‐3.53 ‐3.53 6.00 ‐36

Assume atoms are carbons ( 6 electrons)

Page 35: Lecture 3 Structure Factors and electron density1. Prior protein model for molecular replacement phasing x,y,z coordinates of model 2. Heavy‐atom experimental data (isomorphous replacement)

Friedel pairs

At the appropriate X‐ray energy, the white atom Scatters  anomalously and Friedel’s law breaks down.  This is because the phase of the anomalous scattering atom is advanced  by 90 degrees relative to the other atoms (Δf”).  This results in different intensities at I h,k,l and I –h,‐k, ‐l, which are measured in the x‐ray diffraction experiment.  As a result,FPH+ and FPH‐ are different.  These differences can be used to locate the x, y, z position of the selenium atom, providing phase estimates for the entire protein structure.

h k l plane 

‐h ‐k ‐l plane 

Breakdown in Friedel’s lawFPH (hkl)≠FPH (‐h‐k‐l) 

when an anomalous scattering atom ispresent

Δf”

Δf”

0.9

Page 36: Lecture 3 Structure Factors and electron density1. Prior protein model for molecular replacement phasing x,y,z coordinates of model 2. Heavy‐atom experimental data (isomorphous replacement)

MAD data collection statistics